
QUANTICOL
A Quantitative Approach to Management and Design of

Collective and Adaptive Behaviours

quanƟcol. . ...............................
http://www.quanticol.eu

TR-QC-2-2014

Differential Ordinary Lumpability in
Markovian Process Algebra

Revision: 0.1; Feb 4, 2014

Author(s): Giulio Iacobelli, Mirco Tribastone, Andrea Vandin (SOTON)

Publication date: Feb 4, 2014

Funding Scheme: Small or medium scale focused research project (STREP)

Topic: ICT-2011 9.10: FET-Proactive ‘Fundamentals of Collective Adaptive Systems’ (FOCAS)

Project number: 600708

Coordinator: Jane Hillston (UEDIN)

e-mail: Jane.Hillston@ed.ac.uk

Fax: +44 131 651 1426

Part. no. Participant organisation name Acronym Country

1 (Coord.) University of Edinburgh UEDIN UK

2 Consiglio Nazionale delle Ricerche – Istituto di Scienza e
Tecnologie della Informazione “A. Faedo”

CNR Italy

3 Ludwig-Maximilians-Universität München LMU Germany

4 Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland

5 IMT Lucca IMT Italy

6 University of Southampton SOTON UK



Differential Ordinary Lumpability (Revision: 0.1; Feb 4, 2014) Feb 4, 2014

Contents

1 Introduction 1

2 Preliminaries 2

3 Differential Ordinary Lumpability 5

4 Characterisation of Differential Ordinary Lumpability 8

5 Congruent Differential Ordinary Lumpability 10

6 Related Work 11

7 Conclusion 12

A Preliminary Results 14

B Results relaring DOL to ODE lumpability (Proof of Theorem 1) 25

C Results for DOL Characterisation (Proof of Theorem 2) 35

D Results regarding CoDOL (Proofs of Theorems 3,4) 40

Abstract

We present a theory of aggregation for ordinary differential equations (ODEs) induced by fluid
semantics for Markovian process algebra. We introduce differential ordinary lumpability (DOL)
as an equivalence relation which induces a partition over the ODEs of a model, whereby the sum
of the ODEs belonging to the same partition block is equivalent to a single ODE. We study two
variants of DOL, offering a tradeoff between the degree of coarsening that can be achieved and
the preservation of compositional properties of the aggregation. Both variants are characterised in
terms of two simple symmetries that can be verified using syntactic checks on the process term.

1 Introduction

In Markovian process algebra, fluid semantics interpret a term with a system of coupled ordinary
differential equations (ODEs). This has proven useful in approximating the stochastic behaviour of
models consisting of groups of many independent replicas of sequential components characterised by
small local state spaces. The size of the underlying continuous-time Markov chain (CTMC) is well
known to be at worst exponential in the population of such components. Instead, the fluid semantics
defines a single ODE for each local state, independently from the multiplicities. The solution to
each ODE estimates the time-course evolution of average population of components in that state
(e.g., [10, 4, 12]).

In this paper we develop a theory of aggregation for ODE systems induced by a process algebra
with fluid semantics. To illustrate and put in context our contribution, let us draw a parallel with
established results of aggregation of CTMCs obtained from a Markovian semantics (e.g., [3, 9, 8]).
This has involved finding suitable process algebraic behavioural relations that induce a partition of
the CTMC state space which satisfies the property of ordinary lumpability [11, 2]: a smaller CTMC
can be constructed where each state (a macro-state) is the representative of the states in a partition
block; the probability of being in a macro-state is equal to the sum of the probabilities of being in the
block’s states.

Here we proceed in an analogous fashion. We introduce differential ordinary lumpability (DOL),
an equivalence relation over the local states of a process algebra model that captures symmetries in

QUANTICOL 1 Feb 4, 2014



Differential Ordinary Lumpability (Revision: 0.1; Feb 4, 2014) Feb 4, 2014

the fluid semantics according to the well-known notion of exact lumpability for ODEs [16]. Specifically,
given an ODE system and a partition of its ODEs, the system can be rewritten in terms of the variables
aggregated according to the partition.

We present two versions of DOL. The first variant is more effective in terms of model reduction
because discriminates less behaviour. For instance, it may be able to relate local states that are equal
up to a renaming or a collapsing of some action types. While this can yield coarser aggregations, it
clearly does not allow for compositional reasoning. For this reason, we also develop a stronger variant
which is shown to be a congruence with respect to parallel composition. In both cases, establishing
DOL involves semantic checks, i.e., tests of equalities of symbolic expressions depending on ODE
variables. Here we characterise these two variants of DOL in terms of properties which only require
syntactic checks on the process term, which has the potential to be more efficient to implement on a
computer.

Synopsis. Section 2 introduces the necessary background material and our fluid calculus. Section 3
discusses DOL, and relates it to the exact lumpability of ODEs. Section 4 provides the characterisa-
tion of DOL, while Section 5 provides the congruent variant of DOL, as well as its characterisation.
Section 6 discusses related work. Finally, Section 7 concludes the paper.1

2 Preliminaries

Our grammar has two levels. The first level specifies a fluid atom, i.e. a sequential process evolving
over a discrete state space. Let A be the set of all actions and K the set of all fluid atoms. Each

P ∈ K is a constant, P
def
=
∑

i∈I(αi, ri).Pi where I is an index set, αi ∈ A, ri > 0 is a rate, and Pi ∈ K.

The standard transition relation can be defined, writing e.g., P
(αi,ri)−−−−→ Pi. We define the derivative

set of P , denoted by ds(P ) as the smallest set of atoms reached by P through such a relation. This
is the fluid atom’s local state space, and we may thus refer to ds(P ) as to the local states of the
fluid atom P . Informally, a fluid atom is meant to represent an individual component in a group of
many identical ones, i.e., a parallel composition P | P | · · · | P in a process algebra with a Markovian
semantics. Furthermore, we define the apparent rate of P for action α as rα(P ) ,

∑
P

(α,ri)−−−→P ′
ri; this

is the total rate at which a local state can perform an action. For P ∈ K and S ⊆ K, we define the
the total conditional transition rate from P to S as q[P, S, α] ,

∑
P ′∈S

∑
P

(α,ri)−−−→P ′
ri.

We now define the second level of the grammar. We call this a Fluid Extended Process Algebra
(FEPA) model because it improves the expressiveness of Fluid Process Algebra of [17]. It parameterises
the parallel operator with a binary synchronisation function, denoted by H(·, ·). We support two such
functions, H = min and H = · (product). With the former we recover PEPA [9] (and [17]), while
the latter can be used for the modelling of chemical reaction networks, and can be seen as the fluid
counterpart of the process algebra in [3]. In this respect, fluid atoms correspond to, e.g., jobs and
servers in a computing system, or molecular species in a chemical reaction network.

Definition 1 (FEPA model). A FEPA model M is given by the grammar

M ::= P | M ‖HL M , with L ⊆ A and P ∈ K.

For any two fluid atoms P1 and P2 in M, we require ds(P1) ∩ ds(P2) = ∅. Requiring pairwise
disjoint derivative sets is without loss of generality, see [17]. Since a fluid atom is a representative of
a group of sequential components of the same type, the specification is completed by fixing the group
size.

1The technical results given in the paper are proved in the enclosed appendix.
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Definition 2 (Population functions). Let M be a FEPA model. We denote by B(M) the union of
all the derivatives of the fluid atoms in a FEPA model. We define ν0 : B(M) → N0, as the initial
population function ofM. Furthermore, a fluid population function (or just population function) for
M is defined as ν : B(M)→ R≥0.

Running example (step 1/10). Let us consider the FEPA model MRE , P1 ‖H{α} Q1, where

P1
def
= (β, r).P2 + (β, r).P3 P2

def
= (γ, s).P1 + (α, l).P3 P3

def
= (ξ, s).P1

Q1
def
= (β, 2r).Q2 Q2

def
= (η, s).Q1 + (α,m).Q2

Thus we have ds(P1) = {P1, P2, P3}, ds(Q1) = {Q1, Q2}, and B(MRE) = {P1, P2, P3, Q1, Q2}. Let
us fix ν0(P1) = NP , ν0(Q1) = NQ, and ν0(P2) = ν0(P3) = ν0(Q2) = 0, for some integers NP and
NQ. Intuitively, this model represents a discrete-state stochastic model with an initial state with NP

copies of P1 in parallel over empty cooperation sets, where each may synchronise (over action α) with
one of the NQ copies of Q1 in parallel. The fluid approximation estimates the expected population of
sequential components at each time point that can be found in each of the local states of B(MRE).

We are now ready to provide the semantics for interaction in FEPA.

Definition 3 (Population-dependent apparent rate). Let M be a FEPA model, ν be a population
function, L ⊆ A a set of actions, and α ∈ A an action. The apparent rate of α in M with respect to
ν is recursively defined as

rα(M1 ‖HL M2, ν) ,

{
H
(
rα(M1, ν), rα(M2, ν)

)
, if α ∈ L,

rα(M1, ν) + rα(M2, ν) if α /∈ L,

rα(P, ν) ,
∑

P ′∈B(P )

νP ′rα(P ′) .

Running example (step 2/10). In MRE we have rβ(P1, ν) = 2r νP1 and rα(P1, ν) = l νP2 . The inter-
pretation is that the population-dependent apparent rate of a fluid atom gives the total rate at which
an action can be performed by all its local states. Let us remark that it is a symbolic expression,
depending on a population function ν. The rate is affected by the presence of a synchronisation, e.g.,
rα(MRE , ν) = min(l νP2 ,m νQ2) or rα(MRE , ν) = l νP2 ·mνQ2 , depending on the chosen synchronisa-
tion function. This is intended as the overall speed at which action α is performed in the model; e.g.,
it is zero if either νP2 or νQ2 is zero, capturing the blocking effect of synchronisation for both choices
of H.

Using the notion of apparent rates, the next definition identifies the class of well-posed models,
taken from [17].

Definition 4 (Well-posedness). A FEPA model M is well-posed if for all occurrences M1 ‖HL M2 in
M, and for all α ∈ L it holds that ∃ν1 : rα(M1, ν1) > 0, and ∃ν2 : rα(M2, ν2) > 0. A model that is
not well posed is said to be ill-posed.

In essence, an ill-posed model defines a composition where an action type α is declared as syn-
chronised, but it cannot be performed by at least one of the two operands, because the apparent rate
is zero. In the remainder we assume to always work with well-posed FEPA models. However this is
without loss of generality because, similarly to [18], any ill-posed FEPA model can be shown to be
syntactically transformed into a well-posed one yielding an equivalent underlying ODE system.

The next definition provides the rate at which the population of a specific local state performs an
action.
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Definition 5 (Population-dependent component rate). Let M be a FEPA model, ν be a population
function, α ∈ A an action, and P ∈ B(M). The component rate of P due to α-type activities within
the model M with respect to ν is recursively defined as

Rα(M1 ‖HL M2, ν, P ) ,
Rα(Mi, ν, P )

rα(M1 ‖HL M2, ν)

rα(Mi, ν)
, if P ∈ B(Mi) and α ∈ L, for i = 1, 2 ,

Rα(Mi, ν, P ) , if P ∈ B(Mi) and α 6∈ L, for i = 1, 2 ,

Rα(P, ν, P ′) ,

{
νP ′rα(P ′) if P ′ ∈ B(P ),

0 otherwise .

The terms of the form
rα(M1 ‖HL M2, ν)

rα(Mi, ν)
are defined as 0 when rα(Mi, ν) = 0.

These are the constituent elements of the ODE system underlying a FEPA model according to
the fluid semantics, defined next. For this definition and throughout the remainder of the paper we
denote the derivative of ν using Newton’s dot notation, namely, ν̇. To enhance readability, time t will
be suppressed in the representation of ODEs, i.e., ν̇ denotes ν̇(t) and ν denotes ν(t).

Definition 6 (Fluid semantics). Let M be a FEPA model. Let E ⊆ RB(M) and f : E → RB(M) be
the vector field whose components are defined as:

fP (ν) ,
∑
α∈A

 ∑
P ′∈B(M)

pα(P ′, P )Rα(M, ν, P ′)−Rα(M, ν, P )

 , (1)

for every P ∈ B(M), with pα(P, P ′) , (1/rα(P ))
∑

P
(α,r)−−−→P ′

r.

The evolution of the population function ν(t) over time is governed by the ODE system

ν̇ = f(ν) with initial condition (i.c.) ν(0) = ν0 . (2)

We shall usually refer to (2) as the ODE system of M and to the vector field f in (1) as the vector
field of M.

Running example (step 3/10). For instance, inMRE we haveRγ(MRE , ν, P2) = s νP2 , andRα(MRE , ν, P2) =
H(lνP2 ,mνQ2). The ODE system of MRE is

ν̇P1 = −2r νP1 + s νP2 + s νP3 ν̇P2 = −s νP2 −H (l νP2 ,m νQ2) + r νP1

ν̇Q1 = −2r νQ1 + s νQ2 ν̇P3 = −s νP3 +H (l νP2 ,m νQ2) + r νP1 (3)

ν̇Q2 = −s νQ2 + 2r νQ1

By Definition 6, ν̇Q2 also has a contribution due to Rα(MRE , ν,Q2) = mνQ2 ; this however cancels
out due to the fact that (α,m) is a self-transition for Q2. In general, a self-transition does not bring
any contribution to the ODE of the related state.
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3 Differential Ordinary Lumpability

We are now ready to define DOL. Before discussing the details of the aggregation technique, we first
provide an intuition using our running example.

