
https://blog.inf.ed.ac.uk/apl16

Advances in Programming Languages
Lecture 17: Traits and References in Rust

Ian Stark

School of Informatics
The University of Edinburgh

Tuesday 22 November 2016
Semester 1 Week 10

http://www.ed.ac.uk
https://blog.inf.ed.ac.uk/apl16
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Topic: Programming for Memory Safety

The final block of lectures cover features used in the Rust programming
language.

Introduction: Zero-Cost Abstractions (and their cost)

Control of Memory: Ownership

Concurrency and more

This section of the course is entirely new — Rust itself is not that old —
and I apologise for any consequent lack of polish.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Outline

1 Review

2 Traits

3 Ownership

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

The Rust Programming Language

The Rust language is intended as a tool for safe systems programming.
Three key objectives contribute to this.

Zero-cost abstractions

Memory safety

Safe concurrency

Basic References
https://www.rust-lang.org
https://blog.rust-lang.org

The “systems programming” motivation resonates with that for imperative
C/C++. The “safe” draws extensively on techniques developed for
functional Haskell and OCaml. Sometimes these align more closely than
you might expect, often through overlap between two aims:

Precise control for the programmer;
Precise information for the compiler.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

https://www.rust-lang.org
https://blog.rust-lang.org

Review

Some basic Rust constructions.

Rust bindings like let x = 10; are immutable by default.

Mutability must be explicitly declared let mut y = true;

Rust has conditionals, loops, and first-class functions.

Values can be arranged in tuples, structs, tuple structs and labelled
enumerations.

Values can be decomposed with pattern matching and a
discriminating match statement.

Parametric polymorphism is available through generic structs,
enumerations, and functions.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Zero-Cost Abstraction

All of these language features — data structures, control structures,
generics — provide abstractions that help empower a programmer.

However, it’s an important principle of Rust (and C++ before it) that all
of these can readily be compiled down to simple executable code with no
overhead to maintaining the abstraction.

Several of the constraints in the language are there to help with this:
default immutability, strict type-checking, checked pattern-matching,
restricted for, monomorphisation of generics, . . .

These constraints also mean that Rust is not C. It’s much more strict on
the programmer — which might be judged a cost — but with the benefit
of certain behavioural guarantees and potentially more aggressive
optimisation from an informed compiler.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Outline

1 Review

2 Traits

3 Ownership

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Rust’s Object Model

The meaning of “objects” and “classes” can differ quite substantially
between different programming languages. Generally, concepts of “object”
bring together in a single construction a range of helpful abstractions.
These might include, for example: data, operations, state, identity,
references, namespaces, aggregation, inheritance, polymorphism, . . .

Rust doesn’t really have an object model. Instead, it provides many of
these abstractions as individual components, from which you might pick
and choose to build your own abstractions.

This does align with the zero-cost principle: you need not pay any
potential cost of the features you don’t use.

A deconstructed object model

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

http://thingsorganizedneatly.tumblr.com/post/16544771610/submission-a-delicious-meal-in-all-its-individual

Structs

The basic Rust struct datatype provides a named record structure with
selectors, as with the fields of an object.

struct Point {
x: f64,
y: f64,

}

let p = Point { x: 1.0, y: −2.5 };
let (a,b) = p;

let mut q = Point { x: 0.0, y: 0.0 };
q.x = q.x + 3.4;

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Method Call Syntax

Methods for values of a struct type are declared with impl.

struct Point { x: f64, y: f64 }

impl Point {
fn origin_distance (self) −> f64 {

(self .x ∗ self .x + self.y ∗ self .y).sqrt()
}

fn flip (self) −> Point {
Point { x: self .y, y: self .x }

}
}

let p = Point { x: 2.4, y: 3.5 };
println!("{}", p. flip ().origin_distance()); // Prints 4.2438...

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Static Methods

Methods don’t have to be attached to a value.

struct Point { x: f64, y: f64 }

impl Point {
fn x_axis (v: f64) −> Point {

Point { x: v, y: 0.0 }
}

fn y_axis (v: f64) −> Point {
Point { x: 0.0, y: v }

}
}

let p = Point::x_axis(1.2);
println!("{}", p. flip ().origin_distance()); // Prints 1.2

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Traits

With a trait we can declare a method suite to be implemented.

trait HasDistance {
fn origin_distance (self) −> f64;
fn xy_axis_distance (self) −> (f64,f64);

}

impl HasDistance for Point {
fn origin_distance (self) −> f64 {

(self .x ∗ self .x + self.y ∗ self .y).sqrt()
}

fn xy_axis_distance (self) −> (f64,f64) {
(self .y, self .x)

}
}

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Trait Inheritance

With trait inheritance we declare that a trait extends one or more others.

trait HasDistance {
fn origin_distance (self) −> f64;
fn xy_axis_distance (self) −> (f64,f64);

}

trait Has3Distance : HasDistance {
fn z_axis_distance (self) −> f64;
fn xyz_axis_distance (self) −> (f64,f64,f64);

}

trait SpaceTime : HasDistance + HasTime {
fn spacelike (self) −> bool;
fn timelike (self) −> bool;

}

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

https://www.facebook.com/jamilarizvionline/photos/a.486666068089872.1073741828.476350865788059/1026936757396131

Standard Traits

Some traits common to many data or numerical types.

