Tutorial 6: Corpus Querying

Informatics 1 Data & Analysis

Week 8, Semester 2, 2016/17

This worksheet has three parts: tutorial Questions, followed by some Examples and their
Solutions.

e Before your tutorial, work through and attempt all of the Questions in the first section.
If you get stuck or need help then ask a question on Piazza.

e The Examples are there for additional preparation, practice, and revision.

e Use the Solutions to check your answers, and read about possible alternatives.

You must bring your answers to the main questions along to your tutorial. You will need
to be able to show these to your tutor, and may be exchanging them with other students,
so it is best to have them printed out on paper.

If you cannot do some questions, write down what it is that you find challenging and use
this to ask your tutor in the meeting.

Tutorials will not usually cover the Examples, but if you have any questions about those
then write them down and ask your tutor, or post a question on |Piazza.

It’s important both for your learning and other students in the group that you come to
tutorials properly prepared. Students who have not attempted the main tutorial questions
will be sent away from the tutorial to do them elsewhere and return later.

Some exercise sheets contain material marked with a star x. These are optional extensions.

Data & Analysis tutorials are not formally assessed, but the content is examinable and they
are an important part of the course. If you do not do the exercises then you are unlikely to
pass the exam.

Attendance at tutorials is obligatory: if you are ill or otherwise unable to attend one week
then email your tutor, and if possible attend another tutorial group in the same week.

Please send any corrections and suggestions to lan.Stark@ed.ac.uk

Introduction

In this tutorial you will be working with a real corpus and analysing it with the Corpus Query
Processor (CQP), a query engine that searches corpora based on user queries about words,
parts of speech, or other markup.


https://piazza.com/ed.ac.uk/spring2017/inf1da
mailto:Ian.Stark@ed.ac.uk?subject=Inf1-DA-17-T6

Reading

The following exercises are based largely upon a tutorial written by Stefan Evert and the other
maintainers of the IMS Open Corpus Workbench at http://cwb.sourceforge.net. Before starting
these exercises, you must read Sections 1 and 2 of the CQP Query Language tutorial. Download
this as a PDF document from the course web page, which hosts the correct version for this
worksheet.

Setting up the working environment

These exercises must be carried out on one of the DICE machines, as those have access to both
the CQP engine and the necessary corpora. In particular, you will be using a corpus comprising
the works of Charles Dickens, annotated with part-of-speech tags and syntactic structure.

DICE machines in the computing labs are available 24/7. If connecting remotely, please log in
first to student.ssh.inf.ed.ac.uk and then student.compute which has CQP installed. A command-
line connection through ssh or PuTTy should be sufficient. See the Informatics Computing
Support help pages for more information on remote working.

You must first declare the location of a corpus index. Type the following at the command line
in a terminal window:

export CORPUS_REGISTRY=/afs/inf.ed.ac.uk/group/teaching/inflda/corpora/registry
Take care to copy this exactly.

To start CQP itself, enter the command ‘cqp -e’. (The annotation ‘-e’ enables line-editing;
try ‘cqp -eC’ for colour.) You should then see the following in your command prompt:

[no corpus]>

This means that cqp is active but no specific corpus has been selected yet. In order to select
the DICKENS corpus type

[no corpus]> DICKENS;
You will then see the following:
DICKENS>

(3]

Command lines in cqp finish with a semicolon ‘;’. If you leave it out, though, the tool will
usually still accept your input.

You can now get more specific information about this particular corpus by typing:
DICKENS> info;

Press the space bar to display the next page and ‘q’ to get back to the command prompt. To
leave cqp, enter the command ‘exit;’.

1 Concordances

1.1 Concordance of a given word

Having set up a working environment, we can start performing some queries on the DICKENS
corpus. Searching for concordances (all occurrences of a given word, displayed in context) is a

2


http://www.stefan-evert.de/
http://cwb.sourceforge.net
http://en.wikipedia.org/wiki/Charles_dickens
http://computing.help.inf.ed.ac.uk/connecting-home-overview
http://computing.help.inf.ed.ac.uk/connecting-home-overview

basic form of querying a corpus. To search for a specific word, such as “dear”, you should type:
DICKENS> [word = "dear"];

which can be abbreviated to
DICKENS> "dear";

As previously, press space for the next page and ‘q’ to get back to the command prompt.

