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Unstructured Data

Data Retrieval

The information retrieval problem
The vector space model for retrieving and ranking

Statistical Analysis of Data

Data scales and summary statistics
Hypothesis testing and correlation
χ2 tests and collocations also chi-squared, pronounced “kye-squared”
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Analysis of Data

There are many reasons to analyse data. For example:

To discover implicit structure in the data;
e.g., finding patterns in experimental data which might in turn
suggest new models or experiments.

To confirm or refute a hypothesis about the data.
e.g., testing a scientific theory against experimental results.

Mathematical statistics provide a powerful toolkit for performing such
analyses, with wide and effective application.
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Analysis of Data

Mathematical statistics provide a powerful toolkit for performing such
analyses, with wide and effective application.

This analytic strength is twofold:

Statistics can sensitively detect information not immediately apparent
within a mass of data;

Statistics can help determine whether or not an apparent feature of
data is really there.

Machine assistance is essential for large datasets, and enables otherwise
infeasible resampling techniques such as bootstrapping and jackknifing.
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Learn Statistics

There are lots of books for learning about statistics. Here are two,
intended to be approachable introductions without requiring especially
strong mathematical background.

P. Hinton.
Statistics Explained: A Guide for Social Science Students.
Routledge, third edition, 2014.

D. B. Wright and K. London.
First (and Second) Steps in Statistics.
SAGE Publications Ltd, second edition, 2009.
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Statistics in Action

Here are two more books, for finding out about how statistics are used and
abused. Both are easy reading. The second has amusing pictures, too.

M. Blastland and A. Dilnot. http://is.gd/tigerisnt
The Tiger That Isn’t: Seeing Through a World of Numbers.
Profile, 2008.

“Makes statistics far, far too interesting”

D. Huff.
How to Lie with Statistics. http://is.gd/huffbook
W. W. Norton, 1954.

“The most widely read statistics book in the history of the world”
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Data Scales

What type of statistical analysis we might apply to some data depends on:

The reason for wishing to carry out the analysis;

The type of data to hand.

Data may be qualitative (descriptive) or quantitative (numerical).

We can refine this further into different kinds of data scale:

Qualitative data may be drawn from a categorical or an ordinal scale;

Quantitative data may lie on an interval or a ratio scale.

Each of these supports different kinds of analyses.
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Categorical Scales

Data on a categorical scale has each item of data being drawn from a fixed
number of categories.

Example: Categorical Scale
A government might classify visa applications from people wishing to visit
according to the nationality of the applicant. This classification is a
categorical scale: the categories are all the different possible nationalities.

Example: Categorical Scale
Insurance companies classify some insurance applications (e.g., home,
possessions, car) according to the alphanumeric postcode of the applicant,
making different risk assessments for different postcodes. Here the
categories are all existing postcodes.

Categorical scales are sometimes called nominal, particularly where the
categories all have names.
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Ordinal Scales

Data on an ordinal scale has a recognized ordering between data items,
but there is no meaningful arithmetic on the values.

Example: Ordinal Scale
The European Credit Transfer and Accumulation System (ECTS) has a
grading scale where course results are recorded as A, B, C, D, E, FX
and F. There are no numerical marks. The ordering is clear, but we can’t
add or subtract grades.

Example: Ordinal Scale
The Douglas Sea Scale classifies the state of the sea on a scale from
0 (glassy calm) through 5 (rough) to 9 (phenomenal). This is ordered, but
it makes no sense to perform arithmetic: 4 (moderate) is not the mean of
2 (smooth) and 6 (very rough).
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Interval Scales

An interval scale is a numerical scale (usually with real number values) in
which we are interested in relative value rather than absolute value.

Example: Interval Scale
Moments in time are given relative to an arbitrarily chosen zero point. We
can make sense of comparisons such as “date X is 17 years later than
date Y”. But it does not make sense to say “arrival time P is twice as large
as departure time Q”.

Example: Interval Scale
The Celsius and Fahrenheit temperature scales are interval scales, as the
choice of zero is externally imposed.

Mathematically, interval scales support the operations of subtraction and
average (all kinds, possibly weighted).

