Logic in general

Logics are formal languages for
▶ representing what we know about the world
▶ reasoning about this knowledge (draw conclusions from it)

Two components:

Syntax defines the sentences in the language
Semantics defines the meaning of the sentences

Used in many areas of Computer Science:
▶ Artificial Intelligence
▶ Semantic Web
▶ Software & Hardware verification
▶ Databases
▶ ... many many others
Many families of logics

There is not one logic, but many families of logics:
- Modal logics (epistemic, temporal, spatial, ...)
- Description logics
- Non-monotonic logics
- Intuitionistic logic
- ... many many others

We will study two classical logics:
- propositional logic
- first-order logic

Propositional logic: Building blocks

Propositions
Atomic statements that cannot be further decomposed
For example:
- “It is raining”
- “The cat is on the table”
- “The sky is blue”
Usually denoted with uppercase letters: $P, Q, ...$
Also called propositional variables

Logical connectives
- Conjunction: \land (and)
- Negation: \neg (not)
Propositional logic: Syntax

Let \textbf{Prop} be a countable set of propositional variables

The language \(L \) of propositional logic over \textbf{Prop} is defined inductively as follows:

1. Every \(P \in \text{Prop} \) is in \(L \) (atomic formulae or atoms)
2. If \(\phi \) and \(\psi \) are in \(L \), then \(\phi \land \psi \) is also in \(L \)
3. If \(\phi \) is in \(L \), then also \(\neg \phi \) is in \(L \)
4. Nothing else is in \(L \)

In other words, \(L \) is generated by the following grammar:

\[
\phi := P \mid \phi \land \phi \mid \neg \phi \quad (\text{with } P \in \text{Prop})
\]

Propositional logic: Semantics

Intuition

▶ Atomic statements can be either \textbf{true} (t) or \textbf{false} (f)
▶ The truth value of a formula is determined by the truth values of its atoms

Formally

A \textbf{truth-value assignment} is a function \(\alpha : \text{Prop} \rightarrow \{t, f\} \)

Then, \(\alpha \) \textbf{satisfies} a formula \(\phi \) (written \(\alpha \models \phi \)) inductively as follows:

\[
\begin{align*}
\alpha \models P & \iff \alpha(P) = t \\
\alpha \models \neg \phi & \iff \alpha \not\models \phi \\
\alpha \models \phi \land \psi & \iff \alpha \models \phi \text{ and } \alpha \models \psi
\end{align*}
\]
Truth tables

Reflect the semantics of the connectives

<table>
<thead>
<tr>
<th>∧</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>f</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>¬</th>
<th>t</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>t</td>
<td>f</td>
<td></td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td></td>
</tr>
</tbody>
</table>

Given α and φ, allow us to determine whether \(α \models φ \):

1. Replace each propositional variable \(P \) in φ by \(α(P) \)
2. Propagate t and f according to the truth tables

Example

Given the formula

\[
φ = \neg(\neg A \land B) \land \neg(C \land \neg D)
\]

and the assignment

\[
α = \{ A \mapsto t, \ B \mapsto f, \ C \mapsto f, \ D \mapsto t \}
\]

does α satisfy φ?

Given α and φ, checking whether \(α \models φ \) can be done in polynomial time in the size of φ.
Satisfiability and Validity

A formula ϕ is

- **satisfiable** if there is some α that satisfies ϕ
- **unsatisfiable** if ϕ is not satisfiable
- **falsifiable** if there is some α that does not satisfy ϕ
- **valid** if every α satisfies ϕ
 (in this case ϕ is called a **tautology**)

Consequences

- ϕ is a tautology iff $\neg\phi$ is unsatisfiable
- ϕ is a unsatisfiable iff $\neg\phi$ is a tautology

Equivalence

Two formulas are **logically equivalent** (written $\phi \equiv \psi$) if for all α

\[\alpha \models \phi \iff \alpha \models \phi \]

(i.e., there is no assignment that satisfies one formula but not the other)

Intuition: Equivalent formulae have the **same meaning**
even though they may **differ syntactically**
(they say the same thing in different ways)
Propositional logic: Extended language