We can make any search case insensitive with the ‘%c’ modifier:
DICKENS> "dear" Y%c;

We can search for more than one word after another by adding more queries:

DICKENS> "dear" "friend";

1.2 More complex queries

The use of reqular expressions considerably extends the power of the CQP query language.
CQP uses the following format for regular expressions:

expl exp2: first expl then exp2 in sequence
exp*: zero or more occurrences of exp

exp?: zero or one occurrences of exp

exp+: one or more occurrences of exp
expl|exp2: either expl or exp2

For example, the following query retrieves four variations of the word “regular”: regular, regu-
lars, regularly, regularity.

DICKENS> "regular(|s|lylity)";

A single dot (*.”) can be used as a wildcard in CQP, matching any single character. For example,
this query finds words such as “than”, “then” and “thin™:

DICKENS> "th.n";

7

while the following query finds words starting “un. ..
and “unsuccessfully”

and ending “...ly”, , such as “unusually”

DICKENS> "un.*1ly";

The use of boolean logic extends further the power of CQP queries. The operators ‘&’ (and)
and ‘|’ (or) can be used to combine two tests, while ‘!=" tests for inequality. For instance,
the following query would find all occurrences of words beginning “un” and ending “ly”, but
different from “unlikely”

DICKENS> [(word = "un.*1ly") & (word != "unlikely")];
Similarly, the following query would find all occurrences of the words “man” and “woman’:
DICKENS> [(word = "man") | (word = "woman")];

Question 1: Concordance of a given bigram. A bigram is any two-word sequence in some
text. Retrieve all occurrences of the bigram “great deal” in the Dickens corpus. Is this query
affected by making it case insensitive?



Question 2: Concordance of variations of a given word. Retrieve variations of the

PORNAY

verb “sit” in the corpus: ‘“sits”, “sat”, “sitting”, .... Is this query affected by making it case
insensitive?

2 Annotations

2.1 Displaying linguistic annotations

When working with cgp you may want to customise how the results of queries are displayed.
For example, we can select whether or not to display part-of-speech (POS) annotations on the
corpus. By default these are turned off, but they can be enabled with

DICKENS> show +pos; (Query results will show annotations)
and disabled with
DICKENS> show -pos; (Query results will hide annotations)

Try some of your queries again, and look at the annotations.

2.2 Accessing linguistic annotations

Once we have annotations on text, we can use these make more refined searches. For example,
with the POS annotations we can search for uses of adjectives, verbs or nouns in a given
corpus. Switch on POS tagging with “show +pos;” and do some searches to identify the
different annotations that used for verbs, adjectives and nouns.

These tags are taken from the Penn Treebank project. You can find a list of tags online at http:
//is.gd/treebanktagset together with annotation guidelines describing how they are to be used.
For more about treebanks, see the Wikipedia article https://en.wikipedia.org/wiki/Treebank.

In the same way that a query [word = "Dear"] will find a particular word in the corpus, a
query [pos = "NN"] will find all (singular) nouns in the corpus. Both “word” and “pos” queries
can use regular expressions and logical operations to build more complex queries.

Question 3. What is the common pattern for the POS annotations used for different types of
verbs? Use a regular expression to formulate a query that retrieves all occurrences of verbs in
the corpus.

Question 4. Write a query to retrieve all tokens which are not nouns.
Question 5. Retrieve all occurrences of the word “lock” where it is used as a noun.

Question 6. The “lemma” annotation in cqp contains the headword: the principal dictionary
word associated with a word. Switch on lemma tagging with “show +lemma;” and try some
queries.

Use this to formulate an alternative (case-insensitive) query for all variations of the verb “sit”
in the corpus. Does this return the same results as your answer to Question 27


http://is.gd/treebanktagset
http://is.gd/treebanktagset
https://en.wikipedia.org/wiki/Treebank

3 Frequencies of a given word

Frequency information obtained from corpora can be useful for language research. Here we
look at finding the absolute frequency — the number of occurrences — of certain features in
the corpus.

To find the total number of tokens in the corpus, type this:
DICKENS> Q1 = []; size Q1;

Here we have named the result of the query Q1, and then retrieved its size. In this case, the
query is one that matches every word in the corpus (and, in fact, every punctuation mark too).