Interval scales do not support either addition or multiplication.
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Ratio Scales

A ratio scale is a numerical scale (again usually with real number values)
in which there is a notion of absolute value.

Example: Ratio Scales
Most physical quantities such as mass, energy and length are measured on
ratio scales. The Kelvin temperature scale is a ratio scale. So is age (of a
person, for example), even though it is a measure of time, because there is
a definite zero origin.

Thus one object can have half the mass of another; or one person can be
twice the age of another person.

Like interval scales, ratio scales support subtraction and weighted averages.
They also support addition and multiplication by a real number (a scalar).
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Summary of Scales

Name Description Example

Categorical Qualitative, fixed set of categories, no
order, no possible arithmetic.

Postcodes

Ordinal Qualitative, fixed set of categories, can
be ordered, still no arithmetic.

Exam grades

Interval Quantitative, values all relative; can take
averages, subtract one value from
another; no addition or multiplication.

Dates

Ratio Quantitative, absolute values, can take
averages, subtract, add, and take scalar
multiples of values.

Mass, energy

Ian Stark Inf1-DA / Lecture 17 2016-03-15



Visualising data

It is often helpful to visualise data by drawing a chart or plotting a graph of
the data. Visualisations may suggest possible properties of the data, whose
existence and features we can then explore mathematically with statistics.

What kind of visualisations are possible depends on the kind of data.

For a data on a categorical or ordinal scale, a natural visual representation
is a bar chart, displaying for each category the number of times it occurs
in the data.

Bars in a bar chart are all the same width, and separate.

For data from an interval or ratio scale, we can collect data into bands and
draw a histogram, giving the frequency with which values occur in the
data.

In a histogram the bars are adjacent, and can be of different widths: it
is their area, not height, which measures the number of values present.
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Bar Chart vs. Histogram

This is a bar chart This is a histogram

Credit: Wikipedia, user XcepticZP Credit: Wikipedia, user Qwfp
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The Copernican Principle +

Far out in the uncharted backwaters of the unfashionable end of the Western
Spiral arm of the Galaxy lies a small unregarded yellow sun.

Orbiting this at a distance of roughly ninety-two million miles is an utterly
insignificant little blue green planet. . .

Douglas Adams: The Hitch-Hiker’s Guide to the Galaxy
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The Copernican Principle +

J. Richard Gott III.
A Grim Reckoning — What has a 16th-century astronomer got to do
with the defeat of governments and the possible extinction of the
human race?
New Scientist, 15 November 1997
http://is.gd/grimreckoning

Timothy Ferris.
How to Predict Everything
The New Yorker, 12 July 1999, pp. 35–39
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Normal Distribution
In the normal distribution, data is clustered symmetrically around a central
value with a bell-shaped frequency curve.

For sound mathematical reasons, many real-world examples of numerical
data do follow a normal distribution. However, not all do so, and the name
“normal” can sometimes be misleading.
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Normal Distribution
Any normal distribution is described by two parameters.

The mean µ (mu, said “mew”) is the centre around which the data clusters.

The standard deviation σ (sigma) is a measure of the spread of the curve.
For a normal distribution, it coincides with the inflection point where the
curve changes from being convex to concave.
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Statistics

A statistic is a single value computed from data that captures some overall
property of the data.

For example, the mean of a normal distribution is a statistic that captures
the value around which the data is clustered.

Similarly, the standard deviation of a normal distribution is a statistic that
captures the degree of spread of the data around its mean.

The notion of mean and standard deviation generalise to any quantitative
data, even if it is not normally distributed.

There are also other statistics, the mode and median, that are alternatives
to the mean for summarising the “average value” of some data.

Ian Stark Inf1-DA / Lecture 17 2016-03-15



Mode
For any set of data the mode is the value which occurs most often.

Example: Mode
For the categorical data {north, west, south, north, east} the mode is north,
which is the only value to occur twice.

Data may be bimodal (two modes) or even multimodal (more than two).

Example: Bimodal data
For the integer data set {6, 2, 3, 6, 2, 5, 1, 7, 2, 5, 6} both 2 and 6 are modes,
each occurring three times.