Eq Can be tested for equality with ==.

Ord Can be tested for order with <, >, <= and >=.

Default Has some given default value.

Hash Provides a hash function.

Typically these also assume properties which are not checked by the
compiler — for example, that == is an equivalence relation.

The #[derive(...)] attribute prompts the compiler to automatically
generate implementations for standard traits like these.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Traits and Generics

Where a type parameter <T> appears in a declaration, it can usually be
given a trait bound in the form <T:Trait>.

fn is_in_positive_quadrant<T:HasDistance> (p:T) −> bool {
let (x,y) = p.xy_axis_distance();
x >= 0.0 && y >= 0.0

}

struct HashTable <K:Eq+Hash,V> { ... }

impl <K:Eq+Hash,V> HashTable <K,V> {
fn new () −> HashTable<K,V> { ... }

}

let ht : HashTable<(i32,i32),Point> = HashTable::new();

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

More About Traits

Methods in traits are statically dispatched — which code is executed is
fixed by the static type of the value for which the method is invoked.

It is possible to arrange for dynamic dispatch, where the code chosen
depends on the runtime type of a value, but this is not the default.

Putting trait bounds on generic functions doesn’t change the fact that
during compilation these are replaced by multiple monomorphic versions.

A marker trait is one that doesn’t require any methods at all, but serves to
record some useful property of a type. These might be recognized specially
by the compiler, or describe something that the programmer wishes to
indicate but cannot directly express in the language.

For example, the Sized trait indicates types whose size in memory is fixed
and known at compile time.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Outline

1 Review

2 Traits

3 Ownership

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

https://www.facebook.com/jamilarizvionline/photos/a.486666068089872.1073741828.476350865788059/1026936757396131

Passing Structures

fn difference (a:Point,b:Point) −> Point {
Point { x: (b.x−a.x), y: (b.y−a.y) }

}

let p = Point { x:1, y:5 };
let q = Point { x:8, y:3 };

let r = difference(p,q); // r is now Point { x:7, y:−2 }

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Boxing Structures

fn difference (a:Box<Point>,b:Box<Point>) −> Box<Point> {
Box::new (Point { x: (b.x−a.x), y: (b.y−a.y) })

}

let p = Box::new(Point { x:1, y: 5 });
let q = Box::new(Point { x:8, y: 3 });

let r = difference(p,q);
let s = ∗r; // s is now Point { x:7, y:−2 }

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Vectors on the Heap

fn total (v:Vec<i32>) −> i32 {
let mut accum = 0;
for x in v { accum = accum + x };
accum

}

let a = vec![1,5,8,3]; // a : Vec<i32>

let t = total(a); // t is now 17

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

When to Deallocate?

In Most Languages

Values explicitly passed around, whether small or large, have a lifetime
exactly as long as their bindings stay in scope. They can be placed in
stack-allocated memory which is released when they go out of scope. If
they are large, though, it may be costly to pass them around.

Values allocated on the heap are cheaper to pass by reference in and out
of functions. However, when can the heap space be released?

In C, the user has to manage this explicitly. In Java or OCaml the runtime
system has a garbage collector.

Getting this right is important: not just to avoid wasting space, but also
for memory safety — not reading or writing heap areas after deallocation.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

When to Deallocate?

In Rust

Rust uses move semantics: the ownership of values passes from one
binding to the next; through assignment, function call and return.

The lifetime of a value, whether on the stack or the heap, can be tracked
precisely through the lifetimes of its bindings.

The compiler does this statically, guaranteeing memory safety without
programmer intervention or a runtime garbage collector.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Move Semantics

fn difference (a:Point,b:Point) −> Point {
Point { x: (b.x−a.x), y: (b.y−a.y) }

}

let p = Point { x:1, y:5 };
let q = Point { x:8, y:3 };

let r = difference(p,q); // r is now Point { x:7, y:−2 }
// p and q are no more

let s = difference(q,p); // Error: use of moved value

let t = difference(r,r); // Error: use of moved value

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Move Semantics

fn difference (a:Box<Point>,b:Box<Point>) −> Box<Point> {
Box::new (Point { x: (b.x−a.x), y: (b.y−a.y) })

}

let p = Box::new(Point { x:1, y: 5 });
let q = Box::new(Point { x:8, y: 3 });

let r = difference(p,q);
let s = ∗r; // s is now Point { x:7, y:−2 }

// p, q and r are no more

let t = difference(q,p); // Error: use of moved value
let u = ∗r // Error: use of moved value

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Move Semantics

fn imean (v:Vec<i32>) −> i32 {
let mut accum = 0;

for x in v { accum = accum + x };

accum / (v.len() as i32) // Error: use of moved value
}

let a = vec![1,5,8,3]; // a : Vec<i32>

let m = imean(a); // Hoping for 4 here

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Clone and Copy Traits

fn imean (v: Vec<i32>) −> i32 {
let mut accum = 0;

for x in v.clone() { accum = accum + x };

accum / (v.len() as i32) // This now works
}

let a = vec![1,5,8,3]; // a : Vec<i32>

let m = imean(a); // We do get 4 here

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Clone and Copy Traits

The Clone trait provides an explicit clone() method to duplicate a value. A
value and its clone have separate ownership.