Running example (step 4/10). Let us consider the partition PRE of B(MRE) defined as PRE =
{S1, S2}, with S1 = {P1, Q1} and S2 = {P2, P3, Q2}. Summing the ODEs within each partition block
we obtain

˙(νP1 + νQ1) = ν̇P1 + ν̇Q1 = −2r (νP1 + νQ1) + s (νP2 + νP3 + νQ2)

˙(νP2 + νP3 + νQ2) = −s (νP2 + νP3 + νQ2) + 2r (νP1 + νQ1)

In this way we have found an ODE system of two equations that only depends on sums of variables
of the original one. Thus, using the change of variable ν̂S1 = νP1 + νQ1 and ν̂S2 = νP2 + νP3 + νQ2 , a
solution of (3) is also a solution of the aggregated ODEs:

˙̂νS1 = −2rν̂S1 + sν̂S2
˙̂νS2 = 2rν̂S1 − sν̂S2 (4)

with i.c. ν̂S1(0) = ν0(P1) + ν0(Q1), ν̂S2(0) = ν0(P2) + ν0(Q3) + ν0(Q2).

Our approach builds on a general theory of aggregation of dynamical systems [16], which we briefly
overview and recast to our notation. LetM be a FEPA model, let n̂ ≤ |B(M)| be an integer and M be
a n̂×|B(M)| real constant matrix with rank n̂. Let us now consider some function f̂ : E → Rn̂, where
E ⊆ Rn̂. The lumpability condition f̂ ◦M = M ◦ f , where ◦ is the operator function composition, is
necessary and sufficient to hold that v̂(t), the solution to the aggregated ODE system ˙̂v = f̂(v̂) (of
size n̂), satisfies v̂(t) = Mv(t). For this, it is necessary that f̂ = M ◦ f ◦M holds, where M ∈ Rn×n̂
denotes the generalised right inverse of M satisfying MM = In̂, with In̂ ∈ Rn̂×n̂ the identity.

The remainder of this section is devoted to defining the process-algebraic conditions to yield a
partition of B(M) inducing an aggregation matrix M that satisfies the lumpability condition for such
choice of f̂ .

Let us start by observing an analogy with step 3/10 when a partition of the local states spaces
is considered. The α-contributions Rα(MRE , ν, P2) = Rα(MRE , ν, P3) = H (l νP2 ,m νQ2) only affect
the local states P2 and P3, which are in the same partition block. These cancel out when writing the
aggregated ODE system (4). Thus, actions with transitions that are only internal to a partition block
can intuitively be seen as self-transitions at the block-level. These actions are characterised by the
following definition.

Definition 7 (P-External actions). Let M be a FEPA model, let P be a partition of B(M). We
define the set of P-external actions as

APext = {α ∈ A | ∃S, S′ ∈ P : S 6= S′ and ∃P ∈ S : q[P, S′, α] > 0} .

Furthermore we define the set of P-internal actions as APint = A \ APext.

Now, we consider the simple observation that, similarly to the Markovian semantics, ODEs are to
a large extent agnostic to action types. Here we just need to distinguish between action types that
are used to denote independent actions and those that are used for synchronisation.

Definition 8 (Dependent action set). Let M be a FEPA model, let P ∈ B(M). The dependent
action set of P in M is recursively defined as

D(P,M) ,

{
L ∪ D(P,Mi) , if M =M1 ‖HL M2, and P ∈ B(Mi) ,

∅ , if M = P or P 6∈ B(M) .

We say that α is independent for a local state P in M, if α 6∈ D(P,M). Moreover, we define the
current dependent action set of P in M as CD(P,M) , D(P,M) ∩ A(P ). Finally, for Â ⊆ A, the

Â-restricted current dependent action set is defined as CDÂ(P,M) , CD(P,M) ∩ Â.

QUANTICOL 5 Feb 4, 2014



Differential Ordinary Lumpability (Revision: 0.1; Feb 4, 2014) Feb 4, 2014

Abusing notation, for any K ⊆ B(M), we denote D(K,M) ,
⋃
P∈K D(P,M), CD(K,M) ,⋃

P∈K CD(P,M), and CDÂ(K,M) ,
⋃
P∈K CD

Â(P,M).
Intuitively, D(P,M) consists of the actions which P may use for synchronisation; CD(P,M)

considers those actions through which P actually interacts. We wish to exploit this definition to
aggregate local states that exhibit distinct independent actions, which however behave similarly within

the model under consideration. For instance, let us consider R1
def
= (α, r).R2, R2

def
= (β, s).R1, G1

def
=

(γ, r).G2, G2
def
= (δ, s).G1, and the FEPA process R1 ‖H∅ G1. It is easy to see that R1 and G1, and R2

and G2 have the same ODE even if they perform different actions, because all the action types are
independent for any local state.

Besides playing a crucial role in the definition of ordinary fluid lumpability, dependent action sets
identify the class of A-coherent FEPA models.

Definition 9 (A-coherence). A FEPA model M is A-coherent iff:

∀α ∈ D(B(M),M),∀P ∈ B(M) : α 6∈ D(P,M) ⇒ rα(P ) = 0 .

Essentially, this allows us to rule out models having (at least) an action with the double role of
appearing in the dependent action set of some local state and of being an independent action for
some other local state. In the rest of this paper, we shall focus on the class of A-coherent FEPA
models. Nevertheless, this is not restrictive, as it is possible to transform any non-A-coherent model
into an A-coherent one by resorting to a simple syntactic transformation reminiscent of the well-known
α-renaming, as exemplified in the following.

Running example (step 5/10). Consider the FEPA model MU
def
= MRE ‖H∅ U1, where U1 is defined

as U1
def
= (α, l).U2, U2

def
= (γ, s).U1. Note that MU is not A-coherent, as α is a dependent action in

MRE , that is α ∈ D(B(MRE),MU ); however α is independent for U1, since α 6∈ D(U1,MU ), and
rα(U1) = l > 0. However, it is easy to see that we can rename the independent α action of U1 with a
new label (e.g., α′), resulting in a model with the same ODEs.

Definition 10 (Model influence). Let M be a FEPA model, ν be a population function on B(M),
α ∈ A and P ∈ B(M). The model influence upon P due to α-type activities within the model M with
respect to ν is recursively defined as

Fα(M1 ‖HL M2, ν, P ) ,
Fα(Mi, ν, P )

rα(M1‖HLM2,ν)

rα(Mi,ν) , if P ∈ B(Mi) and α ∈ L, for i = 1, 2 ,

Fα(Mi, ν, P ) , if P ∈ B(Mi) and α 6∈ L, for i = 1, 2 ,

Fα(P, ν, P ′) ,

{
1 if P ′ ∈ B(P ) ,

0 otherwise .

The terms of the form
rα(M1‖HLM2,ν)

rα(Mi,ν) are defined as 0 when rα(Mi, ν) = 0.

This notion captures the effect that the environment exerts on the rate at which an action is
performed by a process. For instance, it easily follows that, for any FEPA model M, component
P ∈ B(M), and action α ∈ A, it holds that Rα(M, ν, P ) = νP ·rα(P ) ·Fα(M, ν, P ) for all ν ∈ RB(M).
In other words, the actual α-component rate for P is given by the rate at which P would evolve if
it was independent, i.e., νP · rα(P ), weighted by the influence of the context on it, i.e., Fα(M, ν, P ).
Indeed, the following characterises this observation: An action is independent for a local state P iff
the model does not influence its behaviour.
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Proposition 1. Let M be a FEPA model, P ∈ B(M) and α ∈ A. Then, α 6∈ D(P,M) ⇔
Fα(M, ν, P ) = 1, for any ν.

We are now ready to define differential ordinary lumpability (DOL).

Definition 11 (Differential ordinary lumpability). Let M be a well-posed FEPA model. Let R ⊆
B(M) × B(M) be an equivalence relation over the local states of B(M), and P be the partition of
B(M) induced by R. We say that R is a differential ordinary lumpability iff, for all S ∈ P, whenever
P,Q ∈ S, the three following conditions hold:

(i) CDext(S,M) , CDAP
ext(P,M) = CDAP

ext(Q,M),

(ii) for all S̃ ∈ P, α ∈ CDext(S,M), and ν,

q[P, S̃, α]Fα(M, ν, P ) = q[Q, S̃, α]Fα(M, ν,Q) ,

(iii) for all S̃ 6= S ∈ P, ∑
α∈A\CDext(S,M)

q[P, S̃, α] =
∑

α∈A\CDext(S,M)

q[Q, S̃, α] .

Furthermore, we refer to P as a differential ordinary lumpable partition (DOLP).

Condition (i) requires that local states within the same block interact with the rest of the model
through the same P-external dependent actions. It does not pose constraints on P-internal actions,
to capture the observation that their contributions cancel out when writing the aggregated ODE
system. Also condition (ii) focuses on external current dependent actions. For each of them, it
requires the equality between the rates with which the local states perform transitions towards any
partition block. The rates are given as products of the total conditional transition rates and the model
influences. Condition (iii) instead, considers independent actions; here the model influence does not
show because it is always equal to one, by Proposition 1.

Using our running example, let us illustrate two properties of this definition.

Running example (step 6/10). In contrast to (ii), condition (iii) does not require the per-action
equality of the rates, but only of the sum across all independent actions. For instance, the partition
PRE defined in step 4/10 satisfies condition (iii) even if each of the local states of its block S2, that is
P2, P3 and Q2, perform one and only distinct independent action, i.e. γ, ξ and η, respectively. Indeed,
noticing that A \ CDext(S2,M) = {γ, ξ, η}, it holds that q[P2, S1, γ] = q[P3, S1, ξ] = q[Q2, S1, η] = s.
That is, we are able to aggregate the equations for P2, P3 and Q2 even if they perform independent
actions with different action types, because they have the same overall rate towards block S1.

Running example (step 7/10). Condition (iii) does not consider internal transitions. This is because
internal transitions labelled with independent actions necessarily affect only local states within the
same partition block, thus their contribution cancels out in the aggregated ODE system. This does
not hold, in general, for internal transitions involving dependent actions. To see this, let us assume to
weaken (ii) by requiring it only for all partitions S̃ except S, in order to disregard internal transitions.
Let us consider the model ME′ = P1 ‖H{α} U1, where P1 and U1 are as in our running example, i.e.

P1
def
= (β, r).P2 + (β, r).P3, P2

def
= (γ, s).P1 + (α, l).P3 and P3

def
= (ξ, s).P1, and U1

def
= (α, l).U2, and

U2
def
= (γ, s).U1, and H = min. Then, the partition P ′ = {{P1}, {P2, P3}, {U1}, {U2}} can be shown

to satisfy this weakened version of DOL, but it does not lead to an aggregated ODE system. This is
because the fluid semantics yields the ODEs

ν̇U1 = −min (l νP2 , l νU1) + s νU2 ν̇U2 = −s νU2 + min (l νP2 , l νU1)
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but it is not possible to express them in terms of the aggregation νP2 + νP3 .

Finally, let us observe that DOL captures other somewhat degenerate forms of ODE aggregation.
In particular, we recover a principle of conservation of mass: Summing the ODEs of the local states
of a fluid atom P always yields the aggregated ODE

∑
P ′∈B(P ) ν̇P ′ = 0. This is due to the disjointness

assumption of the fluid atoms, which implies that there exist no transitions among local states of
different fluid atoms, thus the sum of the population of the local states of a fluid atom is constant.

Running example (step 8/10). Consider the model ME′ in step 7/10, and the partition Pdeg =
{B(P1),B(U1)} of B(ME′). Summing the ODEs of the local states in B(U1), we obtain

ν̇U1 + ν̇U2 = −min (l νP2 , l νU1) + s νU2 − s νU2 + min (l νP2 , l νU1) = 0 ,

similarly for the ODEs of the local states in B(P1).

Another degenerate ODE aggregation consists in choosing, for any modelM, the trivial partition
P = {B(M)}. This is always a DOLP because APext = ∅, which makes conditions (i)–(iii) trivially
satisfied. The aggregated ODE system is

∑
P∈B(M) ν̇P = 0, which simply says that the total population

within the model is constant.
Finally, the following theorem gives our desired result whereby DOL implies ODE aggregation.

Theorem 1. Let M ba a well-posed and A-coherent FEPA model, P be a DOLP of B(M). Let MP
be the aggregation matrix induced by P on M, that is the |P| × |B(M)| matrix with entries 0 or 1
defined as

(MP)i,j ,

{
1 if Pj ∈ Si ,
0 otherwise ,

where Si, with i ∈ {1, . . . , |P|}, is a block of the partition P and Pj, with j ∈ {1, . . . , |B(M)|}, is a

local state of the model M. Let f̂ ,MP ◦ f ◦MP . Then ν̂(t), solution of the ODE system

˙̂ν = f̂(ν̂), with initial condition ν̂(0) = MPν0 ,

satisfies ν̂(t) = MPν(t), where ν(t) is solution of the ODE system of M.

