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Unstructured Data

Data Retrieval

The information retrieval problem

The vector space model for retrieving and ranking

Statistical Analysis of Data

Summary statistics

Hypothesis testing and χ2 also chi-squared, pronounced “kye-squared”

Data scales. Correlation and causation.
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What Happened Earlier

Statistics
A statistic is a single value computed from a set of data that captures
some overall property: for example the mean, median, mode, variance, or
standard deviation.

Given a small random sample from a large population we can estimate
statistics for the population using calculations on the sample.

Correlation
With two sets of data we may look for a correlation between them: if they
vary together, with changes in one matching changes in the other.

An observed correlation may be because one thing directly causes another;
because both are affected by some other factor; or simply by chance.
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Data in Multiple Dimensions

This is the table recording for each of eight imaginary students (A–H) the
time in hours they spend each week on studying for Inf1-DA (outside lectures
and tutorials) and on physical exercise; how many hours they spent asleep
on a particular night; and their performance on the Data & Analysis exam.

There are four variables: study, exercise, sleep and exam results.

Example Data (NB: Not real students)
A B C D E F G H

Study 0.5 1 1.4 1.2 2.2 2.4 3 3.5
Exercise 4 7 4.5 5 8 3.5 6 5
Sleep 10 6 13 5 3 7 9 8.5
Exam 16 35 42 45 60 72 85 95
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Correlation

Is there any relationship between the values observed for these four variables?

If there is, and the variables change in similar ways to each other, then we
say they are correlated.

One way to discover correlation is with a scatter plot taking one variable for
x-axis, another for the y-axis, and plotting a point for each item of data.

Example Data (NB: Not real students)
A B C D E F G H

Study 0.5 1 1.4 1.2 2.2 2.4 3 3.5
Exercise 4 7 4.5 5 8 3.5 6 5
Sleep 10 6 13 5 3 7 9 8.5
Exam 16 35 42 45 60 72 85 95
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Scatter Plot
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Hypothesis Testing

These scatter plots do suggest possible correlations between variables.

There are other ways to formulate possible correlations. For example:

From a proposed underlying mechanism;

Analogy with another situation where some relation is known to exist;

Based on the predictions of a proposed model for a system.

Any such suggestion of a correlation is a hypothesis.

Statistical tests provide the mathematical tools to assess evidence and
carry out hypothesis testing.
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Statistical Tests

Most statistical testing starts from a specified null hypothesis, that there is
nothing out of the ordinary in the data: no correlation, no effect, nothing
to see.

We then compute some statistic from the data. Call this R.

The hypothesis test is then to investigate how likely it is that we would see
a result like R if the null hypothesis were true.

This chance is called a p-value, with 0 6 p 6 1.
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Significance

The value p represents the chance that we would obtain a result like R if
the null hypothesis were true.

If p is small, then we conclude that the null hypothesis is a poor
explanation for the observed data.

Based on this we might reject the null hypothesis.

Standard thresholds for “small” are p < 0.05, meaning that there is less
than 1 chance in 20 of obtaining the observed result by chance, if the null
hypothesis is true; or p < 0.01, meaning less than 1 chance in 100.

An observation that leads us to reject the null hypothesis is described as
statistically significant.
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Correlation Coefficient

The correlation coefficient is a statistical measure of how closely one set of
data values x1, . . . , xN are correlated with another y1, . . . ,yN.

Take µx and σx the mean and standard deviation of the xi values.
Take µy and σy the mean and standard deviation of the yi values.

The correlation coefficient ρx,y is then computed as:

ρx,y =

∑N
i=1(xi − µx)(yi − µy)

Nσxσy

Values of ρx,y always lie between −1 and 1.

If ρx,y is close to 0 then this suggests there is no correlation.
If ρx,y is nearer +1 then this suggests x and y are positively correlated.
If ρx,y is closer to −1 this suggests x and y are negatively correlated.
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Correlation Coefficient as a Statistical Test

In a test for correlation between two variables x and y — such as study
hours and exam results — we are looking to see whether the variables are
correlated; and if so in what direction.

The null hypothesis is that there is no correlation.

We calculate the correlation coefficient ρx,y, and then do one of two
things:

Look in a table of critical values for this statistic, to see whether the
value we have is significant;

Compute directly the p-value for this statistic, to see whether it is
small.