A similar query counts the absolute frequency of a specific word:
DICKENS> Q2 = [word = "dear"]; size Q2;

This query finds the absolute frequency of all bigrams consisting of the word “dear” followed
by a noun:

DICKENS> Q3 = [word = "dear"] [pos = "N.x"]; size Q3;

We can refine this to list the absolute frequency of the bigram grouped by which noun it is that
follows “dear™

DICKENS> Q3 = [word = "dear"] [pos = "N.x"]; count Q3 by word;
You can also group by POS, or lemma; or use %c to ignore case.

A tricky point: Suppose we want to find the most common word in the corpus. A natural query
would be:

DICKENS> Q4 = []; count Q4 by word;

This works, but also includes punctuation marks and white space amongst words. Instead, the
following works better:

DICKENS> Q4 = [word = "[a-zA-Z].*"]; count Q4 by word;
Here the range expression [a-zA-Z] matches any letter, either lower or upper case.

Question 7 - Absolute Frequency. Find the absolute frequency of the word “girl” in the
corpus, ignoring any case differences.

Question 8 - Relative Frequency. Calculate the relative frequency of the word “girl” in the
corpus (the number of occurrences as a fraction of the total number of words). Note that cqp
doesn’t include arithmetic, so you will need to do this outside the program.

Question 9. Find the most common bigram in the Dickens corpus.

4 Collocations

A collocation is a sequence of words that occur in text more often than would be expected by
chance; more generally, that form expressions through repeated use in certain contexts.

Question 10. List the 10 most common adjective-noun pairs in the Dickens corpus. Which of
these would you classify as collocations?



Question 11. For any specific adjective-noun pair AB (i.e., adjective A followed by noun B)
we can create a contingency table of frequency observations. Such contingency tables will be
used later in the course. The table for AB looks like this:

A -A | Total
B| Fap F-ap | FB
-B|Fa-p F.a-B| FB
Total FA F_|A F

where:

F 4 p is the absolute frequency of adjective A followed by noun B
F_ 4 g is the absolute frequency of any adjective except A followed by noun B
Fp is the absolute frequency of the noun B
F4_p is the absolute frequency of adjective A followed by any noun except B
F_ 4_p is the absolute frequency of any not-A adjective followed by any not-B noun
F_p is the absolute frequency of nouns other than B
F 4 is the absolute frequency of adjective A
F 4 is the absolute frequency of adjectives other than A
F' is the absolute frequency of adjective-noun pairs in the corpus.

Construct the contingency table of case-insensitive frequency observations for the bigram “great
deal”. Does this table tell us anything notable about the bigram?

5 Tutorial Discussion

In this tutorial we have used cqp to explore the characteristics of a small corpus taken from
the works of Charles Dickens. This contains something over 3 million words. That’s a lot for
a human to read; and even for a computer it’s large enough to observe that some queries run
faster than others. It’s also large enough that a poor choice of algorithms could make even a
simple query take years to complete.

How do you think cqp works? What algorithms and techniques might it use to answer the
queries you have put to it during this tutorial?

e Given text files containing three million words, how could you efficiently search for all
occurrences of the word “tomorrow’?

e Could this search be made faster using several computers in parallel?

e Suppose you are writing a program that will be used to repeatedly search for different
words in these files. Is there any pre-processing you could carry out that might be
expensive to do once but would help make later searches faster?” What information would
you collect?

e What about more complex queries, such as counting the absolute frequency of all bigrams
in the corpus — can you think of a way to implement those efficiently?



Examples

This section contains further exercises on Corpus Querying. These examples are similar to the
main tutorial questions: they involve querying the Dickens corpus with CQP, and they cover
topics like concordances, annotations, word frequencies and collocations. Instructions on how
to use CQP are provided in the tutorial introduction.

Example 1: Concordances

(a) Retrieve all occurrences of the word “proud” in the Dickens corpus.
(b) Retrieve all occurrences of the word “proud” where the query is case-insensitive.
YRR

(c) Retrieve variations of the word “proud” in the corpus: “proudly”, “proudest”, . ...

d) Retrieve all occurrences of the bigram “sweet girl” in the corpus.
g g p

Example 2: Annotations

(a) Write a query to retrieve all adjective occurrences in the corpus.
(b) Write a query to retrieve all tokens which are adjectives or adverbs.

(c) Retrieve all occurrences of the word “face” where it is not used as a noun.

Example 3: Word frequencies

(a) Find the absolute frequency of the word “face” in the Dickens corpus.

