
https://blog.inf.ed.ac.uk/apl16

Advances in Programming Languages
Lecture 18: Concurrency and More in Rust

Ian Stark

School of Informatics
The University of Edinburgh

Friday 24 November 2016
Semester 1 Week 10

http://www.ed.ac.uk
https://blog.inf.ed.ac.uk/apl16
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk


PL News (Maybe): Schiaparelli Landing +

23 November 2016

The European Space Agency have reported
initial analysis of extensive telemetry data
transmitted during the descent of the
ExoMars Schiaparelli lander.
It appears that Inertial Measurement Unit
reached its maximum output measurement for
a full second, longer than would be expected.

“When merged into the navigation system, the erroneous information generated an
estimated altitude that was negative — that is, below ground level . . . ”
“ . . . In reality, the vehicle was still at an altitude of around 3.7km”

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24

http://www.esa.int/Our_Activities/Space_Science/ExoMars/Schiaparelli_landing_investigation_makes_progress


Topic: Programming for Memory Safety

The final block of lectures cover features used in the Rust programming language.

Introduction: Zero-Cost Abstractions (and their cost)

Control of Memory: Ownership

Concurrency and more

This section of the course is entirely new — Rust itself is not that old — and I apologise for
any consequent lack of polish.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



The Rust Programming Language

The Rust language is intended as a tool for safe systems programming. Three key objectives
contribute to this.

Zero-cost abstractions

Memory safety

Safe concurrency

Basic References
https://www.rust-lang.org
https://blog.rust-lang.org

The “systems programming” motivation resonates with that for imperative C/C++. The
“safe” part draws extensively on techniques developed for functional Haskell and OCaml.
Sometimes these align more closely than you might expect, often by overlap between two aims:

Precise control for the programmer;
Precise information for the compiler.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24

https://www.rust-lang.org
https://blog.rust-lang.org


Previous Homework

Watch This
Peter O’Hearn: Reasoning with Big Code
https://is.gd/reasoning_big_code

Talk at the Alan Turing Institute about how Facebook is
using automatic verification at scale to check code and
give feedback to programmers.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24

https://is.gd/reasoning_big_code


Guest Speaker !

Probabilistic Programming:
What is it and how to improve it?

Maria Gorinova
University of Edinburgh

3.10pm Tuesday 29 November 2016

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Optional: Review and Exam Preparation !
The final lecture will be an exam review, principally for single-semester visiting students.
Everyone welcome, though. I hope to do another in Semester 2 — you arrange it, I’ll be there.

Past Papers http://blog.inf.ed.ac.uk/apl16/exam#past

2007–2008 2008–2009 2009–2010 2010–2011 2014–2015

Look at the past papers. Pick out a question or lecture topic and nominate it for the review
lecture mailing me or posting on Piazza.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24

http://blog.inf.ed.ac.uk/apl16/exam#past
https://exampapers.ed.ac.uk/record/34647/1/2008873.pdf
https://exampapers.ed.ac.uk/record/32047/1/2009881.pdf
https://exampapers.ed.ac.uk/record/37305/1/20101014.pdf
https://exampapers.ed.ac.uk/record/39906/1/20111589.pdf
https://exampapers.ed.ac.uk/record/52193/1/2015899-INFR11101.pdf


Review

Traits

Any struct or enum in Rust can have methods attached with impl, or implement a suite of
several methods to match a trait , with ad-hoc polymorphism.

Trait inheritance gives subtyping, and trait bounds refine generics for parameterised structures
and polymorphic functions.

All is resolved and monomorphised statically at compile time, giving strict checking of
sophisticated types with no runtime overhead.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Review

Ownership

Rust tracks ownership of values using move semantics for the handover of values in
assignment, function call and return.

Move semantics lets the compiler statically check the lifetime of structured values, both on the
stack and in Boxes on the heap. This guarantees memory safety without runtime overhead.