Depending on the result, we may reject the null hypothesis.
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Critical Values for Correlation Coefficient

ρ p = 0.10 p = 0.05 p = 0.01 p = 0.001
N = 7 0.669 0.754 0.875 0.951
N = 8 0.621 0.707 0.834 0.925
N = 9 0.582 0.666 0.798 0.898
N = 10 0.549 0.632 0.765 0.872

This table has rows indicating the critical values of the correlation
coefficient ρ for different numbers of data items N in the series being
compared.

It shows that for N = 8 data items that are not correlated, there is
probability p = 0.01 of observing a coefficient |ρx,y| > 0.834.

In the same way for N = 8 uncorrelated data items a value of |ρx,y| > 0.925
has probability p = 0.001 of occurring, only one chance in a thousand.
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Studying vs. Exam Results
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The correlation coefficient is ρstudy,exam = 0.990, well above the critical
value 0.925 for p < 0.001 and strongly indicating positive correlation.
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Physical Exercise vs. Exam Results

0 1 2 3 4 5 6 7 8 9 10
0

20

40

60

80

100

Weekly hours of physical exercise

Ex
am

re
su
lt

The correlation coefficient is ρexercise,exam = 0.074, far less than any critical
value and indicating no evidence of correlation for these 8 students.
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Hours of Sleep vs. Physical Exercise
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The correlation coefficient is ρsleep,exercise = −0.599, below the critical
value of 0.621 for |ρx,y|, so giving no evidence of correlation here.
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Top Hat Course Code 018138

Judge & Cable 2004
The Effect of Physical Height on Workplace Success and Income: Preliminary Test of a
Theoretical Model. Journal of Applied Psychology 89(3):428–441
In a sample of over 4000 people this meta-analysis observed positive correlation
(r = 0.31) between height and earnings in data from the US National Longitudinal
Survey. The calculated p-value had p < 0.01.

What does p < 0.01 tell us about the data?

Earning more money increases your height.
There is a 99% chance that height and earnings are correlated.
If height and earnings are in fact unrelated, then the chance of sample
data appearing this closely correlated is less than 1%.
For any two people chosen at random, there is less than 1% chance
that the shorter person is paid more.
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The χ2 Test

We have just seen the correlation coefficient used as a test to identify
whether or not an apparent correlation between variables is statistically
significant.

However, the correlation coefficient only applies to quantitative data.

The χ2 test is statistical tool for assessing correlation in qualitative data.

This rest of this lecture will go through the calculations for a χ2 test, using
three example sets of data:

Student results for Inf1-DA in 2015/16;

Bigram frequency in the British National Corpus;

Student admissions to the University of California, Berkeley in 1973.
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Example: Student Exam Results

Question
Is there any correlation, in a class of students enrolled on a course,
between submitting the coursework assignment and obtaining grade A
(70% or higher) on the exam for that course?

The data we will use is the actual performance of those students who took
the Informatics 1: Data & Analysis exam last year.
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Example: Student Exam Results

Question
Is there any correlation, in a class of students enrolled on a course,
between submitting the coursework assignment and obtaining grade A
(70% or higher) on the exam for that course?

Our analysis follows the usual pattern of a statistical test:

The null hypothesis here is that there is no relationship between
coursework submission and exam grade A.

The χ2 test indicates the probability p that data of the kind we
actually see would turn up if the null hypothesis were true.

If p is low, then we reject the null hypothesis and the evidence
suggests a correlation between coursework submission and exam
grade A.
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Contingency table

Frequencies
Oij cw ¬cw
A O11 O12

¬A O21 O22

O11 is the number of students who submitted coursework and obtained an
A grade.

O12 is the number of students who did not submit coursework and
obtained an A grade.

O21 is the number of students who submitted coursework and did not
obtain an A grade.

O22 is the number of students who did not submit coursework and did not
obtain an A grade.
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Contingency table

Frequencies
Oij cw ¬cw
A 102 29

¬A 42 34

102 is the number of students who submitted coursework and obtained an
A grade.

29 is the number of students who did not submit coursework and
obtained an A grade.

42 is the number of students who submitted coursework and did not
obtain an A grade.

34 is the number of students who did not submit coursework and did not
obtain an A grade.
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χ2 Test Intuition

We have a table of observed frequencies Oij, and from these we calculate
expected frequencies Eij — the numbers we would expect to see if the null
hypothesis were true.