4 Characterisation of Differential Ordinary Lumpability

We study a characterisation of DOL in terms of two kinds of symmetries among the local states of a
FEPA model. One symmetry is local, and regards transition rates of the local states; the other, instead,
is global, and captures structural properties concerning the possible interactions between a local state
and the environment. In addition of being of interest per se, this characterisation also provides an
alternative route to verifying DOL, which can be more convenient in an implementation. Indeed,
Definition 11 requires ODE semantic checks, in the sense that it involves, for any possible population
function, the computation of all model influences, which are the components of the vector field of
the underlying ODEs. This requires the symbolic evaluation of such influences in condition (ii). By
contrast, our characterisation only requires syntactic checks that do not involve population functions,
and only consider the parsing of syntax tree of a model and the computation of conditional transition
rates.

We start with capturing local symmetry with the following.

Definition 12 (CD-strong equivalence). LetM be a well-posed FEPA model. Let R ⊆ B(M)×B(M)
be an equivalence relation over the local states of B(M), and P be the partition of B(M) induced by
R. We say that R is a CD–strong equivalence iff for all S ∈ P, whenever P,Q ∈ S, the following
conditions hold:
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(i) CDext(S,M) , CDAP
ext(P,M) = CDAP

ext(Q,M),

(ii) for all S̃ ∈ P, and for all α ∈ CDext(S,M)

q[P, S̃, α] = q[Q, S̃, α] ,

(iii) for all S̃ 6= S ∈ P, ∑
α∈A\CDext(S,M)

q[P, S̃, α] =
∑

α∈A\CDext(S,M)

q[Q, S̃, α] .

Furthermore we say that P and Q are CD-strong equivalent if there exists a CD-strong equivalence
relating them.

We call it CD-strong equivalence because it reduces to a definition in the style of Larsen and
Skou [13] that resembles PEPA’s strong equivalence [9]. Interestingly, strong equivalence has been
shown to be sufficient to yield ordinary lumpability at the level of the underlying CTMC [9]. Here,
instead, CD-strong equivalence has to be paired with another symmetry in order to be a sufficient
condition for the lumpability at the level of the underlying ODEs. Let us notice, in fact, that it
is similar to DOL, except that it disregards the model influence. This is encoded in the notion of
CD-context, thus formalising the global symmetry existing among the local states of a block of a
DOLP.

Definition 13 (CD-context). Let M be a well-posed FEPA model, and Â be a set of actions. Let

P,Q ∈ B(M). We say that P , Q are in CD–context with respect to Â iff CDÂ(P,M) = CDÂ(Q,M)
and one of the two following conditions hold:

(i) it does not exist any occurrence M =M1 ‖HL M2 within M with P ∈ B(M1), and Q ∈ B(M2)
(or vice versa), or

(ii) if such occurrence exists, then CDÂ(P,M) = CDÂ(Q,M) = ∅.

With the notion of CD-context, CD-strong equivalence characterises DOLP.

Theorem 2. Let M be a well-posed FEPA model and P a partition of B(M). P is differential
ordinary lumpable if and only if there exists a CD–strong equivalence inducing the partition P, and
the local states of each block of P are in CD-context with respect to APext.

We remark that neither CD-strong equivalence nor CD–context alone assure the lumpability of the
underlying ODE system. Indeed, CD-context overlooks transition rates, despite they are crucial for
lumpability. To see that CD-strong equivalence alone does not guarantee the lumpability of the ODEs
is less obvious, and thus we provide the following example.

Running example (step 9/10). Let MC , U1 ‖min
{α} U

′
1, with U1 defined as in step 5/10, and U ′1

isomorphic to U1, i.e., U1
def
= (α, l).U2, U2

def
= (γ, s).U1 and U ′1

def
= (α, l).U ′2, U ′2

def
= (γ, s).U ′1. Consider

the equivalence relation R inducing the partition P = {{U1, U
′
1}, {U2, U

′
2}}. It can be shown that

R is a CD-strong equivalence. However, U1 and U ′1 are not in CD–context with respect to the set

APext = {α, γ}, in fact CDAP
ext(U1,MC) = CDAP

ext(U ′1,MC) = {α}. Given that the ODEs of U1 and
U ′1 are ν̇U1 = −min(lνU1 , lνU ′

1
) + sνU2 and ν̇U ′

1
= −min(lνU1 , lνU ′

1
) + sνU ′

2
, the ODEs of MC are not

lumpable according to P, as it is not possible to express ν̇U1 + ν̇U ′
1

in terms of the aggregated variable
νU1 + νU ′

1
only, due to the presence of the term min(lνU1 , lνU ′

1
).

QUANTICOL 9 Feb 4, 2014



Differential Ordinary Lumpability (Revision: 0.1; Feb 4, 2014) Feb 4, 2014

5 Congruent Differential Ordinary Lumpability

DOL exploits information regarding the whole structure of a FEPA model (and of a partition of
its local states) to capture symmetries amongst its local states. Its ability to treat certain actions
uniformly, e.g., as in condition (iii), comes at the price of not allowing compositional reasoning. Let
us provide an example showing that DOL is not a congruence with respect to parallel composition.

Running example (step 10/10). Consider the FEPA model MRE , its partition PRE of step 4/10,

and the fluid atom U1 defined in step 5/10 as U1
def
= (α, l).U2, U2

def
= (γ, s).U1, and its partition

PU = {{U1}, {U2}}, where α is a PU -external transition. It can be shown that PRE and PU are both
DOLPs. As regards PRE , we recall that P2 and P3 are in the same block, and although α belongs to
the CD of P2 but not to that of P3, PRE is a DOLP because α is PRE-internal. If we define the model
MURE = U1 ‖H{α}MRE , and its partition PURE = PU ∪ PRE , we have that α is PURE-external, and
thus PURE is not a DOLP of MURE .

Herein, we introduce a more discriminating variant of DOL, where we neither distinguish between
independent and current dependent actions, nor between internal and external actions. Such variant
turns out to be a congruence with respect to the interaction operator. For this reason we name it
congruent differential ordinary lumpability (CoDOL). Furthermore, in analogy to what done for DOL,
we also provide a characterisation of CoDOL in terms of two symmetries (a local and a global one)
among the local states of a FEPA model.

Definition 14 (Congruent differential ordinary lumpability). Let M be a well-posed FEPA model.
Let R ⊆ B(M)×B(M) be an equivalence relation over the local states of B(M), and P be the partition
of B(M) induced by R. We say that R is a congruent differential ordinary lumpability iff, for all
S ∈ P, whenever P,Q ∈ S, the two following conditions hold:

(i) A(S) , A(P ) = A(Q),

(ii) for all S̃ ∈ P, α ∈ A(S), ν,

q[P, S̃, α]Fα(M, ν, P ) = q[Q, S̃, α]Fα(M, ν,Q) .

We refer to P as a congruent differential ordinary lumpable partition (CoDOLP).

Given that CoDOL treats all actions uniformly, the second condition essentially unifies (ii) and
(iii) in Definition 11. CoDOL is a stronger variant of DOL.

Proposition 2. LetM be a well-posed FEPA model, and P be a partition of B(M). If P is a congruent
differential ordinary lumpable partition, then it is also a differential ordinary lumpable partition.

The reverse implication does not hold. Consider, for instance, the DOLP PRE of our running
example. PRE is not a CoDOLP, as it relates local states performing different actions, e.g., P2 and
P3, where A(P2) = {α, γ} and A(P3) = {ξ}.

Finally, the next theorem provides the claimed congruence of CoDOL.

Theorem 3 (Congruence). Let M1 and M2 be two FEPA models, and let P1 and P2 be congruent
differential ordinary lumpable partitions of B(M1) and B(M2), respectively. Then, the partition P =
P1 ∪ P2 is a congruent differential ordinary lumpable partition of B(M1 ‖HL M2), for any L ⊆ A.

Let us now turn to the characterisation of CoDOL. In this case, the local symmetry is actually
captured by the notion of strong equivalence in [9], straightforwardly lifted to FEPA.

Definition 15 (Strong equivalence). Let M be a well-posed FEPA model. Let R ⊆ B(M) × B(M)
be an equivalence relation over B(M), and P be the partition of B(M) induced by R. We say that R
is a strong equivalence iff for all S ∈ P, whenever P,Q ∈ S, the two following conditions hold:
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(i) A(S) , A(P ) = A(Q),

(ii) for all S̃ ∈ P, α ∈ A(S), q[P, S̃, α] = q[Q, S̃, α] .

Furthermore we say that P and Q are strong equivalent if there exists a strong equivalence relating
them.

Unlike CoDOL, strong equivalence disregards the model influence, which is instead captured by
the following notion of congruent CD-context.

Definition 16 (Congruent CD-context). Let M be a well-posed FEPA model. Let P,Q ∈ B(M). We
say that P , Q are in congruent CD–context iff A(P ) = A(Q) and one of the two following conditions
hold:

(i) it does not exist any occurrence M =M1 ‖HL M2 within M with P ∈ B(M1), and Q ∈ B(M2)
(or vice versa), or

(ii) if such occurrence exists, then CD(P,M) = CD(Q,M) = ∅.

Lastly, the next theorem gives the characterisation of CoDOL.

Theorem 4. Let M be a well-posed FEPA model and P a partition of B(M). P is congruent
differential ordinary lumpable iff there exists a strong equivalence inducing P, and the local states of
each block of P are in congruent CD-context.

6 Related Work

This paper is most closely related to [17], where exact fluid lumpability for Markovian process algebra
is introduced. Although our calculus is based on the Fluid Process Algebra of [17] and the motivation—
ODE aggregation—is the same, the theory is much different. In [17] the unit of aggregation is the whole
fluid atom, and has been motivated to capture symmetries arising from replicating many composite
processes [19]. Here, instead, the aggregation is carried out at the finest level of detail of the fluid
semantics, defining an equivalence relation over local states. Thus, unlike [17], DOL allows to collapse
local states belonging to the same or distinct atoms. In addition, in our setting, a weaker notion of
strong equivalence is a necessary condition for two local states to be related. Instead, in [17] a stronger
stochastic characterisation holds whereby two related fluid atoms must be isomorphic. Furthermore,
the underlying mathematics of the ODE aggregation is different. While in [17] two related fluid atoms
are shown to have the same ODE solutions when provided with the same initial conditions, here, as
discussed, the sum of the individual solutions of a block is equal to the solution of the corresponding
aggregated ODE, independently on the initial conditions.

This approach is taken in [6] for model reduction of ODE models of biochemical reaction networks
specified with the κ-calculus [7]. However the target language is different; κ is a rule-based language
with a differential semantics with dynamics based on the law of mass action, at the core of chemical
reactions. Our calculus, which allows to describe chemical reactions as well (resorting to H = ·), is in-
stead process-based, with the rule of interaction that is implicit in the compositional structure. In this
respect, FEPA bears more resemblance to existing process algebra such as BioPEPA [5] or Cardelli’s
stochastic interacting processes [4]. Furthermore, we also support a synchronisation semantics based
on capacity-sharing arguments (resorting to H = min), as in PEPA [9]. This can encode certain
computer and communication networks (e.g., queueing networks) but clearly cannot be expressed as
a chemical reaction.

Outside process algebra, the concurrency theoretical notions of equivalence have been related to
abstractions of dynamical systems for continuous, discrete, and hybrid state spaces (e.g., [14, 15, 1]).
There, behavioural relations are established directly at the level of the underlying mathematics. In
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the case of ODEs, they operate on a labelled transition system with infinite (continuous) state space,
where each state denotes a possible solution of the ODE system at a specified time point. Instead, our
relations are given at the model specification language level, which maintains a discrete state space
given by associating a state with each ODE. Thus, these abstractions should be seen as complementary
to our working definition of ODE aggregation [16], and can be seen to be equivalent when considered
for the nonlinear, continuous, and autonomous ODE systems such as those induced by FEPA.

7 Conclusion

Differential ordinary lumpability is an equivalence relation for process algebra equipped with fluid
semantics which induces an aggregation at the level of the underlying system of ordinary differential
equations. It has been developed in a way that is conceptually similar to process-algebraic behavioural
relations that give rise to a lumped continuous-time Markov chain, if a stochastic semantics is em-
ployed. We presented two variants that trade increased coarsening capability, via less discriminating
power, for congruence, which allows compositional applications of aggregations. As with all analogous
results available in the literature, differential ordinary lumpability gives only sufficient conditions for
aggregation. Although proving necessity eluded us, we were not able to find examples of aggregations
of systems specified in Fluid Extended Process Algebra which are not characterised by differential
ordinary lumpability (in its weaker version). This remains an interesting open problem, which we con-
jecture might also help find a complete characterisation of aggregation in the Markovian semantics.

Acknowledgement This work was partially supported by the DFG project FEMPA, TR 1120/1-1,
and by the EU project QUANTICOL, 600708.
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A Preliminary Results

In this appendix we collect a number of preliminary results which are instrumental to prove the main
results presented in the paper.

We start with Proposition 1, given in Section 3.

Proposition 1. Let M be a FEPA model, P ∈ B(M) and α ∈ A. Then, α 6∈ D(P,M) ⇔
Fα(M, ν, P ) = 1, for any ν.