Borrowing references makes it possible to live with move semantics. Borrowing mutable
references, with multiple-read single-writer, makes for C-like pointer manipulation and precise
control of memory.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Object Deconstruction
Rust picks apart many of the features that go together
to make objects and classes in most other languages.

Collecting values with struct
Alternate variants with enum
Method implementation with impl
Ad-hoc polymorphism with method call syntax
Interfaces and subtyping with trait
Heap allocation with Box
Explicit mutability with let mut
Call-by-reference with & and &mut

With all these we can build our own objects. As well as
all kinds of other things.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24









Object Deconstruction

Rust picks apart many of the features that go together
to make objects and classes in most other languages.

Collecting values with struct
Alternate variants with enum
Method implementation with impl
Ad-hoc polymorphism with method call syntax
Interfaces and subtyping with trait
Heap allocation with Box
Explicit mutability with let mut
Call-by-reference with & and &mut

With all these we can build our own objects. As well as
all kinds of other things.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



What Do We Win?
The key guarantee in Rust is memory safety.

No null pointers.
No dangling pointers.
No reading unitialised memory.
No reading memory after deallocation.
No aliasing bugs.
No memory leaks.
No manual deallocation.

All without reference counting, tag words, garbage collection, or other space or time
overheads. Everything statically checked and assured by the compiler.

Provided you can convince the borrow checker
Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Trait Objects

We even now have enough to manage dynamic dispatch and runtime method selection, instead
of the default static dispatch and compile-time monomorphisation.

trait HasDimensions {
fn height(&self) −> i32;
fn width(&self) −> i32;

}

fn generic_footprint<T: HasDimensions>(item: T) −> i32 {
item.height() ∗ item.width()

}
fn dynamic_footprint(item: &HasDimensions) −> i32 {
item.height() ∗ item.width()

}

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Trait Objects

Here item: &HasDimensions is a trait object whose type is not resolved statically, but carries
around a method table at runtime for dynamic dispatch.

trait HasDimensions {
fn height(&self) −> i32;
fn width(&self) −> i32;

}

fn generic_footprint<T: HasDimensions>(item: T) −> i32 {
item.height() ∗ item.width()

}
fn dynamic_footprint(item: &HasDimensions) −> i32 {
item.height() ∗ item.width()

}

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Trait Objects

There is an equivalent construction on the heap with trait object Box<&HasDimensions>, which
can contain any value implementing the HasDimensions trait.

trait HasDimensions {
fn height(&self) −> i32;
fn width(&self) −> i32;

}

fn generic_footprint<T: HasDimensions>(item: T) −> i32 {
item.height() ∗ item.width()

}
fn dynamic_footprint(item: &HasDimensions) −> i32 {
item.height() ∗ item.width()

}

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Concurrency
Rust offers concurrent programming through its standard thread library.

use std::thread;

fn print_hello_world () { println!("Hello, World!") }

fn main(){

let h = thread::spawn(print_hello_world); // Pass function to be executed

let _ = h.join(); // Wait for completion, discard result

println!("That went well"); // Announce success

}

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Concurrency

Rust threads can be spawned from arbitrary lambdas and closures, not just bare functions, and
map directly to OS threads. Features such as thread pools, lightweight tasks, futures, promises,
work stealing, data parallelism, are all under development: http://areweconcurrentyet.com/

Rust Win
Ownership and move semantics mean each item of data is owned by just one thread at a time.

Threads can still share access to data by borrowing references.

It’s also possible for threads to borrow write access to shared store, using mutable references.

The multiple-reader single-writer constraint on borrowing mutable references means that:

Concurrent Rust programs never contain data races

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24

http://areweconcurrentyet.com/


Communication

Rust provides channels for communication between threads. The channel() function creates a
new channel to carry T values and returns a pair (Sender<T>, Receiver<T>).

Communication Traits
Marker traits help manage shared resources, and are automatically inferred by the compiler.

Send identifies types that can be safely transferred between threads.
Sync marks types whose references can be safely shared between threads.

