
http://blog.inf.ed.ac.uk/da16

Informatics 1: Data & Analysis
Lecture 16: Vector Spaces for Information Retrieval

Ian Stark

School of Informatics
The University of Edinburgh

Friday 11 March 2016
Semester 2 Week 8

http://www.ed.ac.uk
http://blog.inf.ed.ac.uk/da16
http://homepages.ed.ac.uk/stark
http://www.inf.ed.ac.uk
http://www.ed.ac.uk

Coursework Assignment !

The coursework assignment has now been online for some time. It’s due
for submission next Thursday.

Your tutorial meeting next week is a chance to discuss the assignment, ask
questions, and get help. So:

Start the assignment well before your tutorial (i.e., now)

Take your work so far to the tutorial.

Tell your tutor about questions where you are having problems, and
areas you find difficult.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Late Coursework and Extension Requests !
There is a web page with general information about coursework,
assessment and feedback in the School of Informatics. Please read it.

http://www.inf.ed.ac.uk/teaching/coursework.html

This also links to the School policy on late coursework and extension
requests. Please read that too.

Late Submissions
Normally, you will not be allowed to submit coursework late. Coursework
submitted after the deadline set will receive a mark of 0%.
If you have a good reason to need to submit late, you must do the
following:

Read the extension requests web page carefully.
Request an extension identifying the affected course and assignment.
Submit the request via the ITO contact form.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

http://www.inf.ed.ac.uk/teaching/coursework.html
http://www.inf.ed.ac.uk/student-services/teaching-organisation/for-taught-students/coursework-and-projects/late-coursework-submission
http://www.inf.ed.ac.uk/teaching/contact

Unstructured Data

Data Retrieval

The information retrieval problem
The vector space model for retrieving and ranking

Statistical Analysis of Data

Data scales and summary statistics
Hypothesis testing and correlation
χ2 tests and collocations also chi-squared, pronounced “kye-squared”

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Summary from Tuesday

Information Retrieval Task
Given a query and a large collection of documents, find the documents in
the collection that are relevant to the query.

Evaluation of Information Retrieval
Precision and Recall: Definitions, calculation, trade-off, combining in an
F-score.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Possible Query Types for Information Retrieval

We consider just simple keyword queries, where we ask an IR system to:

Find documents containing one or more of word1, word2, . . . , wordn

More sophisticated systems might support queries like:

Find documents containing all of word1, word2, . . . , wordn;

Find documents containing as many of word1, word2, . . . , wordn as
possible.

Other systems go beyond these into more complex queries: using boolean
operations, searching for whole phrases, words similar to the keywords,
regular expression matches, etc.

. . . and, ultimately, Question Answering systems like Watson

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Models for Information Retrieval

If we look for every document containing some words of the query then
this may result in a large number of documents of widely varying relevance.

At this point we might want to refine retrieval beyond simple
selection/rejection and introduce some notion of ranking.

Introducing more refined queries, and in particular ranking the results,
requires a model of the documents being retrieved.

There are many such models. One of the simplest is the bag-of-words
model. We focus on a refinement of this, the vector space model.

This model is the basis of many IR applications; it originated in the work
of Gerard Salton and others in the 1970’s, and is still actively developed.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

The Bag-of-Words Model

Treat each document as a multiset of words.

It’s not a very sophisticated model: we ignore everything about word
ordering, syntactic structure, and the relationship between different parts
of the document.

However, it is simple to work with, and is often enough to distinguish
documents and match them against keyword queries.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Assessing Word Significance
Suppose we have a document collection D1,D2, . . . ,DN and a word w
that appears in document Di. How much does this tell us about Di?

Absolute term frequency
fi(w) The number of times word w appears in document Di

Relative term frequency
fi(w)/size(Di) Appearances of w, scaled by the size of Di

Inverse Document Frequency
log(N/Nw) Word w appears in Nw documents out of N

Term Frequency - Inverse Document Frequency (tf-idf)
fi(w) log(N/Nw) Absolute frequency of w in Di, weighted by idf

The value of tf-idf indicates how important word w is in document Di.
Ian Stark Inf1-DA / Lecture 16 2015-03-11

Calculating tf-idf

Suppose we have 400 documents. One of them, document D, has 3000
words; in which “Scotland” appears 28 times and “forestry” just 12 times.