The mode makes sense for all types of data scale. However, it is not
particularly informative for quantitative data with real-number values,
where it is uncommon for the same data value to occur more than once.

This is an instance of a more general phenomenon: in general it is neither
useful nor meaningful to compare real-number values for equality
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Median

Given data values x1, x2, . . . , xN sorted into in non-decreasing order, the
median is the middle value x(N+1)/2, for N odd. If N is even, then any
value between xN/2 and x(N/2)+1 inclusive is a possible median.

Example: Median
Given the integer data set {6, 2, 3, 6, 2, 5, 0, 7, 2, 5, 6} we can write it in
non-decreasing order {0, 2, 2, 2, 3, 5, 5, 6, 6, 6, 7} and identify the middle
value as 5.

The median exists for qualitative ordinal data and quantitative interval and
ratio data. It does not make sense for categorical data, as that has no
appropriate ordering.

Median is a good summary statistic for data where there is a forced cutoff
at one end, or possible distortion by extreme outliers. For example, in
reporting incomes, hospital waiting times, cancer survival times.
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Mean
Given data values {x1, x2, . . . , xN}, the mean is their total divided by the
number of values: (

∑N
i=1 xi)/N.

Example: Mean
For the integer data set {6, 2, 3, 6, 2, 5, 0, 7, 2, 5, 6}, the mean is
(6+ 2+ 3+ 6+ 2+ 5+ 0+ 7+ 2+ 5+ 6)/11 = 4.

Although the formula for the mean involves a sum, the mean makes sense
for both interval and ratio scales; it does not depend on an absolute zero
in the scale. Mean does not make sense for categorical or ordinal data.
A mean incorporates all the data and is a genuine summary; however, it is
not always the right choice of summary statistic, and can be distorted if
there are extremely high or low values.

“The mean is like a loaded gun, which in the inexperienced hand can lead to
serious accidents, as means can give hopelessly distorted results”

Karl Pearson, 1857–1936
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Market Beating Performance

Coulters Property Sales advertise

Our average selling time is 22 days

Which is the most suitable average to use
here?

Mode
Median
Mean
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Variance and Standard Deviation

Given data values {x1, x2, . . . , xN} with mean µ, their variance σ2 is the
mean square deviation from µ:

Variance = 1
N

N∑
i=1

(xi − µ)
2

=

(
1
N

N∑
i=1

x2
i

)
− µ2 Not obvious, but

the algebra works.

Variance measures the spread of data, but it changes as the square of the
data. A more common measure of spread is its square root, known as the
standard deviation σ:

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2

=

√√√√( 1
N

N∑
i=1

x2
i

)
− µ2

As for the mean, the standard deviation makes sense for both interval and
ratio data; but has no meaning for qualitative data scales.
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Variance and Standard Deviation

Given data values {x1, x2, . . . , xN} with mean µ, their variance σ2 is the
mean square deviation from µ:

Variance = 1
N

N∑
i=1

(xi − µ)
2 =

(
1
N

N∑
i=1

x2
i

)
− µ2 Not obvious, but

the algebra works.

Variance measures the spread of data, but it changes as the square of the
data. A more common measure of spread is its square root, known as the
standard deviation σ:

σ =

√√√√ 1
N

N∑
i=1

(xi − µ)2 =

√√√√( 1
N

N∑
i=1

x2
i

)
− µ2

As for the mean, the standard deviation makes sense for both interval and
ratio data; but has no meaning for qualitative data scales.
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Example

For the integer data set {6, 2, 3, 6, 2, 5, 0, 7, 2, 5, 6} we compute:

Variance =

(6− 4)2 + (2− 4)2 + (3− 4)2 + (6− 4)2 + (2− 4)2 + (5− 4)2
+ (0− 4)2 + (7− 4)2 + (2− 4)2 + (5− 4)2 + (6− 4)2

11

=
4+ 4+ 1+ 4+ 4+ 1+ 16+ 9+ 4+ 1+ 4

11

=
52
11

= 4.73 to 3 significant figures

σ =

√
52
11

= 2.17 to 3 significant figures
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Example

For the integer data set {6, 2, 3, 6, 2, 5, 0, 7, 2, 5, 6} we compute:

Variance =
62 + 22 + 32 + 62 + 22 + 52 + 02 + 72 + 22 + 52 + 62

11 − 42

=
4+ 4+ 1+ 4+ 4+ 1+ 16+ 9+ 4+ 1+ 4

11

=
52
11

= 4.73 to 3 significant figures

σ =

√
52
11

= 2.17 to 3 significant figures
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Populations and Samples

So far we have seen different statistics for a given set of data, and how to
compute them exactly.