(b) Find the absolute frequency of the word “face” in the Dickens corpus, where it is not used
as a noun.

(c) Find the absolute frequency of all bigrams consisting of an adjective followed by the word
t(girF?‘

(d) Find the absolute frequency of all bigrams consisting of an adjective followed by the word
“girl”, grouped by the adjective that precedes “girl”.

Example 4: Collocations

Below you can see a list of bigrams in the Dickens corpus, ordered by their frequency.

111 next morning [#64236-#64346]
100 little while [#53448-#53547]
97 other people [#73043-#73139]
96 other side [#73396-#73491]
94 own room [#75644-#75737]

93 many times [#57550-#57642]
88 old friend [#66892-#66979]



85 such things [#98498-#98582]

85 young friend [#111398-#111482]
78 young men [#113500-#113577]
76 long way [#55010-#55085]

For each of the following bigrams, use CQP to construct a concordance for the word pair, and
assess whether you think it forms a collocation.

(a) “old friend”
(b) “other people”

(c) “next morning”



Solutions to Examples

These are not entirely “model” answers; instead, they indicate a possible solution. Remember
that not all of these questions will have a single “right” answer. If you have difficulties with
a particular example, or have trouble following through the solution, please raise this as a
question in your tutorial.

Solution 1

(a) Retrieve all occurrences of the word “proud” in the Dickens corpus.
DICKENS> [word = "proud"];
which can be abbreviated to

DICKENS> "proud";

(b) Retrieve all occurrences of the word “proud” where the query is case-insensitive.

DICKENS> "proud" Y%c;

YRR

(c) Retrieve variations of the word “proud” in the corpus: “proudly”, “proudest”, ....
DICKENS> "proud(lerlest|ly)";
or
DICKENS> "proud|prouder|proudest|proudly";
or

DICKENS> "proud.*";

d) Retrieve all occurrences of the bigram “sweet girl” in the corpus.
) )
DICKENS> "sweet" "girl";
or

DICKENS> [word = "sweet"] [word = "girl"];

Solution 2

(a) Write a query to retrieve all adjective occurrences in the corpus.

DICKENS> [pos = "JJ.x"];

(b) Write a query to retrieve all tokens which are adjectives or adverbs.

DICKENS> [(pos = "JJ.x") | (pos = "RB.x")];

(c) Retrieve all occurrences of the word “face” where it is not used as a noun.

DICKENS> [(word = "face") & (pos != "N.x")];



Solution 3

(a) Find the absolute frequency of the word “face” in the Dickens corpus.
DICKENS> Q1 = [word = "face"]; size Q1;
(b) Find the absolute frequency of the word “face” in the Dickens corpus, where it is not used
as a noun.
DICKENS> Q2 = [(word = "face") & (pos != "N.x")]; size Q2;
(c) Find the absolute frequency of all bigrams consisting of an adjective followed by the word
“girlﬂ.
DICKENS> Q3 = [pos = "JJ.*x"] [word = "girl"],; size Q3;
(d) Find the absolute frequency of all bigrams consisting of an adjective followed by the word
“gir]”, grouped by the adjective that precedes “girl”.

DICKENS> Q4 = [pos = "JJ.*"] [word = "girl"];
DICKENS> count Q4 by word;

Solution 4

We cannot conclude with certainty whether any of the bigrams provided are statistically true
collocations — whether they actually occur more often than would be expected by chance,
given the underlying frequency of individual words in the corpus — unless we do some further
analysis, such as x? testing (pronounced “kye-squared” — we will discuss these later on in this
course). However, by looking at examples of uses of the bigrams in the corpus we can argue
whether these bigrams have a semantic weight of their own, and hence whether they could be
considered to be collocations.

(a) “old friend”

This bigram has in some cases the meaning of “close friend” or “beloved friend”. A
representative example in the corpus is “Well met, my dear old friend! said I .” In these
cases, “old friend” could be regarded as a collocation.

(b) “other people”

This is not a collocation, as the expression simply refers to other people.

(c) “next morning”

This bigram is used in some cases in the corpus to mean “tomorrow”. In these cases it
might be considered to be a collocation.

10



	Concordances
	Concordance of a given word
	More complex queries

	Annotations
	Displaying linguistic annotations
	Accessing linguistic annotations

	Frequencies of a given word
	Collocations
	Tutorial Discussion

