Models and Languages for Computational Systems Biology
Lecture 9: Continuous Time

Ian Stark
School of Informatics
The University of Edinburgh

Monday 8 February 2010
Semester 2 Week 5
Outline

1 Symbolic Model Checking

2 Road Map

3 Continuous Time

4 Closing
How many states?

Model-checking allows us to evaluate high-level temporal queries about behaviour of structured processes.

However, this becomes more work as the number of possible states increases.

Identify at which states the CTL formula $\text{AF}(\text{EX}(\text{AD}) \land \text{EX}(\text{BC}))$ holds.
How many states?

Model-checking allows us to evaluate high-level temporal queries about behaviour of structured processes.

However, this becomes more work as the number of possible states increases.

- 10, 100 states — compute directly by hand or eye.

Identify at which states the CTL formula $\text{AF}(\text{EX}(\text{AD}) \land \text{EX}(\text{BC}))$ holds.
How many states?

Model-checking allows us to evaluate high-level temporal queries about behaviour of structured processes.

However, this becomes more work as the number of possible states increases.

- 10, 100 states — compute directly by hand or eye.
Model-checking allows us to evaluate high-level temporal queries about behaviour of structured processes.

However, this becomes more work as the number of possible states increases.

- 10, 100 states — compute directly by hand or eye.
- 1000, 10,000 states — direct, but by machine.
Model-checking allows us to evaluate high-level temporal queries about behaviour of structured processes.

However, this becomes more work as the number of possible states increases.

- 10, 100 states — compute directly by hand or eye.
- 1000, 10,000 states — direct, but by machine.
- 10^6, 10^{12}, ... — explicit state exploration infeasible.
From individuals to sets

Working with individual states becomes infeasible. Instead, we can work with sets of states — which is anyway a better fit for branching-time assertions.

The key to success is choice of representation:

- Lists of states — no better.
- Bitmaps, trees — small improvement.
- Characteristic functions $State \rightarrow 2$ — very concise, limited manipulation (no comparison operation)
- Structured representation of characteristic functions: Binary Decision Diagrams — succinct, efficient operations, unique normal forms.

An efficient representation of sets can also express the transition relation $\rightarrow \subseteq State \times State$
Binary Decision Diagrams

Randal E. Bryant.
Graph-based algorithms for boolean function manipulation.
Think big

Figure 4 graphs the performance we obtained when checking formula 1 on a variety of pipelines of this type.

... The number of bits per register varied from 1 to 12. ...

A pipeline with 12 bits has approximately 1.5×10^{29} reachable states.

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L. Dill and L. J. Hwang

Symbolic model checking: 10^{20} states and beyond.

Outline

1. Symbolic Model Checking
2. Road Map
3. Continuous Time
4. Closing
Road map

- **High-level model**
 - Intuitive, human-readable; Modular, succinct, descriptive, ...
 - Precise, well-defined, compositional.
 - E.g. Petri Nets; later we shall also see process algebras in this rôle.

- **Low-level semantic model**
 - Describes system behaviour.
 - Can be mechanically generated from a high-level model.
 - E.g. labelled transition systems; later Markov chains and ODEs.

- **Analysis**
 - Pose questions about the model.
 - Questions and answers phrased on high-level model.
 - Mechanically evaluated on low-level semantics.
 - E.g. model checking temporal logic; but will also see simulation,
Let's do it again

So far we have seen this with qualitative, discrete models:

\[
\text{Petri nets} \leftrightarrow \text{transition systems} \leftrightarrow \text{LTL, CTL, CTL*, HML, } \ldots
\]

We can now repeat this:

- Continuous time, rates and probabilities;
- Continuous space, amounts and concentrations;
- Qualitative vs. quantitative;
- Markov chains, ODEs, process algebras, \ldots
Outline

1 Symbolic Model Checking
2 Road Map
3 Continuous Time
4 Closing
Introducing time

All models so far have been qualitative: a behaviour is possible, or not.