The χ2 value is calculated by comparing the actual frequencies to the
expected frequencies.

The larger the discrepancy between these two, the less probable it is that
observations like this would occur were the null hypothesis true.

More precisely, if the null hypothesis were true, then the χ2 value would
vary according to the distribution shown on the next slide.

If the χ2 is significantly large then we reject the null hypothesis.
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Graph of χ2 Distribution
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Marginals

Observed
Oij cw ¬cw
A O11 O12 R1

¬A O21 O22 R2
C1 C2 N

R1 = O11 +O12 is the number of students who obtained an A grade.

R2 = O21 +O22 is the number of students who did not obtain an A grade.

C1 = O11 +O21 is the number of students who submitted coursework.

C2 = O21 +O22 is the number of students who did not submit coursework.

N is the total number of students in the data set.
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Expected Frequencies

Expected
Eij cw ¬cw
A E11 E12 R1

¬A E21 E22 R2
C1 C2 N

If there were no relationship between coursework submission and exam
grade A, then we would expect to see the number of students with both
being

E11 =
R1
N

× C1
N

×N =
R1C1
N

and similarly for other values

E12 =
R1C2
N

E21 =
R2C1
N

E22 =
R2C2
N

.
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Computing χ2

Observed
Oij cw ¬cw
A O11 O12 R1

¬A O21 O22 R2
C1 C2 N

Expected
Eij cw ¬cw
A E11 E12 R1

¬A E21 E22 R2
C1 C2 N

The χ2 statistic for a contingency table in general is defined as

χ2 =
∑
i,j

(Oij − Eij)
2

Eij

which for a 2× 2 table expands to

=
(O11 − E11)2

E11
+

(O12 − E12)2

E12
+

(O21 − E21)2

E21
+

(O22 − E22)2

E22

For a 2× 2 table the four numerators are always equal. Why?
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Worked Example

Observed
Oij cw ¬cw
A 102 29 131

¬A 42 34 76
144 63 207

Expected
Eij cw ¬cw
A 91.13 39.87 131

¬A 52.87 23.13 76
144 63 207

The χ2 statistic for this contingency table is

χ2 =
(O11 − E11)2

E11
+

(O12 − E12)2

E12
+

(O21 − E21)2

E21
+

(O22 − E22)2

E22

=
(102− 91.13)2

91.13 +
(29− 39.87)2

39.87 +
(42− 52.87)2

52.87 +
(34− 23.13)2

23.13

=
10.872

91.13 +
(−10.87)2
39.87 +

(−10.87)2
52.87 +

10.872

23.13
= 11.60
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Graph of χ2 Distribution
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Critical Values for χ2

These are the critical values for different significance levels of the χ2

distribution for a 2× 2 table.

p 0.10 0.05 0.01 0.001
χ2 2.71 3.84 6.64 10.83

This means that if the null hypothesis were true then:

The probability of a χ2 value exceeding 2.71 would be p = 0.1.

The probability of a χ2 value exceeding 3.84 would be p = 0.05.

The probability of a χ2 value exceeding 6.64 would be p = 0.01.

The probability of a χ2 value exceeding 10.83 would be p = 0.001.
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Critical Values for χ2

These are the critical values for different significance levels of the χ2

distribution for a 2× 2 table.

p 0.10 0.05 0.01 0.001
χ2 2.71 3.84 6.64 10.83

In this case χ2 = 11.60, meaning p < 0.001. This is evidence to suggest
that there is a correlation, and we reject the null hypothesis at the 99.9%
level. The result is statistically significant.

It appears that in this data there is a correlation between submitting the
coursework and achieving an A grade in the exam. Of course, this does not
tell us whether there is any causal link, either between these outcomes or
from some third factor. What it does do is give a hypothesis that we could
explore in further data.
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Additional Features of χ2 Tests

Degrees of Freedom

In tables of critical values for the χ2 distribution, entries are usually
classified by degrees of freedom. An m by n contingency table has
(m− 1)× (n− 1) degrees of freedom — given fixed marginals, once there
are (m− 1)× (n− 1) entries in the table the remaining (m+n− 1) entries
are forced.