Proof. The direction =⇒ follows directly from Definition 10 and Definition 8.
To prove the implication Fα(M, ν, P ) = 1 ,∀ν ⇒ α /∈ D(P,M) we proceed, instead, by con-

tradiction. Let us assume towards a contradiction that there exists an α ∈ D(P,M) such that
Fα(M, ν, P ) = 1 for all ν. The assumption α ∈ D(P,M) implies that there exists at least an occur-
rence M1 ‖HL M2 within M, with α ∈ L, and P is either in B(M1) or B(M2). We assume, without
loss of generality, that P ∈ B(M1). Therefore, from Definition 10, we can infer that Fα(M, ν, P ) will

be proportional to
rα(M1‖HLM2,ν)

rα(M1,ν) . Choosing ν such that rα(M2, ν) = 0 (it always exists!) assures that

rα(M1 ‖HL M2, ν) = 0; hence, we have found a population function ν such that Fα(M, ν, P ) 6= 1,
which leads us to contradiction and concludes the proof.

The following proposition states that if a model is well-posed, then all its interacting sub-models
are well-posed.

Proposition 3. Let M be a well-posed model, then for every occurrence of M1 ‖HL M2 in M, we
have that M1 and M2 are well-posed.

Proof. By case distinction on the grammar.

• M = P : This case is trivial, as a fluid atom does not have any occurrence of the interaction
operator, and thus it is well-posed by definition.

• M = M1 ‖HL M2 : This case is proved by contradiction. Let us assume that M1 (M2) is ill-
posed, i.e. that it has an occurrence M′1 ‖HL′ M′2 not satisfying the condition of well-posedness.
Clearly, given that M′1 ‖HL′ M′2 occurs in a sub-model of M, we also have that it occurs in M,
implying that M is ill-posed, obtaining thus a contradiction.

The well-posedness assumption, introduced in Section 2, has an interesting and quite intuitive
relation with the model influence: it assures the existence of a population function for which the
model cannot impede a local state from performing an action.

Proposition 4. Let M be a well-posed model, α ∈ A and P ′ ∈ B(M). Then there exists a population
function ν such that Fα(M, ν, P ′) > 0.

Proof. The proof proceeds by structural induction on the FEPA model M.

• M = P : This case is trivial, as by Definition 10 we have that Fα(P, ν, P ′) = 1 for any P ′ ∈ B(P )
and any population function.

• M = M1 ‖HL M2 : We can have that either P ′ ∈ B(M1) or P ′ ∈ B(M2). Without loss of
generality we can assume the first case. Moreover, by Proposition 3 we know that bothM1 and
M2 are well-posed, and thus the I.H. can be applied on them. By Definition 10 we have:
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- α 6∈ L : Fα(M1 ‖HL M2, ν, P
′) = Fα(M1, ν, P

′). By applying the I.H. on M1 we know that
there exists a population function ν1 such that Fα(M1, ν1, P

′) > 0. Thus, for any population
function ν ′ = (ν1, ν2), where ν2 is defined for the components in M2, we have that Fα(M1 ‖HL
M2, ν

′, P ′) > 0.

- α ∈ L : Fα(M1 ‖HL M2, ν, P
′) = Fα(M1, ν, P

′)
rα(M1‖HLM2,ν))

rα(M1,ν) . Let us consider ν as (ν1, ν2),
where ν1 and ν2 are defined for M1 and M2, respectively. We have to find a ν1 such that
Fα(M1, ν1, P

′) > 0, and rα(M1, ν1) > 0, and a ν2 such that rα(M2, ν2) > 0. Given that M is
well-posed and α ∈ L, we know that there exist at least two population functions ν ′1, ν ′2 such that
rα(M1, ν

′
1) > 0 and rα(M2, ν

′
2) > 0. We can thus fix ν2 = ν ′2. By applying the I.H. on M1, we

know that there exists a population function ν ′′1 such that Fα(M1, ν
′′
1 , P

′) > 0, and thus we can
apply Lemma 4 toM1. Two cases can arise from Lemma 4. The first case is Fα(M1, ν̂1, P

′) = 1
for any ν̂1, and thus also for the ν ′1 chosen such that rα(M1, ν

′
1) > 0. Thus we have that

Fα(M1 ‖HL M2, (ν
′
1, ν
′
2), P ′) > 0, obtaining the claim. The second case arising from Lemma 4

is that for any K > 0 there exists a νK such that Fα(M1, νK , P
′) = 1, and rα(M1, νK) = K.

Thus, for any K > 0 we have that Fα(M1 ‖HL M2, (νK , ν
′
2), P ′) > 0, obtaining the claim.

The next proposition provides an inclusion property of the restricted current dependent action set.

Proposition 5. Let M be a FEPA model, let M′ be a sub-model of M, and let Â be a set of actions.

Then for any P ∈ B(M′), CDÂ(P,M′) ⊆ CDÂ(P,M).

Proof. We prove the claim by structural induction on M.

• M = P : The claim follows by noticing that the only sub-model of P is P itself.

• M =M1 ‖HL M2 : We assume, without loss of generality, P ∈ B(M1). We notice that in order

to prove the claim it suffices to show that, given a set of actions Â, it holds CDÂ(P,M1) ⊆
CDÂ(P,M). In fact, by I.H. we know that for any sub-model M′ of M1 such that P ∈ B(M′)
we have CDÂ(P,M′) ⊆ CDÂ(P,M1).

The proof of the inclusion CDÂ(P,M1) ⊆ CDÂ(P,M) relies on standard set theory and is given
below.

CDÂ(P,M) = D(P,M) ∩ A(P ) ∩ Â
= (D(P,M1) ∪ L) ∩ A(P ) ∩ Â
= (D(P,M1) ∩ A(P ) ∩ Â) ∪ (L ∩ A(P ) ∩ Â)

= CDÂ(P,M1) ∪ (L ∩ A(P ) ∩ Â) .

Proposition 6. Let M be a FEPA model and Â be a set of actions. Let P,Q ∈ B(M) be such that
they are in CD–context with respect to Â. For any sub-model M′ of M such that P,Q ∈ B(M′) it

holds that CDÂ(P,M′) = CDÂ(Q,M′).

Proof. Let us assume towards a contradiction that there exists a sub-model M′ of M with P,Q ∈
B(M′) such that CDÂ(P,M′) 6= CDÂ(Q,M′). Thus, without loss of generality, we can assume that

there exists an action α such that α ∈ CDÂ(P,M′) and α /∈ CDÂ(Q,M′). Exploiting Proposition 5

and the assumption that P,Q are in CD–context with respect to Â (in particular, CDÂ(P,M) =

CDÂ(Q,M)) we can infer that α ∈ CDÂ(P,M) and α ∈ CDÂ(Q,M). Therefore, by Definition 8 we

QUANTICOL 15 Feb 4, 2014



Differential Ordinary Lumpability (Revision: 0.1; Feb 4, 2014) Feb 4, 2014

have that α ∈ Â∩A(P ) and α ∈ Â∩A(Q). If α /∈ CDÂ(Q,M′) and α ∈ Â∩A(Q) then α /∈ D(Q,M′)
whereas, if α ∈ CDÂ(P,M′), then α ∈ D(P,M′).

The fact that α ∈ D(P,M′) and α /∈ D(Q,M′) assures the existence of an occurrence M̄ =
M′1 ‖HL M′2 within M′ such that P ∈ B(M′1), Q ∈ B(M′2), α /∈ L and such that α ∈ D(P,M′1)

while α /∈ D(Q,M′2). However, knowing that α ∈ Â ∩ A(P ) and α ∈ Â ∩ A(Q) the above would

imply α ∈ CDÂ(P,M̄) whilst α /∈ CDÂ(Q,M̄), contradicting the assumption that P and Q are in

CD–context with respect to Â. In fact, being P and Q in CD–context, we should have CDÂ(P,M̄) =

CDÂ(Q,M̄) = ∅.

Given a modelM, the next proposition states that the notion of CD–context with respect to a set
of actions is preserved while descending the syntax tree of the model.

Proposition 7. Let M be a FEPA model, and Â be a set of actions. Let P,Q ∈ B(M) be such
that they are in CD–context with respect to Â in M. Then for any sub-model M′ of M such that
P,Q ∈ B(M′), P and Q are in CD–context with respect to Â in M′ as well.

Proof. We have to prove that CDÂ(P,M′) = CDÂ(Q,M′), and that either condition i) or ii) of
Definition 13 hold for M′. The equivalence of the Â-restricted current dependent contexts follows
directly from Proposition 6. As regards condition i) or ii) of Definition 13, ifM does not occur inM,
then neither it occurs inM′. If insteadM occurs inM, then the fact that P and Q are in CD–context
with respect to Â in M, and that P,Q ∈ B(M′) implies that M must be an occurrence within M′,
with CDÂ(P,M) = CDÂ(Q,M) = ∅.

The first lemma we present allows us identifying the contribution that local states yield to the rate
of the whole model for those actions for which the local states behave independently.

Lemma 1. Let M be a FEPA model. Let K ⊆ B(M), and α an action such that α 6∈ CD(K,M).
Then, for any ν,

rα(M, ν) =
∑
P∈K

rα(P )νP + rα(M, νK) ,

where νK is defined as νKP = νP if P 6∈ K and νKP = 0 if P ∈ K.

Proof. The proof proceeds by structural induction on M.

• M = P : By Definition 3, for any α we have that

rα(P, ν) =
∑

P ′∈B(P )

rα(P ′)νP ′ .

For any K ⊆ B(P ), the above summation can be rewritten as

∑
P ′∈B(P )∩K

rα(P ′)νP ′ +
∑

P ′∈B(P )\K

rα(P ′)νP ′ +

(∑
P ′∈K

rα(P ′) · 0

)
,

which is equal to
∑

P ′∈K rα(P ′)νP ′ + rα(P, νK), closing the case.

• M = M1 ‖HL M2: Let K ⊆ B(M), and α 6∈ CD(K,M). We have to distinguish among two
cases: α ∈ L and α 6∈ L.

- α ∈ L: By Definition 3 we have rα(M1 ‖HL M2, ν) = H(rα(M1, ν), rα(M2, ν)). Note that the
α-apparent rate in M1 does not depend on the population of the local states of B(M2) (and
vice versa), which can thus be freely modified without affecting the α-apparent rate in M1.
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Given that α ∈ L, for all P ∈ B(M) we have that α ∈ D(P,M). From the assumption we know
that for all P ∈ K, α 6∈ CD(P,M), i.e. α 6∈ D(P,M)∩A(P ), implying that α 6∈ A(P ). Therefore,
we have rα(P ) = 0 for all P ∈ K, as well as

∑
P∈K rα(P )νP = 0. Let us define Ki = K ∩B(Mi)

for i ∈ {1, 2}. We focus onM1, but similar arguments hold forM2. Given that K = K1∪K2 and

α 6∈ CD(K1∪K2,M), we have α 6∈ CD(K1,M). Note that CDÂ(K1,M) = CD(K1,M), if we set
Â = A. Thus, we can apply Proposition 5 to any P ∈ K1, obtaining CD(K1,M1) ⊆ CD(K1,M),
which in turn implies α 6∈ CD(K1,M1). This allows us to apply the I.H. to M1, obtaining
rα(M1, ν) =

∑
P∈K1

rα(P )νP + rα(M1, ν
K1), which, given that rα(P ) = 0 for any P ∈ K, and

K1 ⊆ K, is equal to rα(M1, ν
K1). Moreover, given that the α-apparent rate of M1 does not

depend on the population of the local states in B(M2), we can write rα(M1, ν) = rα(M1, ν
K).

Applying similar arguments to M2 we obtain rα(M2, ν2) = rα(M2, ν
K
2 ). Finally, we conclude

that rα(M, ν) = H(rα(M1, ν
K), rα(M2, ν

K)) = rα(M, νK) =
∑

P∈K 0 · νP + rα(M, νK) =∑
P∈K rα(P )νP + rα(M, νK).

- α 6∈ L: By Definition 3 we know that rα(M1 ‖HL M2, ν) = rα(M1, ν) + rα(M2, ν). We focus on
M1, but similar arguments hold for M2. Similarly to the previous case (α ∈ L), we have α 6∈
CD(K1,M1). This allows us to apply the I.H. toM1, obtaining rα(M1, ν) =

∑
P∈K1

rα(P )νP +

rα(M1, ν
K1). Moreover, given that the α-apparent rate ofM1 does not depend on the population

of the local states in B(M2), we can write

rα(M1, ν) =
∑
P∈K1

rα(P )νP + rα(M1, ν
K).

Similar arguments can be applied to M2, yielding

rα(M, ν) =
∑
P∈K1

rα(P )νP +
∑
P∈K2

rα(P )νP + rα(M1, ν
K) + rα(M2, ν

K)

=
∑
P∈K

rα(P )νP + rα(M, νK) ,

concluding the proof.

The lemma below is similar in nature to Lemma 1 but, instead of the apparent rate, pertains
the model influence. It says that local states which behave independently with respect to a certain
action, have no effect whatsoever on the influence that the model exerts through that action on its
local states.