Syntax
New connectives:
- Disjunction \(\lor \) (or)
- Implication \(\rightarrow \) (if-then)
- Double implication \(\leftrightarrow \) (if and only if)

New grammar:
\[
\phi ::= P \mid \neg \phi \mid \phi \land \phi \mid \phi \lor \phi \mid \phi \rightarrow \phi \mid \phi \leftrightarrow \phi
\]

Semantics
\[
\alpha \models \phi \lor \psi \text{ iff } \alpha \models \phi \text{ or } \alpha \models \psi
\]
\[
\alpha \models \phi \rightarrow \psi \text{ iff } \text{if } \alpha \models \phi, \text{ then } \alpha \models \psi
\]
\[
\alpha \models \phi \leftrightarrow \psi \text{ iff } (\alpha \models \phi \text{ if and only if } \alpha \models \psi)
\]

Expressive power

Every formula in the extended language can be equivalently expressed using only \(\land \) and \(\neg \)
\[
\phi \lor \psi \equiv \neg (\neg \phi \land \neg \psi)
\]
\[
\phi \rightarrow \psi \equiv \neg \phi \lor \psi
\]
\[
\phi \leftrightarrow \psi \equiv (\phi \rightarrow \psi) \land (\psi \rightarrow \phi)
\]

The new connectives do not add expressive power to the language
- they are just syntactic sugar
- but useful to write formulae more succinctly
Truth tables of the new connectives

<table>
<thead>
<tr>
<th></th>
<th>Disjunction</th>
<th>Implication</th>
<th>Double Implication</th>
</tr>
</thead>
<tbody>
<tr>
<td>\lor</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>f</td>
</tr>
<tr>
<td>\rightarrow</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>\leftrightarrow</td>
<td>t</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>t</td>
<td>t</td>
<td>f</td>
<td>f</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
<tr>
<td>f</td>
<td>f</td>
<td>t</td>
<td>t</td>
</tr>
</tbody>
</table>

All of the above can be derived from the truth tables for \land and \neg

Equivalences

- **Commutativity**
 \[
 \phi \lor \psi \equiv \psi \lor \phi \\
 \phi \land \psi \equiv \psi \land \phi
 \]

- **Associativity**
 \[
 (\phi \lor \psi) \lor \chi \equiv \phi \lor (\psi \lor \chi) \\
 (\phi \land \psi) \land \chi \equiv \phi \land (\psi \land \chi)
 \]

- **Distributivity**
 \[
 \phi \land (\psi \lor \chi) \equiv (\phi \land \psi) \lor (\phi \land \chi) \\
 \phi \lor (\psi \land \chi) \equiv (\phi \lor \psi) \land (\phi \lor \chi)
 \]

- **Idempotence**
 \[
 \phi \lor \phi \equiv \phi \\
 \phi \land \phi \equiv \phi
 \]

- **Absorption**
 \[
 \phi \lor (\phi \land \psi) \equiv \phi \\
 \phi \land (\phi \lor \psi) \equiv \phi
 \]
Equivalences (continued)

Double Negation

\[\neg\neg \phi \equiv \phi \]

De Morgan

\[\neg(\phi \lor \psi) \equiv \neg\phi \land \neg\psi \]
\[\neg(\phi \land \psi) \equiv \neg\phi \lor \neg\psi \]

Implication

\[\phi \rightarrow \psi \equiv \neg\phi \lor \psi \]

Entailment

We extend the satisfaction relationship \(\models \) to sets \(\Sigma \) of formulae:

\[\alpha \models \Sigma \iff \alpha \models \phi \text{ for all } \phi \in \Sigma \iff \alpha \models \bigwedge_{\phi \in \Sigma} \phi \]

Then, we say that \(\Sigma \) entails a formula \(\phi \) if for all \(\alpha \)

\[\alpha \models \phi \text{ whenever } \alpha \models \Sigma \]

(i.e., every assignment that satisfies \(\Sigma \) also satisfies \(\phi \))
Properties of Entailment

Deduction Theorem

\[\Sigma \cup \{\phi\} \models \psi \quad \text{iff} \quad \Sigma \models \phi \rightarrow \psi \]

Contraposition Theorem

\[\Sigma \cup \{\phi\} \models \neg \psi \quad \text{iff} \quad \Sigma \cup \{\psi\} \models \neg \phi \]

Contradiction Theorem

\[\Sigma \cup \{\phi\} \text{ is unsatisfiable} \quad \text{iff} \quad \Sigma \models \neg \phi \]

Decision problems

A **decision problem** asks a question with a Yes / No answer

Example

SAT: Given a propositional formula \(\phi \), is \(\phi \) satisfiable? (i.e., can we find an assignment \(\alpha \) such that \(\alpha \models \phi \)?)

