Pilot service for Yubikey two-factor authentication

February 23, 2016

Is a local authentication service necessary/desirable?

So far in this project, we’ve used Yubikeys (in standard Yubico OTP mode, and in their factory-default condition) to provide second factor authentication for both ssh and Cosign logins. There are, of course, service-specific configurations necessary in order to arrange such authentication but – purely regarding the implementation of the back-end authentication of the one-time passwords produced by the Yubikeys – we initially used the Yubico ‘cloud’ authentication service to perform this.

By now, we have also set up a local authentication service (still only in prototype form: the service uses hand-configured machines), and – after suitably reconfiguring our test Yubikeys – have used that service to perform back-end authentication. (See the previous post Yubikey authentication servers for some more general background on local authentication servers. Specifically, also, see Yubico’s Installation notes for a YK-VAL server and Installation notes for a YK-KSM server.)

As further background, recall that, whether ‘remote’ or ‘local’, the authentication server essentially implements a web service: a one-time password is passed over HTTPS, and the authentication server responds with a ‘valid’ or’ ‘not valid’ response. As well as being present and available at all times, it’s obvious that – to provide a usable service – the authentication server needs to respond quickly to every request it receives.

It is also important to note that the authentication servers do not contain, nor do they need to be informed of, any user-specific data – e.g. usernames, UIDs, etc. They have a shared secret with each Yubikey – namely, the Yubikey’s AES encryption key – and they use that encryption key, in conjunction with the public id of the Yubikey, to determine whether the one-time password being presented on behalf of any Yubikey is or is not valid. All of the user-specific data – and, specifically, the association of Yubikey public id to username/UID – remains at the ‘client’ server end.

We now have to decide which of these two types of authentication service – the Yubico ‘cloud’ service, or an in-house local one – we want to use when we start to use Yubikeys in earnest for second factor authentication. It’s not an obvious choice, so let’s try to summarize the pros and cons:

Yubico ‘cloud’ authentication service

Pros

  • Requires registration, but is free of charge, and essentially simple to use.
  • Is pre-configured with the as-delivered public ids and AES keys of all Yubikeys – so all Yubikeys can authenticate against the service ‘out of the box.’
  • Overall, much less work to set up and use than would be a local service.

Cons

  • Not guaranteed to be permanent: Yubico could disappear as a company tomorrow and, whilst all Yubikeys would continue to work, the Yubico ‘cloud’ authentication service could disappear.

    (But we have no reason to believe the service will disappear.)

  • Not guaranteed to remain free of charge.

    (But we have no reason to believe the service will become chargeable.)

  • Requires the Yubico cloud servers to be on-line.
  • Requires a working network in order to reach the Yubico cloud servers.
  • Potentially at more risk of sluggish response than is a local service acting under more deterministic conditions and load.

    (But our limited experience so far has shown no such problems when using the ‘cloud’ service.)

  • Necessarily transmits both data and metadata to a third-party, namely Yubico.

    (However, note that we are already implicitly trusting that third-party by choosing to use their hardware devices.)

  • Although Yubico don’t get sent any actual user data per se, the key’s public ID is enough to allow both Yubico – as well as anyone who can see their traffic or database – to track the user, and to correlate their activity over time.

    (However, note that the traffic will be encrypted over HTTPS and, if any other than Yubico has access to Yubico’s database, then a more serious security breach has probably occurred – see the following point.)

  • Yubico’s authentication servers present an attractive target for criminals. If those servers were compromised, and (public id, AES key) pairs stolen – and nobody noticed (or was suitably informed) that this had happened – then Yubikeys using the same (public id, AES key) pairs could be cloned. How useful such keys would be to a criminal would depend on where those keys were being used: information about authentication services for which any key is ‘good’ is not part of the key material, but it is possible that additional metadata – which in principle could be also stolen from Yubico – could give a clue.

Local authentication service

Pros

  • Maintains all server dependencies ‘in-house.’
  • Maintains all data and metadata ‘in-house.’
  • Does not require a working external network in order to provide authentication.

Cons

In our (i.e. the School of Informatics) environment, setting up a robust local Yubikey authentication service would require us to have the initial configuration and subsequent maintenance of both YK-VAL and YK-KSM servers managed via LCFG control, as far as possible. And, likewise, to similarly automate the maintenance of the keying data (public ids, AES keys) held by those servers. (As a detail: such data is held in PostgreSQL databases on out prototype YK-VAL and YK-KSM servers.)

The question is: what approach should we take here? The amount of work in setting up a local authentication service is definitely not trivial – so we need to decide if we want to (or, perhaps, need to) do it. This is really a policy question, but it also depends on what kinds of resources we might be planning to hide behind second factor authentication: we must avoid the possibility of having access to any critical resource at risk of being hampered by problems with the external network! (An example might be a resource, or information, to which we need access in order to fix a particular problem with the network. That is: we need to consider the possibility of ‘chicken and egg’ problems.)

Comments on this post are invited from anybody with an interest or an opinion; any such comments would be welcome. Thanks.

2 Comments »

  1. My gut feeling is do it in house, even if it is more work.

    Having said that, presumably we could (at the expense of effort and inconvenience) initially use the cloud option, to quickly roll something out for a bigger trial. If we then want to roll it out to a larger user base, then we could revisit the cloud/local infrastructure question, and if we decided to go local, then only the limited number of initial users would have to have their keys reassigned.

    Comment by neilb — March 1, 2016 @ 5:46 pm | Reply

  2. Agree with Neil. It’s basically a balancing of resources, cost, and convenience. It seems sensible that security issues should remain under local control as much as possible, unless there are strong arguments for moving such issues off-site. In this case, the additional work effort seems like an affordable cost. Neil’s point about interim cloud use is a good one… If we went down this route, would we leave any potentially “useful” data behind when we brought it back in-house?

    Comment by Roger — March 2, 2016 @ 9:52 am | Reply


RSS feed for comments on this post. TrackBack URI

Leave a Reply

Your email address will not be published. Required fields are marked *

Theme: Rubric.