Lemma 2. Let M be a FEPA model. Let K ⊆ B(M), and α an action such that α 6∈ CD(K,M).
Then, for any P ∈ B(M), and for any ν,

Fα(M, ν, P ) = Fα(M, νK , P ) ,

where νK is defined as νKP = νP if P 6∈ K and νKP = 0 if P ∈ K.

Proof. We proceed by structural induction on M.

• M = P : Firstly, we remark that for all K ⊆ B(P ) we have that CD(K,P ) = ∅. Thus, the
claim has to be proved for any α. The claim holds, however, by noticing that for any α, for any
P ′ ∈ B(P ), Fα(P, ν, P ′) = 1 for any ν, and thus also for νK .

• M =M1 ‖HL M2: Let K ⊆ B(M), α be such that α 6∈ CD(K,M) and, without loss of generality,
P ∈ B(M1). We have to distinguish amongst two cases: α ∈ L, α 6∈ L.
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- α ∈ L: By Definition 10, we have

Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

Given that α ∈ L, we know that for any P ∈ B(M), α ∈ D(P,M). The assumption α 6∈
CD(K,M), implies that α 6∈ A(P ) ∩ D(P,M) for any P ∈ K, and thus rα(P ) = 0 for any
P ∈ K. Let us denote Ki = K∩B(Mi), i ∈ {1, 2}. Given that K = K1∪K2, the assumption α /∈
CD(K1 ∪K2,M) implies that α /∈ CD(Ki,M), i ∈ {1, 2}. Moreover, note that CDÂ(Ki,M) =
CD(Ki,M), if we set Â = A. Thus, we can apply Proposition 5 to any P ∈ Ki, obtaining
CD(Ki,Mi) ⊆ CD(Ki,M), assuring that α /∈ CD(Ki,Mi). We can thus apply Lemma 1,
together with the above-remarked fact that rα(P ) = 0 for any P ∈ K, to obtain rα(Mi, ν) =
rα(Mi, ν

Ki), for i ∈ {1, 2}. We also point out that rα(M1, ν) (resp. rα(M2, ν)) does not depend
on the population assigned to local states in B(M2) (resp. B(M1)); thence,

rα(M1 ‖HL M2, ν)

rα(M1, ν)
=
rα(M1 ‖HL M2, ν

K)

rα(M1, νK)
.

As far as Fα(M1, ν, P ) is concerned, the fact that K1 ⊆ B(M1), α /∈ CD(K1,M1) and P ∈
B(M1) allows us to apply the I.H. obtaining

Fα(M1, ν, P ) = Fα(M1, ν
K1 , P ) .

On the other hand, the function Fα(M1, ν, P ) does not depend on the population function
assigned to local states in B(M2), and thus Fα(M1, ν

K1 , P ) = Fα(M1, ν
K , P ). This concludes

the proof for the case α ∈ L.

- α 6∈ L: We recall that we are assuming K ⊆ B(M), α be such that α 6∈ CD(K,M) and
P ∈ B(M1). By Definition 10, we have

Fα(M, ν, P ) = Fα(M1, ν, P ) .

As done in the previous case, we denote Ki = K ∩B(Mi), i ∈ {1, 2}. Given that K = K1 ∪K2,
the assumption α /∈ CD(K1 ∪ K2,M) implies that α /∈ CD(Ki,M), i ∈ {1, 2}, and thus α /∈
CD(Ki,Mi). The fact that K1 ⊆ B(M1), α /∈ CD(K1,M1) and P ∈ B(M1) allows us to apply
the I.H. obtaining

Fα(M1, ν, P ) = Fα(M1, ν
K1 , P ) .

The independence of Fα(M1, ν
K1 , P ) from the population function assigned to local states in

B(M2) leads us to Fα(M1, ν
K1 , P ) = Fα(M1, ν

K , P ), which concludes the proof.

The next lemma states that if a FEPA model M is capable of performing an action α, i.e., there
exists a population function ν such that rα(M, ν) > 0, then it is possible to tune the population
within the model to make its α rate equal to any arbitrary non-negative value.

Lemma 3. Let M be a FEPA model and α ∈ A such that there exists a να for which rα(M, να) > 0.
Then, for any non-negative real value K there exists a function νK such that rα(M, νK) = K.

Proof. The proof proceeds by structural induction on the FEPA model M.

• M = P : Let α ∈ A be such that there exists a population function να with rα(P, να) > 0. By
the base case of Definition 3, this implies the existence of at least one local state P ′ ∈ B(P )
such that rα(P ′) > 0. Let K be any non-negative real number, then the population function ν
assigning 0 to any P ′′ 6= P ′ in B(P ), and to P ′ the value K/rα(P ′) yields the claim.
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• M =M1 ‖HL M2 : Let α ∈ A be such that there exists a population function να with rα(M1 ‖HL
M2, να) > 0. We write να = (ν1

α, ν
2
α) to emphasize the components of ν belonging to M1 and

M2. We make a case distinction and make use of Definition 3.

- α ∈ L : We first consider the caseH = min, namely, rα(M1 ‖HL M2, να) = min(rα(M1, να), rα(M2, να)).
Note that we can rewrite the right-hand-side of the latter equation as min(rα(M1, ν

1
α), rα(M2, ν

2
α))

exploiting the fact that rα(M1, να) (resp. rα(M2, να)) does not depend on ν2
α (resp. ν1

α). The
assumption min(rα(M1, ν

1
α), rα(M2, ν

2
α)) > 0 implies that both arguments must be positive.

By I.H. on M1 and M2 we can infer that for any K1,K2 ≥ 0 there exist ν̂1
α, ν̂2

α such that
rα(M1, ν̂

1
α) = K1 and rα(M2, ν̂

2
α) = K2. Let now K be any non-negative real number, choosing

K1 = K2 = K yields the claim. The proof for the case H = · follows the same lines with the
unique difference that one has to chose K1 ·K2 = K, for instance K1 = 1 and K2 = K.

- α 6∈ L : rα(M1 ‖HL M2, να) = rα(M1, ν
1
α) + rα(M2, ν

2
α) regardless of the function H. The

assumption rα(M1, ν
1
α) + rα(M2, ν

2
α) > 0 implies that at least one of the addends must be

positive. Let us consider the case in which only one is positive, and, without loss of generality,
we take rα(M1, ν

1
α) > 0 and rα(M2, ν

2
α) = 0. By I.H. on M1, we can infer that for any K1 > 0

there exists a ν̂1
α such that rα(M1, ν̂

1
α) = K1. Choosing K1 = K yields the claim. The case in

which both addends are positive is similar to the case α ∈ L, with the only difference that K1,
K2 are chosen in such a way that their sum is equal to K.

The following result tells us that, given a FEPA modelM, a component P ∈ B(M) and an action
α, if there exists a population such that M does not forbid P from executing α, then we have that
two cases might hold: (1) the model never imposes any influence on the rate at which P executes α
(e.g. α is not used for interaction inM), (2) we have that for any K > 0 it is always possible to tune
the population to simultaneously make unitary the model influence upon the rate at which P executes
α, and to set to K the α-apparent rate of the model M. We remark that the two above mentioned
cases are not exclusive.

Lemma 4. LetM be a FEPA model. Let α ∈ A and P ′ ∈ B(M) be such that there exists a population
function να,P ′ for which Fα(M, να,P ′ , P ′) > 0. Then any of the two following cases holds:

— for any population function ν
Fα(M, ν, P ′) = 1 ,

or
— for any K > 0 there exists a population function νK such that

Fα(M, νK , P
′) = 1 and rα(M, νK) = K .

Proof. The proof proceeds by structural induction on the FEPA model M.

• M = P : By the base case of Definition 10, we know that Fα(P, ν, P ′) = 1 for any ν. Moreover,
if there exists at least a P̂ ∈ B(P ) such that rα(P̂ ) > 0, then by Definition 3 we know that for
any population function ν̂ assigning a positive population to P̂ we have rα(P, ν̂) > 0. For these
cases we can thus apply Lemma 3, ensuring that we can find a νK such that rα(P, νK) = K (and
Fα(P, νK , P

′) = 1).

• M = M1 ‖HL M2 : Let α ∈ A and P ′ ∈ B(M) be such that there exists a population function
να,P ′ for which Fα(M, να,P ′ , P ′) > 0. We assume, without loss of generality, that P ′ ∈ B(M1).
We make a case distinction:
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- α ∈ L : We now prove that for α ∈ L we always have the second result, i.e. that for any K > 0
there exists a population function νK such that Fα(M, νK , P

′) = 1 and rα(M, νK) = K. By
Definition 10 together with the assumption P ′ ∈ B(M1)we have:

Fα(M1 ‖HL M2, να,P ′ , P ′) = Fα(M1, να,P ′ , P ′)
rα(M1 ‖HL M2, να,P ′)

rα(M1, να,P ′)
.

The assumption Fα(M, να,P ′ , P ′) > 0 assures that Fα(M1, να,P ′ , P ′) > 0, rα(M1, να,P ′) > 0,
rα(M1 ‖HL M2, να,P ′) > 0, and thus also rα(M2, να,P ′) > 0. Note that this allows us to apply
the I.H. on M1, as well as Lemma 3 to both M1 and M2.

By I.H. on M1 we know that two cases might happen: the first case is that Fα(M1, ν
1, P ′) = 1

for any ν1 on B(M1). When this holds, by exploiting Lemma 3 for both M1 and M2 we
obtain that for any non-negative reals K1, K2, there exist two functions νK1 , νK2 such that
rα(M1, νK1) = K1, and rα(M2, νK2) = K2. For any K > 0, by fixing K1 = K, and by
choosing a K2 such that rα(M1 ‖HL M2, (νK1 , νK2)) = K (for instance, if H = min we choose
K2 = K + 1, whereas if H = ·, we choose K2 = 1), we have that rα(M, (νK1 , νK2)) = K (and
Fα(M, (νK1 , νK2), P ′) = 1).

The second case arising from the I.H. is that for any K1 > 0 there exists a νK1 such that
Fα(M1, νK1 , P

′) = 1 and rα(M1, νK1) = K1. By exploiting Lemma 3 for M2, for any K2 ≥ 0
we can choose a νK2 such that rα(M2, νK2) = K2. For any K > 0, by fixing K1 = K, and by
choosing a K2 such that rα(M1 ‖HL M2, (νK1 , νK2)) = K, we have that rα(M, (νK1 , νK2)) = K
(and Fα(M, (νK1 , νK2), P ′) = 1).

- α 6∈ L : By Definition 10 we have: Fα(M1 ‖HL M2, να,P ′ , P ′) = Fα(M1, να,P ′ , P ′). The assump-
tion Fα(M, να,P ′ , P ′) > 0 assures that Fα(M1, να,P ′ , P ′) > 0. By I.H. onM1 we know that two
cases might happen: the first case is that Fα(M1, ν

1, P ′) = 1 for any ν1 on B(M1). Therefore,
we have that Fα(M1 ‖HL M2, (ν

1, ν2), P ′) = Fα(M1, ν, P
′) = 1 for any ν1 on B(M1) and ν2 on

B(M2).

The second case arising from the I.H. is that for any K1 > 0 there exists a νK1 such that
Fα(M1, νK1 , P

′) = 1 and rα(M1, νK1) = K1. As far as M2 is concerned, either rα(M2, ν2) = 0
for any ν2, or there exists at least a population function ν̂2 such that rα(M2, ν̂2) > 0. In the
former case, following Definition 3, for any K > 0 by choosing K1 = K we have rα(M1 ‖HL
M2, (νK1 , ν2)) = rα(M1, νK1) = K and Fα(M1 ‖HL M2, (νK1 , ν2), P ′) = 1. In the latter case,
by exploiting Lemma 3 for M2, we have that for any K2 ≥ 0 we can choose a νK2 such that
rα(M2, νK2) = K2. Following Definition 3, for any K > 0, by choosing K1 and K2 such that
K1 +K2 = K, we have that rα(M1 ‖HL M2, (νK1 , νK2)) = rα(M1, νK1) + rα(M2, νK2) = K and
Fα(M1 ‖HL M2, (νK1 , νK2), P ′) = 1.

The lemma below extends Lemma 4 allowing to simultaneously consider two components. In-
tuitively, it says that for any two components in a well-posed FEPA model, it is possible to find
a population function which simultaneously makes the model influence upon the two components
equal to 1; equivalently, there exists a population function ν for which the model exerts no influence
whatsoever upon the components rates.

Lemma 5. LetM be a FEPA model. Let α ∈ A, and P ′, P ′′ ∈ B(M) be such that there exist two pop-
ulation functions να,P ′ and να,P ′′ for which it holds that Fα(M, να,P ′ , P ′) > 0 and Fα(M, να,P ′′ , P ′′) >
0, respectively. Then either of the two following cases holds:

— for any population function ν

Fα(M, ν, P ′) = 1 = Fα(M, ν, P ′′) ,
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or
— there exists a population function ν̄ such that

Fα(M, ν̄, P ′) = 1 = Fα(M, ν̄, P ′′) and rα(M, ν̄) = 1 .

Proof. Before starting the proof, we remark that the difference between the condition rα(M, ν̄) = 1
and the condition rα(M, ν̄) = K given in the previous lemmas is not accidental. As it turns out,
the statement cannot be true with K 6= 1 for the interaction function H = ·. The proof proceeds by
structural induction on the FEPA model M.