Overall, “Scotland” appears in 250 of the documents, and “forestry” in 78.

tf-idf(Scotland,D) = 28× log
(
400
250

)
= 28× 0.204 = 5.72

tf-idf(forestry,D) = 12× log
(
400
78

)
= 12× 0.710 = 8.52

Although “Scotland” appears more often in D than “forestry”, it is the
appearance of “forestry” that is a more significant feature of the document.

A word that appears in very few documents will have a high tf-idf; a word
that is in many documents will get a lower tf-idf; a word that is in every
document will have a tf-idf of zero.

Base 10 logarithm is standard; but other bases work too

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Creator of Inverse Document Frequency

General idea
Why not add some weight for a word
that is common in this document, but
not so common across all documents?

Specific proposal
Use this:

tf-idf = fi(w) log
(
N

Nw

)
.

Karen Spärck-Jones
Picture credit: University of Cambridge, licensed

under CC BY 2.5 via Wikimedia Commons

Ian Stark Inf1-DA / Lecture 16 2015-03-11

http://www.cl.cam.ac.uk/archive/ksj21/
http://creativecommons.org/licenses/by/2.5
http://commons.wikimedia.org/wiki

Hosting Web Pages +

You can put your own web pages on the School of Informatics server

Short Guide

File index.html in DICE directory /public/homepages/s1576543/web
will appear on the web at

http://homepages.inf.ed.ac.uk/s1576543/index.html

Longer Guide

http://computing.help.inf.ed.ac.uk/homepages

Ian Stark Inf1-DA / Lecture 16 2015-03-11

http://computing.help.inf.ed.ac.uk/homepages

The Vector Space Model

Treat documents as vectors in a high-dimensional space, with one
dimension for every distinct word.

This can give us a ranking among retrieved documents:

Each document is a vector;
Treat the query (a very short document) as a vector too;
Match documents to the query by the angle between the vectors.
Rank higher those documents which point in the same direction as
the query.

Operating the model does not, in fact, require a strong understanding of
higher-dimensional vector spaces: all we do is manipulate fixed-length lists
of integers.

Various programming languages provide a vector
datatype for fixed-length homogeneous sequences

Ian Stark Inf1-DA / Lecture 16 2015-03-11

The Vector for a Document

Suppose that w1,w2, . . . ,wn are all the different words occurring in a
collection of documents D1,D2, . . . ,Dk.

We model each document Di by an n-dimensional vector

(ci1, ci2,, . . . , cij, . . . , cin)

where cij is the number of times word wj occurs in document Di.

In the same way we model the query as a vector (q1, . . . ,qn) by
considering it as a document itself: qj counts how many times word wj

occurs in the query.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Example

Consider a small document containing only the phrase

Sun, sun, sun, here it comes [Harrison, 1969]

from a document collection which contains only the words “here”,
“comes”, “it”, “sun” and “today”.

The vector for the document is (1, 1, 1, 3, 0):

here comes it sun today
1 1 1 3 0

The vector for the query “sun today” is (0, 0, 0, 1, 1):

here comes it sun today
0 0 0 1 1

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Document Matrix

For an information retrieval system based on the vector space model,
frequency information for words in a document collection is usually
precompiled into a document matrix:

Each column represents a word that appears the document collection;

Each row represents a single document in the collection;

Each entry in the matrix gives the frequency of that word in that
document.

This is a model in that it captures some aspects of the documents in the
collection — enough to carry out certain queries or comparisons — but
ignores others.

This general idea of a model is key to many areas of science and engineering

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Example Document Matrix

w1 w2 w3 . . . wn

D1 14 6 1 . . . 0
D2 0 1 3 . . . 1
D3 0 1 0 . . . 2
...

...
...

...
DK 4 7 0 . . . 5

Note that each row of the document matrix is the appropriate vector for
the corresponding document.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Origins of the Vector Space Model +

The following paper is frequently cited as the origin of the vector space
model.

G. Salton.
A Vector Space Model for Information Retrieval.
Communications of the ACM, 1975.
OR: Journal of the American Society for Information Science, 1975.
OR: None of the above.

This paper was never written. It does not exist. The citation is a virus
whose habitat is academic bibliographies.

This paper explains the story.

D. Dubin.
The most influential paper Gerard Salton never wrote.
Library Trends 52(4):748–764, 2004
http://is.gd/salton

Ian Stark Inf1-DA / Lecture 16 2015-03-11

http://www.thefreelibrary.com/The most influential paper Gerard Salton never wrote.-a0125151308
http://is.gd/salton

Similarity of Vectors

Now that we have documents modelled as vectors, we can rank them by
how closely they align with the query, also modelled as a vector.

