

until some arrive.

signature BUSROUTE =

sig

type ’a bus_stop

val bus_stop : unit -> ’a bus_stop

val bus_arriving : ’a bus_stop * ’a -> unit

val bus_leaving : ’a bus_stop -> ’a

end;

Once the data type is set up the bus route structure is actually set up
that has the signature that we previously defined. When the type is defined
we say the bus stop is a difference list (i.e. the first reference has the tail of
the list and the second reference has the head of the list). The end of the
list is a promised future as arriving buses will be appended to the end of the
list. The value of the queue (or list) of buses depends on the previous queue.
When a bus is leaving the bus stop the bus leaving operation will block
until the promised future has been evaluated. i.e. the queue of buses at the
bus stop is formulated. Once the result is computed the future is replaced
by the result. When there is no buses in the queue the bus leaving thread
will be suspended until a bus actually arrives.

structure BusRoute : BUSROUTE =

struct

open Promise

type ’a bus_stop = ’a list promise ref * ’a list ref

fun bus_stop() =

let

val p = promise()

in

(ref p, ref (future p))

end

fun bus_arriving((newBus, getBus), x) =

let

val p’ = promise()

val p = Ref.exchange (newBus, p’)

in

fulfill(p, x::future p’)

6

end

fun bus_leaving(newBus, getBus) =

let val p’ = promise()

val xs = Ref.exchange (getBus, future p’)

in

fulfill (p’, tl xs); hd xs

end

end;

structure BusRoute :

sig

type ’a bus_stop = ’a list BusRoute.promise ref * ’a list ref

val bus_stop : unit -> ’a BusRoute.bus_stop

val bus_arriving : ’a BusRoute.bus_stop * ’a -> unit

val bus_leaving : ’a BusRoute.bus_stop -> ’a

end

A bus route must be created using the above structure before we can do
anything with it.

val bus_route : int BusRoute.bus_stop = BusRoute.bus_stop();

val bus_route : int BusRoute.bus_stop =

(ref (promise{|_future|}), ref (_future))

To add buses arriving and remove buses leaving the bus stop (aka Bus-
Route) the following calls are made.

- BusRoute.bus_arriving(bus_route, 4); BusRoute.bus_arriving(bus_route, 7); BusRoute.bus_arriving(bus_route, 18);

val it : unit = ()

- BusRoute.bus_leaving(bus_route);

The example above displays how futures and promises can be used to
help data synchronisation in a list. This is a very trivial example but it can
also be applied to things such as asynchronous message queues.

5 Resources

The paper “Alice through the Looking Glass” [4] explains some of the in-
tricate details of Alice. The creation of Alice and some of its features were
due to the development and increase of open programming. Characteris-
tics such as modularity, dynamicity, security, distribution and concurrency

7

have become increasingly popular. Alice has tried to solve these by extend-
ing standard ML to allow concepts such as futures, higher-order modules,
packages, pickling and proxy functions.

Throughout the paper each of these concepts is described in more detail.
The mentioned the various different types of futures and show small examples
of how each of these can be used.

“A concurrent lambda-calculus with futures” [2] introduces a new lambda
calculus which models the semantics of languages such as Alice ML. It de-
scribes how Alice ML contains static type inference and uses a mixture of
eager and lazy threads. It also states that many of the Alice features were
inspired by Mozart-Oz. Futures also provide a useful mechanism for dealing
with network latency, it allows multiple threads to perform computations
that do not actually require the result of a future to do computations up to
that point concurrently. The rest of the paper proceeds into heavy lambda
calculus for futures.

I also discovered a really good paper that mentions the problems with
threads, appropriately named “ The problem with threads” [1]. The paper
presents many arguments for why using threads as a solution for concurrent
programming is in fact a backwards solution to the problem. The author
shows a few examples of where even with careful programming errors with
threads can still occur. It is very difficult to use threads correctly, even if
you are an experienced programmer there is bound to be come situation that
you did not account for. It is extremely hard to test a program or system
that is multi threaded fully to ensure that no errors will occur, this is one
of the main arguments of the paper. The paper also proposes some other
alternatives to threads for solving the problem of concurrency.

The other main resource that was used for this report was the actual
Alice manual [6]. Most of this paper elaborated on many of the concepts
and techniques explained in the manual. The manual explained most of the
concepts in Alice ML with small examples detailing how such things would
be carried out. It explains futures and the various types and also contains
information on many other Alice features that were not focused on in this
paper. For example packages, pickling, components and distribution.