A 2 by 2 table has only one degree of freedom, and the table on the
previous slide gave the critical values for a χ2 distribution with one degree
of freedom.
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Additional Features of χ2 Tests

Low Frequencies

The statistics underlying the χ2 test become inaccurate when expected
frequencies are small.

Reasons include: inevitable differences up to 0.5 as observed values can
only be whole numbers; and that χ2 is only an approximation to the exact
(but computationally more expensive) distribution.

The test is usually considered unreliable for a 2× 2 table if any cell has
expected value below 5; or for a larger table, if more than 20% of cells
have expected value below 5.

That’s really just a rule of thumb: opinions vary
on what are appropriate limits here

We cannot deduce anything at all from an unreliable test: whatever the χ2

value, it isn’t evidence for anything.
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Example: Collocations

Recall that a collocation is a sequence of words that occurs atypically
often in a language. For example: “run amok”, “strong tea”, “make do”.

So far, we haven’t looked at what exactly “atypically often” might mean.

The χ2 test is one way to approach this, and we shall use it to assess
whether the bigram “make do” appears atypically often in the 108 words
of the British National Corpus (BNC).

The null hypothesis will be that the two words “make” and “do” appear
together just as often as would be expected by chance, given their
individual frequencies in the corpus.

If we reject this hypothesis, then we might take this as evidence of “make
do” being a collocation.
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Contingency table

Bigram Frequencies
Oij w1 ¬w1
w2 O11 = f(w1w2) O12 = f(¬w1w2)
¬w2 O21 = f(w1¬w2) O22 = f(¬w1¬w2)

f(w1w2) is the frequency of w1w2 in a corpus, the number of times
that bigram appears.

f(w1¬w2) is the number of bigram occurrences where the first word
is w1 and the second word is not w2.

f(¬w1w2) is the number of bigram occurrences where the first word is
not w1 and the second word is w2.

f(¬w1¬w2) is the number of bigram occurrences where the first word is
not w1 and the second word is not w2.
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Worked Example

Observed
Oij make ¬make
do 230 270546 270776

¬do 77162 111833081 111910243
77392 112103627 112181019

Expected
Eij make ¬make
do 186 270589 270776

¬do 77205 111833038 111910243
77392 112103627 112181019

The χ2 statistic for this table is 10.02, which is significant at the 99% level.
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What next

Do This
Find statistically significant results. Analyse 60 years of data on the US
economy to see the effect of having Republicans or Democrats in power.

https://projects.fivethirtyeight.com/p-hacking/

Read This

Science Isn’t Broken
Christie Aschwanden
FiveThirtyEight: Science, August 2015
https://fivethirtyeight.com/features/science-isnt-broken/
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Example: Berkeley Admissions +

Following the fall admissions round of students to graduate school at the
University of California, Berkeley in 1973, the University was sued for bias
against women.

Admission statistics showed that men applying were significantly more
likely to be admitted than women applying.

The following table is based on some of those admission statistics.

Berkeley Admissions
Accepted Rejected Applied Rate

Men 1122 1005 2127 53%
Women 511 590 1101 46%
Total 1633 1595 3228 51%

The χ2 statistic for this table is 11.66, significant at the 99.9% level.
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Not So Simple +

One obvious action is to break down these figures to identify which
departments are the source of this bias.

Faculty Group “S”
Accepted Rejected Applied Rate

Men 864 521 1385 62%
Women 106 27 133 80%
Total 970 548 1518 64%

χ2 = 15.77

Faculty Group “A”
Accepted Rejected Applied Rate

Men 258 484 742 35%
Women 405 563 968 42%
Total 663 1047 1710 39%

χ2 = 8.84
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Not So Simple +

This curious behaviour is known as Simpson’s Paradox. It turns up
occasionally in a range of real-life cases; and it is not easily resolved.
Judea Pearl argues that the resolution lies in identifying the causal
networks in any given situation.

In the Berkeley case, the disparity arose because:

Subject choice was correlated with gender;

Competition for places varied substantially between departments.

More detailed investigation suggested no significant bias in admissions
committees; but that the bias in aggregated data was linked to real bias in
wider cultural expectations and social pressures.

P. J. Bickel, E. A. Hammel, and J. W. O’Connell.
Sex bias in graduate admissions: Data from Berkeley.
Science, 187(4175):398–404, 1975.
DOI: 10.1126/science.187.4175.398 http://is.gd/berkbias
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