• M = P : By the base case of Definition 10, we know that Fα(P, ν, P ′) = 1 = Fα(P, ν, P ′′) for
any ν. Moreover, if there exists at least a P̂ ∈ B(P ) such that rα(P̂ ) > 0, then by Definition 3 we
know that for any population function ν̂ assigning a positive population to P̂ we have rα(P, ν̂) >
0. For these cases we can thus apply Lemma 3, ensuring that we can find a ν̄ such that
rα(P, ν̄) = 1 (and Fα(P, ν̄, P ′) = 1 = Fα(P, ν̄, P ′′)).

• M = M1 ‖HL M2 : Let α ∈ A, and P ′, P ′′ ∈ B(M) such that there exist two population
functions να,P ′ an να,P ′′ for which Fα(M, να,P ′ , P ′) > 0 and Fα(M, να,P ′′ , P ′′) > 0, respectively.
Two cases may arise: P ′ and P ′′ both belong to the same sub-model, or one belongs toM1 and
the other one to M2. We first analyse the former case and assume, without loss of generality,
that P ′, P ′′ ∈ B(M1).

- α ∈ L : We now prove that for α ∈ L we always have the second result, i.e. that there exists
a population function ν̄ such that Fα(M, ν̄, P ′) = 1 = Fα(M, ν̄, P ′′) and rα(M, ν̄) = 1. By
Definition 10, for P̂ ∈ {P ′, P ′′} we have:

Fα(M1 ‖HL M2, να,P̂ , P̂ ) = Fα(M1, να,P̂ , P̂ )
rα(M1 ‖HL M2, να,P̂ )

rα(M1, να,P̂ )
.

The assumption Fα(M, να,P̂ , P̂ ) > 0 assures that Fα(M1, να,P̂ , P̂ ) > 0, rα(M1, να,P̂ ) > 0,

rα(M1 ‖HL M2, να,P̂ ) > 0, and thus also rα(M2, να,P̂ ) > 0. Note that, this allows us to apply
the I.H. on M1, and, at the same time, Lemma 3 to both M1 and M2.

By I.H. onM1 we know that two cases might happen: the first case is that Fα(M1, ν, P
′) = 1 =

Fα(M1, ν, P
′′) for any ν on B(M1). When this holds, by exploiting Lemma 3 for both M1 and

M2 we obtain that there exist two functions ν1, ν2 such that rα(M1, ν1) = 1, and rα(M2, ν2) = 1.
Thus, we have that rα(M, (ν1, ν2)) = 1 (and Fα(M, (ν1, ν2), P ′) = 1 = Fα(M, (ν1, ν2), P ′′)).

The second case arising from the I.H. is that there exists a ν̄1 such that Fα(M1, ν̄1, P
′) = 1 =

Fα(M1, ν̄1, P
′′) and rα(M1, ν̄1) = 1. By exploiting Lemma 3 for M2, we can choose a ν2 such

that rα(M2, ν2) = 1. Thus, we have that rα(M, (ν̄1, ν2)) = 1 (and Fα(M, (ν̄1, ν2), P ′) = 1 =
Fα(M, (ν̄1, ν2), P ′′)).

- α 6∈ L : By Definition 10, for P̂ ∈ {P ′, P ′′} we have:

Fα(M1 ‖HL M2, να,P̂ , P̂ ) = Fα(M1, να,P̂ , P̂ ) .

The assumption Fα(M, να,P̂ , P̂ ) > 0 assures that Fα(M1, να,P̂ , P̂ ) > 0. By I.H. onM1 we know

that two cases might happen: the first case is that Fα(M1, ν1, P
′) = 1 = Fα(M1, ν1, P

′′) for any
ν1 on B(M1). Therefore, we have that Fα(M, (ν1, ν2), P ′) = 1 = Fα(M, (ν1, ν2), P ′′) for any ν1

on B(M1) and ν2 on B(M2).

The second case arising from the I.H. is that there exists a ν̄1 such that Fα(M1, ν̄1, P
′) = 1 =

Fα(M1, ν̄1, P
′′) and rα(M1, ν̄1) = 1. Now, either the result of Lemma 3 can be applied for
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M2, or not. In the former case, we can choose a ν̂2 such that rα(M2, ν̂2) = 0. In the latter,
instead, we have that rα(M2, ν2) = 0 for any ν2. Therefore, following Definition 3, we have that
rα(M1 ‖HL M2, (ν̄1, ν̂2)) = rα(M1, ν̄1) + rα(M2, ν̂2) = 1 (and Fα(M1 ‖HL M2, (ν̄1, ν̂2), P ′) = 1 =
Fα(M1 ‖HL M2, (ν̄1, ν̂2), P ′′)).

As previously said, we might have the case in which either both P ′ and P ′′ belong to the same
sub-model, or the case when one belongs toM1 and the other one toM2. The first case having
being proved, we now focus on the second one. We assume, without loss of generality, that
P ′ ∈ B(M1) and P ′′ ∈ B(M2). Noteworthy, this case is addressed resorting to Lemma 3 and
Lemma 4 only.

- α ∈ L : We now prove that for α ∈ L we always have the second result, i.e.: there exists
a population function ν̄ such that Fα(M, ν̄, P ′) = 1 = Fα(M, ν̄, P ′′) and rα(M, ν̄) = 1. By
Definition 10 we have:

Fα(M1 ‖HL M2, να,P ′ , P ′) = Fα(M1, να,P ′ , P ′)
rα(M1 ‖HL M2, να,P ′)

rα(M1, να,P ′)
,

Fα(M1 ‖HL M2, να,P ′′ , P ′′) = Fα(M2, να,P ′′ , P ′′)
rα(M1 ‖HL M2, να,P ′′)

rα(M2, να,P ′′)
.

The assumptions Fα(M, να,P ′ , P ′) > 0 and Fα(M, να,P ′′ , P ′′) > 0 assure that Fα(M1, να,P ′ , P ′) >
0, rα(M1, να,P ′) > 0, and rα(M2, να,P ′) > 0, as well as Fα(M2, να,P ′′ , P ′′) > 0, rα(M1, να,P ′′) >
0, and rα(M2, να,P ′′) > 0. Note that this allows us to apply Lemma 3 and Lemma 4 to both
M1 and M2.

We now apply Lemma 4 to M1 and M2, fixing the value of K to 1. We know that four cases
might happen:

1. Fα(M1, ν1, P
′) = 1 for any ν1. Fα(M2, ν2, P

′′) = 1 for any ν2.

2. Fα(M1, ν1, P
′) = 1 for any ν1. There exists a ν̄2 such that Fα(M2, ν̄2, P

′′) = 1 and
rα(M2, ν̄2) = 1.

3. There exists a ν̄1 such that Fα(M1, ν̄1, P
′) = 1 and rα(M1, ν̄1) = 1. Fα(M2, ν2, P

′′) = 1
for any ν2.

4. There exists a ν̄1 such that Fα(M1, ν̄1, P
′) = 1 and rα(M1, ν̄1) = 1. There exists a ν̄2 such

that Fα(M2, ν̄2, P
′′) = 1 and rα(M2, ν̄2) = 1.

Case 1 follows by exploiting Lemma 3 onM1 andM2, which guarantees the existence of ν̄1 and ν̄2

such that rα(M1, ν̄1) = 1, and rα(M2, ν̄2) = 1, obtaining the claim, i.e. Fα(M, (ν̄1, ν̄2), P ′) =
Fα(M, (ν̄1, ν̄2), P ′′) = 1 and rα(M1 ‖HL M2, (ν̄1, ν̄2)) = 1, regardless of the function H. We
point out that the proof will not go through if the original statement were to be replaced with
rα(M, ν̄) = K 6= 1, unless one would consider only the interaction function H = min.

Case 2 follows by exploiting Lemma 3 on M1, which guarantees the existence of ν̄1 such that
rα(M1, ν̄1) = 1. Thus, rα(M, (ν̄1, ν̄2)) = 1, and Fα(M, (ν̄1, ν̄2), P ′) = 1 = Fα(M, (ν̄1, ν̄2), P ′′).

Case 3 is symmetric to case 2.

Case 4 implies that rα(M, (ν̄1, ν̄2)) = 1, and Fα(M, (ν̄1, ν̄2), P ′) = 1 = Fα(M, (ν̄1, ν̄2), P ′′).

- α 6∈ L : By Definition 10 we have:

Fα(M1 ‖HL M2, να,P ′ , P ′) = Fα(M1, να,P ′ , P ′) ,

Fα(M1 ‖HL M2, να,P ′′ , P ′′) = Fα(M2, να,P ′′ , P ′′) .
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The assumptions Fα(M, να,P ′ , P ′) > 0 and Fα(M, να,P ′′ , P ′′) > 0 assure that Fα(M1, να,P ′ , P ′) >
0, and Fα(M2, να,P ′′ , P ′′) > 0. Note that this allows us to apply Lemma 4 to bothM1 andM2.

As in the case α ∈ L, we now apply Lemma 4 to M1 and M2 fixing K = 1. This again yields
four cases. However, in order to prove the fourth one, we now exploit Lemma 4 by choosing the
value K = 1/2.

1. Fα(M1, ν1, P
′) = 1 for any ν1. Fα(M2, ν2, P

′′) = 1 for any ν2.

2. Fα(M1, ν1, P
′) = 1 for any ν1. There exists a ν̄2 such that Fα(M2, ν̄2, P

′′) = 1 and
rα(M2, ν̄2) = 1.

3. There exists a ν̄1 such that Fα(M1, ν̄1, P
′) = 1 and rα(M1, ν̄1) = 1. Fα(M2, ν2, P

′′) = 1
for any ν2.

4. There exists a ν̄1 such that Fα(M1, ν̄1, P
′) = 1 and rα(M1, ν̄1) = 1/2. There exists a ν̄2

such that Fα(M2, ν̄2, P
′′) = 1 and rα(M2, ν̄2) = 1/2.

Case 1 implies that Fα(M, ν, P ′) = Fα(M, ν, P ′′) = 1 for any ν.

As regards case 2 we have that, either the result of Lemma 3 can be applied for M1, or not. In
the former case, we can choose a ν̂1 such that rα(M1, ν̂1) = 0. In the latter, instead, we have
that rα(M1, ν1) = 0 for any ν1. Therefore, from Definition 3, we have that rα(M, (ν̂1, ν̄2)) =
rα(M1, ν̂1) + rα(M2, ν̄2) = 1 (and Fα(M, (ν̂1, ν̄2), P ′) = 1 = Fα(M, (ν̂1, ν̄2), P ′′)).

Case 3 is symmetric to case 2.

Case 4 implies that rα(M, (ν̄1, ν̄2)) = 1, and Fα(M, (ν̄1, ν̄2), P ′) = 1 = Fα(M, (ν̄1, ν̄2), P ′′).

The next lemma says that the model impedes a local state from performing a certain dependent
action if the distribution of the population within the model is such that the whole model does not
perform that action.

Lemma 6. Let M be a FEPA model. Let P ∈ B(M), and α ∈ D(P,M). For any ν such that
rα(M, ν) = 0, we have that Fα(M, ν, P ) = 0.

Proof. The proof proceeds by structural induction on M.

• M = P : By Definition 8, we have D(P ′,M) = ∅ for any P ′ ∈ B(P ), thus this case is vacuously
true.

• M =M1 ‖HL M2 : We assume, without loss of generality, that P ∈ B(M1). Let α ∈ D(P,M),
we distinguish among two cases: α ∈ L, α 6∈ L.

- α ∈ L : The assumption rα(M, ν) = 0, and Definition 3, imply that rα(M1, ν) = 0 or

rα(M2, ν) = 0. Moreover, Definition 10 tells us that Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1‖HLM2,ν)

rα(M1,ν) .

Given that rα(M1, ν) = 0 or rα(M2, ν) = 0, then we also have
rα(M1‖HLM2,ν)

rα(M1,ν) = 0, implying

Fα(M, ν, P ) = 0.

- α 6∈ L : The assumption rα(M, ν) = 0, and Definition 3, assure that rα(M1, ν) = 0 and
rα(M2, ν) = 0. The assumptions α ∈ D(P,M) and α 6∈ L imply that α ∈ D(P,M1), thus we
can apply the I.H toM1. Definition 10 tells us that Fα(M, ν, P ) = Fα(M1, ν, P ). We therefore
obtain Fα(M, ν, P ) = Fα(M1, ν, P ) = 0.
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The last lemma of this appendix is similar in nature to Lemma 4. However, focusing on dependent
actions only, it grants more freedom in the tuning of the model influence. Specifically, it says that
given a model M and a local state P ∈ B(M), for any K > 0 and for any ε ∈ (0, 1) it is always
possible to tune the population function to simultaneously make the model influence upon the rate at
which P executes a certain dependent action α equal to ε, and to set to K the α-apparent rate of the
model M.

Lemma 7. Let M be a well-posed FEPA model, P ∈ B(M) and α ∈ D(P,M). For any K > 0 and
any ε ∈ (0, 1) there exists a population function νK,ε such that

Fα(M, νK,ε, P ) = ε and rα(M, νK,ε) = K .