6 Related Work

This section describes how some other languages have approached the prob-
lem of concurrency. It also compares their approach to Alice Ml.

8

6.1 Oz

Oz is a high-level programming language that incorporates many concepts
from object-oriented and functional programming. It is “dynamically typed
and has first-class procedures, classes, objects, exceptions and sequential
threads synchronising over a constraint store” [5]. The notion of futures and
promises in Alice ML was actually taken from Oz. One of the goals of the
Alice team was to allow some of the functionality of Oz on top of a typed
functional language [4].

In Oz, futures are similar to Alice, the syntax for creating a future is
however different. Any thread that requests the value of a future will be
blocked until the future result has been calculated. Oz does not have any
feature called promises, it does however allow the termination and joining
of threads easily. Although the programmer does have to suspend the main
thread until the other threads have joined, Alice ML takes care of this for
the programmer.

Mozart is a development platform for distributed systems that is based
on Oz. It is similar to Alice as it also has support for futures, however it is
considered to be a lot more complex.

6.2 Java

Java is an object-oriented language. If the programmer does not want a
method of an object to be accessed simultaneously by more than one thread
then they can make it synchronized. This prevents threads from invoking
the same synchronised method for the same object concurrently. If one thread
has gained access to the synchronised method, any other threads trying to
access the method for the same object will be blocked until the first thread
has finished with the object. In this respect Java uses locks, or monitor locks.
When the first thread accesses the synchronised method it obtains the lock
for that object, the lock is only released once the thread is finished with the
object. Once an objects synchronised method has been invoked and finished
all changes that have been made to the object are visible to all other threads.

This is very different to Alice as java is object-oriented. Alice also does
not use this lock mechanism. Java does have an interface for futures but
does not support the concept of promises. Also in Java threads have to be
terminated by the programmer. With large scale programs this can soon
become problematic and hard to understand. The programmer has to define
a lot of the thread behaviour, the general use of threads in Java is harder to
do than in Alice. Also if the programmer does not specify some methods to
be synchronized when they should be the threads will not behave as expected

9

and the results will be different. The programmer has to aware of which parts
of code need to have the locking mechanism placed upon them.

6.3 MultiLisp

MultiLisp is a version of Scheme which has been extended to allow paral-
lelism. Futures in MultiLisp are also very similar to Alice. However when
a process is blocked because it needed the future value and it is waiting for
the future value to be computed, this is called “touching a future”. Passign
of futures as parameters is also possible as the value of the future does not
need to be known.

MultiLisp also has the pcall function which can be used to evaluate many
different variable concurrently. This can be bad however as the number of
variable increases [3].

7 Conclusion

Overall Alice ML seems to have a reasonable solution to the concurrency
problem. It does however still involve threads, which as mentioned earlier
may not be a good solution to the problem. Threads pose many problems
as programmers find them very difficult to use and they may make under-
standing programs very difficult. Alice ML does however simplify and make
threads easier to understand compared to some other languages, for exam-
ple Java. All in all futures and promises are a clever technique, they allow
many computations to be performed concurrently and make efficient use of
resources.

References

[1] Edward A. Lee. The problem with threads. Computer, 39(5):33–42, 2006.

[2] J. Niehren, J. Schwinghammer, and G. Smolka. A concurrent lambda
calculus with futures. In 5th International Workshop on Frontiers in
Combining Systems, Lecture Notes in Computer Science 3717, pages 248–
263., 2005.

[3] Jr. Robert H. Halstead. Multilisp: a language for concurrent symbolic
computation. ACM Trans. Program. Lang. Syst., 7(4):501–538, 1985.

[4] Andreas Rossberg, Didier Le Botlan, Guido Tack, Thorsten Brunklaus,
and Gert Smolka. Alice Through the Looking Glass. Trends in Functional

10

Programming, volume 5:79–96, Intellect Books,2006. http://www.ps.uni-
sb.de/Papers/abstracts/alice-looking-glass.html.

[5] Christian Schulte. The Oz Programming System. http://www.ps.uni-
sb.de/oz2/.

[6] Saarland University. The Alice Manual. http://www.ps.uni-
sb.de/alice/manual/.

11

8 Appendix - Screen shots of Example

Figure 1: Screen shot of creation
of a bus stop queue

Figure 2: Bus stop queue with in-
spector

Figure 3: Buses arriving at bus
stop, inspector has changed to re-
flect this

Figure 4: Bus leaving bus stop,
inspector has changed to reflect
this

12

Figure 5: Bus leaving bus stop,
inspector has changed to reflect
this

Figure 6: All buses removed from
bus stop

13