Sender<T> implements both Clone and Send: the capability to send on a channel can be
duplicated and passed around threads.

Receiver<T> implements Send but not Clone: only one thread at a time can listen on a
channel, although that ability can be transferred.

With these Rust statically guarantees multiple-producer single-consumer channel behaviour.
Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



So Much Winning
Rust offers:

Safe shared memory
No dereferencing errors
No aliasing bugs
No memory leaks
No manual deallocation

Safe concurrency
Shared memory access
No data races
Value-passing channels
No channel input races

To do this uses just: strict static typing, default immutability, deconstructed objects, traits,
trait bounds, ownership, reference borrowing, lifetime polymorphism, markers traits, a separate
unsafe language, . . .

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Rust: Friends Don’t Let Friends Skip Leg Day +

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Maybe Not So Simple: Reference Counting

Even with Box, &T and &mut T it can be hard to build and manipulate complex linked
datastructures. That’s why Rust provides the following, too.

Rc<T> is a reference counted pointer: a runtime counter tracks how many instances of
the reference still exist. It can help when there’s no certainty which reference will be the
last one to be used.
Cycles of these will not be deallocated and may leak memory. Rc<T> is not safe to share
between threads.

Weak<T> is a weak pointer variant of Rc<T>: it will not on its own cause a value to be
retained, but if the value is still there it can be accessed.

Arc<T> is a version of Rc<T> that can be used across multiple threads, as it has an
atomic reference count.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Maybe Not So Simple: Interior Mutability
Strict separation between mutable and immutable can be limiting; especially as struct fields
cannot be individually mutable. So Rust has some more datatypes to help.

Cell<T> provides interior mutability: the contents can be changed with get and set
methods, but it’s not regarded by the compiler as a mutable reference.
Type T must have copy semantics. There is no runtime cost, but Cell<T> can give
aliasing errors and invalidate datastructure assumptions and invariants.

RefCell<T> provides interior mutability for arbitrary T. Access control is enforced with
explicit borrow and borrow_mut functions that use runtime counters and may fail.

Mutex<T> provides threadsafe interior mutability: access requires explicit request for a
lock. There’s no explicit release, as Rust drops this when the lock goes out of scope.

RwLock<T> provides threadsafe interior mutability for multiple readers or a single writer,
again requiring explicit lock requests.

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Maybe Not So Simple: Unsafe +

There’s also the Unsafe Rust language, in which many of these previous structs are written.

That provides raw pointers ∗const T and ∗mut T which can alias, be null, and generally fail to
provide the guarantees of Safe Rust.

Managing the interface between safe and unsafe is tricky too, as each can only rely on certain
things from the other.
To find out more, you want this:

The Rustonomicon
The Dark Arts of Advanced and Unsafe Rust Programming

https://doc.rust-lang.org/nomicon

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24

https://doc.rust-lang.org/nomicon


Summary

Safe Shared Memory

Static checking of ownership and lifetimes, via default immutability and move semantics.
Borrowing to allow multiple-reader single-writer behaviour.
Guarantees no pointer errors or aliasing bugs, no runtime overhead.

Safe Concurrency

Ownership tracking guarantees data-race freedom.
Safe shared memory, as well as channel-based communication.
Splitting Sender<T> from Receiver<T> and using marker traits ensures
multiple-producer single-consumer message handling.

But at what cost? Complexity, multiplication of concerns, fighting the borrow checker, and skipping leg day?
Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Guest Speaker !

Probabilistic Programming:
What is it and how to improve it?

Maria Gorinova
University of Edinburgh

3.10pm Tuesday 29 November 2016

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24



Guest Lecture: Near, Now !

Domain Specific Languages
The Xtext Framework

Avaloq Guest Lecture
Software Design and Modelling

Teviot Lecture Theatre
4.10pm Friday 25 November 2016

Ian Stark Advances in Programming Languages / Lecture 18: Concurrency and More in Rust 2016-11-24