Proof. The proof proceeds by structural induction on M.

• M = P : By Definition 8, we have D(P ′,M) = ∅ for any P ′ ∈ B(P ), thus this case is vacuously
true.

• M =M1 ‖HL M2 : We assume, without loss of generality, that P ∈ B(M1). Let α ∈ D(P,M),
we distinguish among two cases: α ∈ L, α 6∈ L.

- α ∈ L : From Definition 10 we have Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1‖HLM2,ν)

rα(M1,ν) .

Within the case α ∈ L, we further distinguish between two cases: α ∈ D(P,M1) and α /∈
D(P,M1).

i) α ∈ D(P,M1): Making use of Proposition 3 (which assures that M1 is also well-posed)
together with the assumption P ∈ B(M1), we can use the I.H. onM1 to infer that for any
K1, ε1 there exists νK1,ε1 such that Fα(M1, νK1,ε1 , P ) = ε1 and rα(M1, νK1,ε1) = K1. At
the same time, the well-posedness assumption on M assures the existence of a population
function ν2 on M2 such that rα(M2, ν2) > 0, allowing us to apply Lemma 3 to M2 which
assures, for any arbitrary non-negative value K2, the existence of a population function
ν̄2 such that rα(M2, ν̄2) = K2. Thus, for any K, ε we can choose K1, ε1,K2 such that: if

H = min, ε1
min(K1,K2)

K1
= ε and min(K1,K2) = K. In case H = ·, ε1K2 = ε and K1K2 = K.

The corresponding population function νK,ε = (νK1,ε1 , ν̄2) satisfies the claim.

ii) α /∈ D(P,M1): Exploiting Proposition 1, we have that Fα(M1, ν, P ) = 1 for any population
function ν on M1. Furthermore, the well-posedness assumption on M allows us to apply
Lemma 3 to M1 and M2 which assures, for any arbitrary non-negative value K1 (resp.
K2), the existence of a population function ν̄1 (resp. ν̄2) such that rα(M1, ν̄1) = K1 (resp.
rα(M2, ν̄2) = K2). Thus, for any K, ε, we can choose K1 and K2 in Lemma 3 such that: if

H = min, min(K1,K2)
K1

= ε and min(K1,K2) = K. In case H = ·, K2 = ε and K1K2 = K.
The corresponding population function νK,ε = (ν̄1, ν̄2) satisfies the claim.

- α 6∈ L : From Definition 10 we have Fα(M, ν, P ) = Fα(M1, ν, P ). The assumptions α ∈
D(P,M) and α 6∈ L imply that α ∈ D(P,M1) and we can apply the I.H on M1. This assures
that for anyK1, ε1 there exists νK1,ε1 such that Fα(M1, νK1,ε1 , P ) = ε1 and rα(M1, νK1,ε1) = K1.
Due to the fact that α /∈ L we know that Fα(M, ν, P ) = Fα(M1, ν, P ) and, in particular, its value
does not depend on the population function assigned to M2. Furthermore, from Definition 3,
by choosing ν̂2 such that rα(M2, ν̂2) = 0, we know that rα(M, ν) = rα(M1, ν1). Thus, for any
K, ε, we can choose K1 = K and ε1 = ε and obtain that the function (νK1,ε1 , ν̂2) proves the
claim.
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B Results relaring DOL to ODE lumpability (Proof of Theorem 1)

Definition 17 (P-block redistributed population function). Let M be a FEPA model, and P a
partition of B(M). Let MP denote the aggregation matrix induced by P on M, and MP denote
a generalised right inverse of MP . For any population function ν for M we define the P-block
redistributed population function [ν]P for M as

[ν]P = MPMPν .

The condition MPMP = IP implies that the generalised right inverse MP is not unique and can
be parametrised by |B(M)| values. Thus, each component of the P-block redistributed population
function [ν]P is given by

[ν]PP = aP ν̂S ,

where aP , for each P ∈ B(M), is one of such parameters for which it it holds that
∑

P∈S aP = 1 for
all S ∈ P. Furthermore, [ν]P satisfies

∑
P∈S [ν]PP = ν̂S .

We need two lemmata before proving the theorem.

Lemma 8. Let M be an A-coherent FEPA model, let Â be a set of actions, and P be a partition of
B(M) such that for any S ∈ P and any P,Q ∈ S it holds:

i) P and Q are in CD–context with respect to Â,

ii) rβ(P ) = rβ(Q), for any β ∈ CDÂ(S,M).

Then, for any sub-model M′ of M, we have that for all α ∈ CDÂ(B(M′),M′), for any ν,

rα(M′, ν) = rα(M′, [ν]P|M′ ) .

Proof. The proof proceeds by structural induction on M.

• M = P : This case vacuously holds, as P does not have any sub-models except itself, and

CDÂ(B(P ), P ) = ∅.

• M = M1 ‖HL M2: We now focus on M1, but the same arguments apply to M2. In order to
prove this case we define P|M1 , i.e. the partition of B(M1) obtained by restricting P to M1.
This partition satisfies the assumptions of the lemma, as any block of P|M1 is contained in a
block of P, and by Proposition 7 we know that the elements of each block in P|M1 are in CD–
context with respect to Â inM1. Furthermore, from Definition 9 it directly follows that ifM is
A-coherent, then M1 is A-coherent as well. We can thus apply the I.H. to M1, having that for

any sub-model M′1 of M1, for all α ∈ CDÂ(B(M′1),M′1), rα(M′1, ν) = rα(M′1, [ν]
P|M1

|M′
1 ),

for any ν. Given that M1 is a sub-model of itself, then for all α ∈ CDÂ(B(M1),M1),
rα(M1, ν) = rα(M1, [ν]P|M1

|M1 ), for any ν. Note that [ν]P|M1
|M1 = [ν]P|M1 , for any ν, and

thus rα(M1, [ν]P|M1
|M1 ) = rα(M1, [ν]P|M1 ). As above, similar arguments apply to M2 as well,

and thus we have considered any sub-model of M, except M itself.

It remains to prove that for all α ∈ CDÂ(B(M),M), rα(M, ν) = rα(M, [ν]P|M), where, clearly,

rα(M, [ν]P|M) = rα(M, [ν]P). Furthermore, note that for all α ∈ CDÂ(B(M),M) we have
α ∈ Â and α ∈ D(B(M),M).

We call spurious the partition blocks of P whose elements divide amongM1 andM2, and define
the set of spurious blocks of P for M = M1 ‖HL M2 as S(P,M) = {S̃ ∈ P | S̃ ∩ B(M1) 6=
∅ ∧ S̃ ∩ B(M2) 6= ∅}. We shall indicate with K the union of all the local states of the blocks in

S(P,M). By Definition 13 we know that CDÂ(K,M) = ∅. Given that α ∈ Â, we can conclude
that α 6∈ CD(K,M), allowing us to apply Lemma 1 toM for the set of local states K, obtaining
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rα(M, ν) = rα(M, νK) +
∑

P∈K νP rα(P ), where νK is defined as νKP = νP if P 6∈ K and νKP = 0
if P ∈ K.

For all partition blocks in S ∈ (P \ S(P,M)), we have instead that either S ⊆ B(M1), and thus
S ∈ P|M1 , or S ⊆ B(M2), and thus S ∈ P|M2 .

By resorting to standard set theory we note that

CDÂ(B(M),M) =
⋃

P∈B(M1)

(A(P ) ∩ Â ∩ L) ∪ CDÂ(B(M1),M1) ∪

⋃
P∈B(M2)

(A(P ) ∩ Â ∩ L) ∪ CDÂ(B(M2),M2) .

From the I.H. we know that

– for all α ∈ CDÂ(B(M1),M1), rα(M1, ν) = rα(M1, [ν]P|M1 ),

– for all α ∈ CDÂ(B(M2),M2), rα(M2, ν) = rα(M2, [ν]P|M2 ).

By selecting an α ∈ CDÂ(B(M),M), two cases have to be considered: α 6∈ L and α ∈ L:

- α 6∈ L: For those α we have rα(M, ν) = rα(M, νK) +
∑

P∈K νP rα(P ) = rα(M1, ν
K) +

rα(M2, ν
K) +

∑
P∈K νP rα(P ). First of all, we note that for any P ∈ K we have rα(P ) = 0,

and thus
∑

P∈K νP rα(P ) = 0. In fact, given that CDÂ(K,M) = ∅ and α ∈ Â, we have
α 6∈

⋃
P∈K A(P ) ∩ D(P,M). For every P ∈ K we may have α 6∈ A(P ), and thus rα(P ) = 0, or

α 6∈ D(P,M). In the latter case, given that α ∈ D(B(M),M), by the A-coherence property of
M we again have rα(P ) = 0.

We remark that if α ∈ CDÂ(B(Mi),Mi), for i ∈ {1, 2}, we can exploit the I.H. onMi obtaining
rα(Mi, ν

K) = rα(Mi, [ν
K ]P|Mi ). Given that νK assigns population 0 to all the elements of the

spurious blocks in S(P,M), we have that rα(Mi, [ν
K ]P|Mi ) depends only on the blocks of P

fully contained in B(Mi), i.e. only on the blocks of P|Mi that also belong to P. We can thus
write rα(Mi, [ν

K ]P|Mi ) = rα(Mi, [ν
K ]P).

Given that α ∈ CDÂ(B(M),M) and α 6∈ L, by resorting to standard set theory we obtain

α ∈ CDÂ(B(M1),M1) ∪ CDÂ(B(M2),M2). In case α belongs to both CDÂ(B(M1),M1) and

CDÂ(B(M2),M2), then rα(M, νK) = rα(M1, [ν
K ]P|M1 )+rα(M2, [ν

K ]P|M2 ) = rα(M1, [ν
K ]P)+

rα(M2, [ν
K ]P). If instead α 6∈ CDÂ(B(M1),M1) and α ∈ CDÂ(B(M2),M2) (or vice versa), we

can apply Lemma 1 toM1 for the local states B(M1), obtaining rα(M1, ν
K) =

∑
P∈B(M1) ν

K
P rα(P ).

Note that Lemma 1 can be applied due to the fact that α ∈ Â and α 6∈ CDÂ(B(M1),M1) implies
α 6∈ CD(B(M1),M1)). Similarly to how above discussed, the last summation depends only on
the blocks of P fully contained in B(M1), i.e. only on the blocks of P|M1 that also belong to
P. We can thus rewrite the last summation as∑

S∈P
S⊆B(M1)

∑
P∈S

νKP rα(P ) .

For any of the considered S we now can have two cases: α ∈ CDÂ(S,M) or α 6∈ CDÂ(S,M).
In the former case, by the assumptions of the lemma we have rα(P ) = rα(Q), for any P,Q ∈ S.
In the latter case, similarly to how above discussed, due to the A-coherence of M we have

rα(P ) = 0 for any P ∈ S. In fact, α ∈ D(B(M),M), but α 6∈ CDÂ(S,M) and α ∈ Â, and thus
α 6∈ CD(S,M). Now, for any P ∈ S, we have A(P ) = 0 (and thus rα(P ) = 0), or α 6∈ D(P,M),
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which by A-coherence implies rα(P ) = 0. In both cases we can write

rα(M1, ν
K) =

∑
S∈P

S⊆B(M1)

rα(S)
∑
P∈S

νKP =
∑
S∈P

S⊆B(M1)

rα(S)
∑
P∈S

[νK ]PP ,

where rα(S) , rα(P ), for any P ∈ S.

We thus have

rα(M, νK) = rα(M1, [ν
K ]P) + rα(M2, [ν

K ]P = rα(M, [νK ]P) .

We now recall that, in this particular case, we have rα(M, ν) = rα(M, νK). This holds for any

ν, and thus also for [ν]P , yielding rα(M, [ν]P) = rα(M, [ν]P
K

). Finally, given that rα(M, νK) =

rα(M, [νK ]P), the original claim rα(M, ν) = rα(M, [ν]P) follows by the fact that [νK ]P = [ν]P
K

,
for any ν. In fact, in the left-hand side of the equality we first set to zero the population of
the local states of the spurious blocks (i.e. the local states K), and then, for each block, we
redistribute the cumulative population of the block among its local states. Conversely, in the
right-hand side we first redistribute the population in each block, and then we set to zero the
population of the local states of the spurious blocks. Clearly, redistributing a zero population
within a block is equal to redistributing any population within a block, and then set to zero the
population of all its local states.

- α ∈ L: For those α we have rα(M, ν) = rα(M1 ‖HL M2, ν
K) +

∑
P∈K νP rα(P ), where

rα(M1 ‖HL M2, ν
K) ,


min(rα(M1, ν

K), rα(M2, ν
K)) , if H = min ,

rα(M1, ν
K) · rα(M2, ν

K) , if H = · .

First of all, we note that for any P ∈ K we have rα(P ) = 0, and thus
∑

P∈K ν
K
P rα(P ) = 0,

as we have α ∈ D(K,M) and α 6∈ CD(K,M). This is directly implied by the fact that α ∈ L
(and thus α ∈ D(K,M)), and by the fact that α ∈ Â together with CDÂ(K,M) = ∅ (and thus
α 6∈ CD(K,M)).