Very often, however, data is only a sample drawn from a larger population,
and we really want to know — or find out some information about — the
statistic on the whole population. For example:

Experiments in social sciences where one wants to discover
information about some section of society — say, university students.

Surveys and polls — for marketing, opinion gathering, etc.

In software design when questioning a number of potential users in
order to understand general user requirements.

In such cases it is impractical to obtain exhaustive data about the
population as a whole; instead, we must work with a sample.
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Sampling

Sampling from a population needs to be done carefully to ensure analysis
of the sample is a reliable basis for estimating properties of the whole
population.

The sample should be chosen at random from the population.

The sample should be as large as is practically possible (given
constraints on gathering data, storing data and calculating with data).

These improve the likelihood that a sample is representative of the
population, reducing the chance of building bias into the sample.

Given a sample, we can calculate its statistical properties, and use that to
infer information about similar properties of the whole population.

It is a significant topic in statistics, but beyond this course, to work out
how to quantify and maximise the reliability of these techniques.
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Estimating Population Statistics
Suppose we have a sample {x1, . . . , xn} of size n from a population of
size N, where n << N (i.e., n is much smaller than N).

We use the sample {x1, . . . , xn} to estimate statistics for the whole
population. These estimates may not be correct; but knowing the sample
and population size, we can often make estimates about the errors, too.

For mean, the best estimate of the population mean µ is in fact the
sample mean m:

m =
1
n

n∑
i=1

xi

This is an unbiased estimator — its value, given a random sample, is
evenly distributed around the mean of the overall population µ.

E(m) = µ
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Estimating Population Variance

The variance and standard deviation of a sample are not appropriate
estimates for the equivalent statistics on the population from which the
sample is drawn; they turn out to be slightly too small, because a sample
will be distributed more closely around its own mean than to the
population mean.

The best estimate for the variance of the whole population is

s2 =
1

n− 1

n∑
i=1

(xi −m)2 .

Note the denominator (n− 1) rather than n. This is known as the Bessel
correction and gives an unbiased estimator for the variation of the larger
population:

E(s2) = σ2 .
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Estimating Population Standard Deviation

Using this to estimate the variance of a whole population, based on a
sample:

s2 =
1

n− 1

n∑
i=1

(xi −m)2

gives us an estimate for the standard deviation of the whole population:

s =

√√√√ 1
n− 1

n∑
i=1

(xi −m)2

Again the denominator n for standard deviation has been replaced
by (n− 1); and the mean m used is that of the sample, not the (unknown)
population mean µ.
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Beware

The use of samples to estimate statistics of a larger population is so
common that the formula on the previous slide is very often the one
needed, rather than the standard deviation of the sample itself.

Its usage is so widespread that sometimes it is wrongly given as the
definition of standard deviation.

The existence of two different formulas for calculating standard deviations
in different circumstances can lead to confusion. So take care.

Often calculators make both formulas available: as σn for the formula
with denominator n; and σn−1 for the formula with denominator (n− 1).
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Summary

Data Scales: Qualitative, Quantitative
Qualitative: Categorical, Ordinal
Quantitative: Interval, Ratio

Visualisation: Bar chart vs. Histogram
Normal Distribution: Bell curve, fixed by mean and standard deviation

Statistic: Single value computed from a set of data
Averages: mean, median, mode
Spread of Data: variance, standard deviation

Sample: Chosen at random from population
Estimates: Population statistics from data about a sample

Mean: Use mean of the sample
Variance, Standard Deviation: Use the (n− 1) versions.
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Self-Referential Statistics +

XKCD: 688 Self-Description

Q. How is this done?
Q. Which panel do you draw first?
Q. Can you do it without machine assistance?
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