We introduce quantitative information about the relative probabilities of behaviours with stochastic actions: events that happen at a random time.

We qualify “random” by concentrating on events whose behaviour is stochastic, but time-invariant. This gives rise to a negative exponential probability distribution over time, with a single parameter, the rate at which the event happens.
If random variable X has negative exponential distribution at rate r, then we have the following:

Probability density

$$f(X, r) = \begin{cases} re^{-rt} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

Cumulative distribution

$$F(X, r) = \begin{cases} 1 - e^{-rt} & t \geq 0 \\ 0 & t < 0 \end{cases}$$

Mean

$$E(X) = \frac{1}{r}$$

Variance

$$\text{Var}(X) = \frac{1}{r^2}$$
Properties of the negative exponential

- Memoryless:

\[\forall t, u > 0 . \ P(t < X < t + u \mid X > t) = P(0 < X < u) \]

- Minimum of independent negative exponentials:

\[X \sim \text{Exp}(r) \quad \& \quad Y \sim \text{Exp}(s) \quad \Rightarrow \quad \text{min}(X, Y) \sim \text{Exp}(r + s) \]

Suppose a repeating event happens at random, with \(\lambda t \) occurrences expected within any time interval of length \(t \) (a *Poisson* process). Then the time until it next occurs, and the time between occurrences, are both random variables with negative exponential distribution, rate \(\lambda \).

Similarly for space: the distance between mutations on a DNA strand has negative exponential distribution.
To introduce continuous time into a Petri nets, we label each transition with a rate.

When enabled, the transition fires at that rate (exponential distribution) until it is no longer enabled.
To introduce continuous time into a Petri nets, we label each transition with a rate.

When enabled, the transition fires at that rate (exponential distribution) until it is no longer enabled.

Where more than one transition is enabled, we have a race.
To introduce continuous time into a Petri nets, we label each transition with a rate.

When enabled, the transition fires at that rate (exponential distribution) until it is no longer enabled.

Where more than one transition is enabled, we have a race.

The combined rate of firing is $r + s$, with respective probabilities

$$\frac{r}{r + s} \quad \text{and} \quad \frac{s}{s + r}.$$
Qualitatively, a stochastic Petri net has exactly the same transitions and behaviours as the underlying Petri net.
Qualitatively, a stochastic Petri net has exactly the same transitions and behaviours as the underlying Petri net.

However, we can now distinguish between the probabilities of different runs, and their duration.
Qualitatively, a stochastic Petri net has exactly the same transitions and behaviours as the underlying Petri net.

However, we can now distinguish between the probabilities of different runs, and their duration.

We replace the derived transition system by a Markov chain, and in general a continuous-time Markov chain or CTMC.
Qualitatively, a stochastic Petri net has exactly the same transitions and behaviours as the underlying Petri net.

However, we can now distinguish between the probabilities of different runs, and their duration.

We replace the derived transition system by a Markov chain, and in general a continuous-time Markov chain or CTMC.

We can explore this behaviour through simulation, or by model-checking using a probabilistic temporal logic such as PCTL.
Outline

1. Symbolic Model Checking
2. Road Map
3. Continuous Time
4. Closing
Homework

Read the following short articles.

Randal E. Bryant.
Graph-based algorithms for boolean function manipulation.
Reprinted in M. Yoeli, editor, *Formal Verification of Hardware Design*,

Jerry R. Burch, Edmund M. Clarke, Kenneth L. McMillan, David L.
Dill and L. J. Hwang
Symbolic model checking: 10^{20} states and beyond.
Falko Bause and Pieter S. Kritzinger.
Stochastic Petri Nets.
Out of print, but electronic version available at
http://www4.cs.uni-dortmund.de/~Bause/spnbook2.html

M. Ajmone Marsan.
Stochastic Petri nets: An elementary introduction.