A simple measure of how well these match is the angle between them as
(high-dimensional) vectors: smaller angle means more similarity.

Using angle makes this measure independent of document size: a larger
document is modelled by a longer vector, but in the same direction.

It turns out to be computationally simpler to calculate the cosine of that
angle; this is more efficient, and gives exactly the same ranking.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Cosines (Some Things You Already Know)

The cosine of an angle A is
A

hyp
oten

use

opposite

adjacentcos(A) = adjacent
hypotenuse

for a right-angled triangle with angle A.

Some particular values of cosine:

cos(0) = 1 cos(90◦) = 0 cos(180◦) = −1

The cosine of the angle between two vectors will be 1 if they are parallel, 0
if they are orthogonal, and −1 if they are antiparallel.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Scalar Product of Vectors

Suppose we have two n-dimensional vectors ~x and ~y:

~x = (x1, . . . , xn) ~y = (y1, . . . ,yn)

We calculate the cosine of the angle between them as follows:

cos(~x,~y) =
~x · ~y
|~x||~y|

=
x1y1 + x2y2 + · · ·+ xnyn√(

x2
1 + x

2
2 + . . . x2

n

)√(
y2

1 + y
2
2 + · · ·+ y2

n

)
Here ~x · ~y is the scalar product or dot product of the vectors ~x and ~y, with
|~x| and |~y| the length or norm of vectors ~x and ~y, respectively.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Scalar Product of Vectors

Suppose we have two n-dimensional vectors ~x and ~y:

~x = (x1, . . . , xn) ~y = (y1, . . . ,yn)

We calculate the cosine of the angle between them as follows:

cos(~x,~y) =
~x · ~y
|~x||~y|

=

∑n
i=1 xiyi√∑n

i=1 x
2
i

√∑n
i=1 y

2
i

Here ~x · ~y is the scalar product or dot product of the vectors ~x and ~y, with
|~x| and |~y| the length or norm of vectors ~x and ~y, respectively.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Example

Matching the document “Sun, sun, sun, here it comes” against the query
“sun today” we have:

~x = (1, 1, 1, 3, 0) ~y = (0, 0, 0, 1, 1)

For this we can calculate:

~x · ~y = 0+ 0+ 0+ 3+ 0 = 3
|~x| =

√
1+ 1+ 1+ 9+ 0 =

√
12

|~y| =
√
0+ 0+ 0+ 1+ 1 =

√
2

cos(~x,~y) = 3√
12×

√
2
=

3√
24

= 0.61

to two significant figures. (The actual angle between the vectors is 52◦.)

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Ranking Documents

Suppose ~q is a query vector, with document vectors ~D1, ~D2, . . . , ~DK

making up the document matrix.

We calculate the K cosine similarity values:

cos(~q, ~D1) cos(~q, ~D2) . . . cos(~q, ~DK)

We can then sort these: rating documents with the highest cosine
against ~q as the best match (smallest angle), and those with the lowest
cosine values the least suitable (largest angle).

Because all document vectors are positive — no word occurs a negative
number of times — the cosine similarity values will all be between 0 and 1.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Discussion

The cosine similarity measure, as presented here, has some evident
limitations. For example:

It only uses the frequency of individual words, not their position or
ordering in relation to each other.

It treats equally all words in the document collection, including both
very common “stop” words and very uncommon words unrelated to
the search. (Refinements like tf-idf can help here.)

It does not make any connection between closely related words, like
“sun”, “sunny” and “sunshine”.

Nonetheless, more refined variations of cosine and other similar
measurements based on the vector space model continue to be popular
and effective in information retrieval, text mining, and clustering analysis.

Ian Stark Inf1-DA / Lecture 16 2015-03-11

Some Other Issues Around Information Retrieval

Precision and recall, as defined in this course, only evaluate a fixed set of
documents returned, without taking into account any ranking. More
sophisticated measures such as precision at a cutoff address this.

We have not considered the efficient implementation of the search for
documents matching a query (or, indeed, any kind of implementation at
all). One method is an inverted index which indexes documents in a
collection by recording every occurrence of each individual word.

Information retrieval and ranking methods may also make use of
information beyond the document itself. This might be metadata on the
source and history of a document, or how other documents reference it
(citations). For example, Google’s pagerank algorithm selects and ranks
web pages based on their own content and the content (and ranking) of all
pages which link to them.

It is named after its creator, Larry Page

Ian Stark Inf1-DA / Lecture 16 2015-03-11