Types with the marker trait Copy are always assigned by cloning; Clone is
a supertrait of Copy, so all types marked Copy also implement Clone.

Basic types like bool and i32 implement Copy; they have copy semantics.

let v = 2;
let w = v+v;
let u = 2+2;

fn difference (a:Point,b:Point) −> Point {
Point { x: (b.x−a.x), y: (b.y−a.y) }

}

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Complete Deconstruction

We’ve now taken apart almost everything that makes an object.

We can put structures on the heap and have the compiler track exactly
when to allocate memory and when to free it, with no runtime cost.

We can pass arguments and received results, implement traits and invoke
methods, move values and clone them. All runtime computation is clear
and visible.

The cost, though, is that now every assignment is a transfer of ownership,
and nothing can be used more than once without laboriously making a
clone.

This is similar to the world of linear type systems

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

http://hellocereallovers.tumblr.com/post/85937726937/our-submission-to-thingsorganizedneatly-the

References and Borrowing

fn difference (a: &Point,b: &Point) −> Point {
Point { x: (b.x−a.x), y: (b.y−a.y) }

}

let p = Point { x:1, y:5 };
let q = Point { x:8, y:3 };

let r = difference(&p,&q); // r is now Point { x:7, y:−2 }
// p and q are still available

let s = difference(&q,&p); // Borrow references again

let t = difference(&r,&r); // Borrow two references to r

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

References and Borrowing

fn imean (v: &Vec<i32>) −> i32 {
let mut accum = 0;

for x in v { accum = accum + x }; // Just borrowing

accum / (v.len() as i32) // Works fine
}

let a = vec![1,5,8,3]; // a : Vec<i32>

let m = imean(&a); // We get 4 here

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Multiple Reader Single Writer

fn swap (x: &mut i32, y: &mut i32) {
let (xv, yv) = (∗x, ∗y);

∗x = yv; ∗y = xv;
}

let mut a = 1;
let mut b = 5;

swap (&mut a, &mut b); // Now a = 5 and b = 1

swap (&mut a, &mut b); // Back to a = 1 and b = 5

swap (&mut a, &mut a); // Borrowing error

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Safe Systems Programming

Move semantics lets the compiler statically check the lifetime of structured
values. This guarantees memory safety without runtime overhead.

Borrowing references makes it possible to live with move semantics.
Borrowing mutable references, with multiple-read single-writer, makes for
C-like pointer manipulation and precise control of memory.

That’s the core of safe systems programming in Rust. So all is good, yes?

The Borrow Checker

“Many new users to Rust experience something we like to call
‘fighting with the borrow checker’, where the Rust compiler
refuses to compile a program that the author thinks is valid.”

The Rust Programming Language

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

Was it all worth it?

Rust certainly offers a lot with its aim of zero-cost abstractions and precise
control of memory through ownership and borrowing.

Not everyone is convinced it’s worth the cost, though.

It’s also notable that Rust has an unsafe keyword, essential for providing its
standard libraries, and Safe Rust sits within a larger Unsafe Rust langauge.

So is Rust code really safe? What if it uses unsafe parts? What has been
proved about any of this?

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

http://plv.mpi-sws.org/rustbelt/

Homework

Watch This

Peter O’Hearn: Reasoning with Big Code
https://is.gd/reasoning_big_code

Talk at the Alan Turing Institute about how Facebook is using automatic
verification at scale to check code and give feedback to programmers.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

https://is.gd/reasoning_big_code

Image Credits
Deconstructed Burger

Things Organized Neatly, Austin Radcliffe on Tumblr

Deconstructed Coffee

Jamila Rizvi on Facebook and Instagram

Deconstructed Pizza

The Foodie Collective

Deconstructed Lucky Charms

Hello Cereal Lovers on Things Organized Neatly.

Ian Stark Advances in Programming Languages / Lecture 17: Traits and References in Rust 2016-11-15

http://thingsorganizedneatly.tumblr.com/post/16544771610/submission-a-delicious-meal-in-all-its-individual
https://www.facebook.com/jamilarizvionline/photos/a.486666068089872.1073741828.476350865788059/1026936757396131
https://www.instagram.com/p/BGAvMCAjujw/
https://thefoodiecollective.com/2011/07/19/deconstructed-pizza-recipe/
http://hellocereallovers.tumblr.com/post/85937726937/our-submission-to-thingsorganizedneatly-the
http://thingsorganizedneatly.tumblr.com/post/89293036253/submission-the-entire-contents-of-a-box-of-lucky

	Review
	Traits
	Ownership