A **decision procedure** is an algorithm that

- always terminates
- solves a decision problem

A decision problem is **decidable** if there is decision procedure for it
Solving SAT

Satisfiability in propositional logic is a **decidable** problem.

Naive algorithm

1. Enumerate all possible assignments
 (there are 2^n where n is the number of atoms in the formula)
2. For each assignment check whether the formula is satisfied:
 2.1 if it is, stop and answer YES
 2.2 otherwise, continue to next assignment
3. If there are no more assignment, stop and answer NO

Can we do better in general? NO

SAT is an **NP-complete** problem:

- a (candidate) solution can be verified in polynomial time
- no known efficient (polynomial) way to locate a solution
 (in the worst case, it requires **exponential** time)

Reduction to satisfiability

Validity, equivalence, and entailment

Validity, equivalence, and entailment can all be reduced to checking satisfiability:

- ϕ is valid iff $\neg\phi$ is not satisfiable
- $\phi \models \psi$ iff $\phi \rightarrow \psi$ is valid (deduction theorem)
- $\phi \equiv \psi$ iff $\phi \leftrightarrow \psi$ is valid

A decision procedure for satisfiability is all we need
(truth tables provide one such procedure)

Validity, equivalence and entailment are decidable problems
(in particular, **coNP-complete**) in propositional logic
Some additional terminology

Atom atomic formula

Literal atom (positive literal) or its negation (negative literal)

Clause disjunction of literals

Term conjunction of literals

Normal forms

Formulae expressed in a standard syntactic form

Conjunctive Normal Form (CNF)
Conjunction of clauses: $\bigwedge_{i=1}^{n} \left(\bigvee_{j=1}^{m} L_{i,j} \right)$

Example: $(A \lor \neg B) \land (B \lor \neg C \lor \neg D)$

Disjunctive Normal Form (DNF)
Disjunction of terms: $\bigvee_{i=1}^{n} \left(\bigwedge_{j=1}^{m} L_{i,j} \right)$

Example: $(A \land B) \lor (A \land \neg C) \lor (A \land \neg D) \lor (\neg B \land \neg C) \lor (\neg B \land \neg D)$

Negation Normal Form (NNF)
Only \land, \lor, \neg and negation can appear only in front of atoms (in particular, every formula in CNF or DNF is also in NNF)

Example: $(A \land (B \lor \neg C \lor \neg D)) \lor (\neg B \land (B \lor \neg C \lor \neg D))$
Converting to NNF, CNF and DNF

For every formula there exist equivalent formulae in CNF, DNF and NNF

To convert into NNF

1. Replace \(\{\to, \leftrightarrow\} \) by \(\{\land, \lor, \neg\} \)
2. Apply De Morgan’s laws

To convert into CNF or DNF

1. Convert into NNF
2. Apply the distributivity laws

Why normal forms?

Some approaches to inference use syntactic operations on formulae, often expressed in standardized forms

CNF tells us something as to whether a formula is valid:
- If all clauses contain complementary literals, then the formula is a tautology
- Otherwise, the formula is falsifiable

DNF tells us something as to whether a formula is satisfiable:
- If all terms contain complementary literals, then the formula is unsatisfiable
- Otherwise, the formula is satisfiable
DNF and Satisfiability

Whether a formula in DNF is satisfiable can be decided in *linear time* in the size of the formula.

Wait! Didn’t we say that SAT is NP-complete? *Yes*

So what’s the catch with DNF?

The transformation into DNF is *expensive* (in time/space):
- The size of the formula may *blow-up exponentially*!