Let us now focus on M1. We can have either α ∈ CDÂ(B(M1),M1) or α 6∈ CDÂ(B(M1),M1).

In the case α ∈ CDÂ(B(M1),M1), by I.H., we have rα(M1, ν
K) = rα(M1, [ν

K ]P|M1 ). Similarly
to how discussed in the α 6∈ L case, we have that rα(M1, [ν

K ]P|M1 ) depends only on the blocks of
P fully contained in B(M1), i.e. only on the blocks of P|M1 that also belong to P. We can thus

write rα(M1, ν
K) = rα(M1, [ν

K ]P). The same holds forM2. In the case α 6∈ CDÂ(B(M1),M1)
instead, we can apply Lemma 1 to M1 for the local states B(M1), obtaining rα(M1, ν

K) =∑
P∈B(M1) ν

K
P rα(P ). Note that Lemma 1 can be applied due to the fact that α ∈ Â and

α 6∈ CDÂ(B(M1),M1) implies α 6∈ CD(B(M1),M1)). Similarly to how above discussed, the
last summation depends only on the blocks of P fully contained in B(M1), i.e. only on the
blocks of P|M1 that also belong to P. We can thus rewrite the last summation as∑

S∈P
S⊆B(M1)

∑
P∈S

νKP rα(P ) .

For any of the considered S we now can have two cases: α ∈ CDÂ(S,M) or α 6∈ CDÂ(S,M).
In the former case, by the assumptions of the lemma we have rα(P ) = rα(Q), for any P,Q ∈ S.
In the latter case, due the the A-coherence of M, given that α 6∈ CD(S,M) (as α ∈ Â and
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α 6∈ CDÂ(S,M)), but α is a synchronized action in M (as α ∈ CDÂ(B(M),M)), we must have
that rα(P ) = 0 for any P ∈ S. Therefore, in both cases, we can write

rα(M1, ν
K) =

∑
S∈P

S⊆B(M1)

rα(S)
∑
P∈S

νKP =
∑
S∈P

S⊆B(M1)

rα(S)
∑
P∈S

[νK ]PP ,

where rα(S) , rα(P ), for any P ∈ S. We thus have rα(M, νK) = rα(M, [νK ]P).

As done for the α 6∈ L case, we now recall that rα(M, ν) = rα(M, νK) for any ν, yielding

rα(M, [ν]P) = rα(M, [ν]P
K

). Finally, given that rα(M, νK) = rα(M, [νK ]P), the original claim

rα(M, ν) = rα(M, [ν]P) follows by the fact that [νK ]P = [ν]P
K

, for any ν. The last equivalence
can be justified by resorting to the same arguments used for the α 6∈ L case.

Lemma 9. Let M be an A-coherent FEPA model, Â a set of actions, and P be a partition of B(M)
such that for any S ∈ P and any P,Q ∈ S it holds:

i) P and Q are in CD–context with respect to Â,

ii) rβ(P ) = rβ(Q), for any β ∈ CDÂ(S,M).

Then, for any P ∈ B(M), for all α ∈ CDÂ(P,M) and for any ν it holds that

Fα(M, ν, P ) = Fα(M, [ν]P , P ) .

Proof. First of all, we note that, for any P ∈ B(M), CDÂ(P,M) = CD(P,M)∩Â. We thus only have
to focus on the actions in the set Â. We prove the claim using structural induction.

• M = P : For any P ∈ B(P ) we have CDÂ(P, P ) = ∅, thus the claim is vacuously true.

• M = M1 ‖L M2 : We fix a P ∈ B(M) and we assume, without loss of generality, that
P ∈ B(M1). We call spurious the partition blocks of P whose elements divide among M1 and
M2, and define the set of spurious blocks of P for M = M1 ‖HL M2 as S(P,M) = {S̃ ∈ P |
S̃ ∩ B(M1) 6= ∅ ∧ S̃ ∩ B(M2) 6= ∅}. We shall indicate with K the union of all the local states

of the blocks in S(P,M). Noteworthy, from Definition 13 we know that CDÂ(K,M) = ∅. This
ensures that α 6∈ CD(K,M) for any α ∈ Â. Hence, we know from Lemma 2 that Fα(M, ν, P ) =
Fα(M, νK , P ) for any ν, and α ∈ Â. We thus reduce the problem to proving that the claim

holds for any νK , i.e., we prove that for all α ∈ CDÂ(P,M) and for any νK it holds that

Fα(M, νK , P ) = Fα(M, [νK ]P , P ) .

The original claim will then follow noticing that for any ν it holds that [νK ]P = [ν]P
K

. The latter
equality is due to the fact that spurious blocks have zero population. Therefore, redistributing
a zero population within a partition block is equal to redistributing any population function
within the same block and then set its value to zero.

We need to distinguish among two cases, α 6∈ L, α ∈ L.

- α 6∈ L : By Definition 10 we have

Fα(M, νK , P ) = Fα(M1, (ν
K)1, P ) .

Let P|M1 = {S ∩ B(M1) | S ∈ P}. We remark that this partition satisfies the assumptions of
the lemma. In fact, by Proposition 7, we know that P|M1 is a partition of B(M1) such that for
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any S′ ∈ P|M1 and any P,Q ∈ S′, we have that P and Q are in CD–context with respect to Â
in M1. Furthermore, any block of P|M1 is contained in a block of P, assuring thus the second

assumption as well. If α 6∈ L and α ∈ CDÂ(P,M), we have α ∈ CDÂ(P,M1) and we can apply
the I.H. to obtain

Fα(M1, (ν
K)1, P ) = Fα(M1, [(ν

K)1]P|M1 , P ) .

As a last step to obtain the claim, we notice that for any (νK)1 we have [(νK)1]P|M1 = ([νK ]P)1.
The above equality deserves a discussion. On the left-hand side we first set to zero the population
function of the spurious blocks, then we project on M1. In oher words, we consider only local
states in B(M1) and redistribute the total population of the blocks in P|M1 among its elements.
On the right-hand side instead, we first set to zero the population function in each spurious
block, we then redistribute the obtained population among the elements of the whole blocks,
and we finally project onM1. The result of these two different operations is, however, the same.
In fact, as regards the blocks which are not spurious, the operation is the same, while as regards
the spurious blocks, in both cases the corresponding population is set to zero.

Hence, we obtain

Fα(M1, (ν
K)1, P ) = Fα(M1, ([ν

K ]P)1, P ) = Fα(M1, [ν
K ]P , P )

α /∈ L
= Fα(M, [νK ]P , P ) .

- α ∈ L : By Definition 10 we have

Fα(M, νK , P ) = Fα(M1, ν
K , P )

rα(M1 ‖LM2, ν
K)

rα(M1, νK)
.

As regards the fraction appearing in the above expression, we can apply Lemma 8 to its numer-
ator, obtaining

rα(M1 ‖LM2, ν
K) = rα(M1 ‖LM2, [ν

K ]P) .

As regards the denominator of the fraction, given that α ∈ CDÂ(B(M),M) and α ∈ L, we now

may have two cases: either α ∈ CDÂ(B(M1),M1), or α 6∈ CDÂ(B(M1),M1).

- α ∈ CDÂ(B(M1),M1) : In this case we can apply Lemma 8 also to the denominator of the
fraction, obtaining

rα(M1 ‖LM2, ν
K)

rα(M1, (νK)1)
=
rα(M1 ‖LM2, [ν

K ]P)

rα(M1, [(νK)1]P|M1 )
=
rα(M1 ‖LM2, [ν

K ]P)

rα(M1, ([νK ]P)1)
.

If α ∈ L and α ∈ CDÂ(P,M) we might have that α ∈ CDÂ(P,M1) or α 6∈ CDÂ(P,M1).
In the first case, similarly to the α 6∈ L case, we can use the I.H. on M1, obtaining

Fα(M1, ν
K , P ) = Fα(M1, [ν

K ]P , P ) .

As regards the second scenario, instead, we have that α ∈ CDÂ(P,M) and α 6∈ CDÂ(P,M1).
Recalling the definition of current dependent action set we have that

CDÂ(P,M) = A(P ) ∩ Â ∩ D(P,M) =
(
A(P ) ∩ Â ∩ D(P,M1)

)
∪
(
A(P ) ∩ Â ∩ L

)
.

Which is equal to CDÂ(P,M1)∪
(
A(P ) ∩ Â ∩ L

)
. Thus, we can conclude that α ∈ A(P )∩

Â ∩L and α 6∈ A(P )∩ Â ∩D(P,M1), from which in turn we can infer that α 6∈ D(P,M1).
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Thereby, Proposition 1 can be exploited to infer that Fα(M1, ν
K , P ) = 1 for any νK and

so also for [νK ]P . Consequently,

Fα(M, νK , P ) = Fα(M1, [ν
K ]P , P )

rα(M1 ‖LM2, [ν
K ]P)

rα(M1, [νK ]P)
α ∈ L

= Fα(M, [νK ]P , P ) ,

obtaining the claim.

- α 6∈ CDÂ(B(M1),M1) : We first of all note that α 6∈ CDÂ(B(M1),M1) implies α 6∈
CDÂ(P,M1). As done in the α ∈ CDÂ(B(M1),M1), we can thus conclude that α 6∈
D(P,M1). Thereby, Proposition 1 can be exploited to infer that Fα(M1, ν

K , P ) = 1 for
any νK and so also for [νK ]P . Consequently,

Fα(M, νK , P ) = Fα(M1, ν
K , P )

rα(M1 ‖LM2, ν
K)

rα(M1, νK)
=
rα(M1 ‖LM2, ν

K)

rα(M1, νK)
.

Given that α 6∈ CDÂ(B(M1),M1), we cannot apply Lemma 8 to the denominator of the
fraction, allowing us only to rewrite the fraction as

rα(M1 ‖LM2, ν
K)

rα(M1, (νK)1)
=
rα(M1 ‖LM2, [ν

K ]P)

rα(M1, (νK)1)
.

However, given that α 6∈ CDÂ(B(M1),M1), we can apply Lemma 1 with K = B(M1) to
the denominator, obtaining

rα(M1, (ν
K)1) =

∑
P ′∈B(M1)

rα(P ′)νKP ′ =
∑

S∈P|M1

∑
P ′∈S

rα(P ′)νKP ′ .

Given that νK assigns 0 population to the elements of the spurious blocks in S(P,M), the
last summation acutally depends only on the non-spurious blocks of P|M1 , i.e. only on the
blocks of P|M1 that also belong to P. We can thus rewrite the last summation as∑

S∈P
S⊆B(M1)

∑
P ′∈S

νKP ′rα(P ′) .

For any of the considered S we now can have two cases: α ∈ CDÂ(S,M) or α 6∈ CDÂ(S,M).
In the former case, by the assumptions of the lemma we have rα(P ′) = rα(P ′′), for any
P ′, P ′′ ∈ S. In the latter case, due the the A-coherence ofM, given that α 6∈ CD(S,M) (as

α ∈ Â and α 6∈ CDÂ(S,M)), but α is a synchronized action in M (as α ∈ CDÂ(P,M)),
we must have that rα(P ′) = 0 for any P ′ ∈ S. Therefore, in both cases, we can write

rα(M1, (ν
K)1) =

∑
S∈P

S⊆B(M1)

rα(S)
∑
P ′∈S

νKP ′ =
∑
S∈P

S⊆B(M1)

rα(S)
∑
P ′∈S

[νK ]PP ′ ,

where rα(S) , rα(P ′), for any P ′ ∈ S.

Following similar reasonings we can infer that

rα(M1, ([ν
K ]P)1) =

∑
S∈P

S⊆B(M1)

rα(S)
∑
P ′∈S

[νK ]PP ′ ,

allowing us to conclude that

Fα(M, νK , P ) =
rα(M1 ‖LM2, [ν

K ]P)

rα(M1, (νK)1)
=
rα(M1 ‖LM2, [ν

K ]P)

rα(M1, ([νK ]P)1)
,

closing the case
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We are now ready for proving the theorem.

Theorem 1. Let M ba a well-posed and A-coherent FEPA model, P be a DOLP of B(M). Let MP
be the aggregation matrix induced by P on M, that is the |P| × |B(M)| matrix with entries 0 or 1
defined as

(MP)i,j ,

{
1 if Pj ∈ Si ,
0 otherwise ,

where Si, with i ∈ {1, . . . , |P|}, is a block of the partition P and Pj, with j ∈ {1, . . . , |B(M)|}, is a

local state of the model M. Let f̂ ,MP ◦ f ◦MP . Then ν̂(t), solution of the ODE system

˙̂ν = f̂(ν̂), with initial condition ν̂(0) = MPν0 ,

satisfies ν̂(t) = MPν(t), where ν(t) is solution of the ODE system of M.

Proof. The proof appeals to three main points:

- A necessary and sufficient condition for the exact lumpability of the ODE system ν̇ = f(ν) by
the matrix MP i.e.,

MPf(ν) = MPf(MPMPν) , for all ν , (5)

and for any generalised right inverse MP .

- A rewriting of the vector field f of M in terms of the model influence function F .

- Lemma 9.

To verify Equation (5), recalling the definition of the aggregation matrix MP , it is enough to show
that for any S ∈ P and for any ν it holds that∑

P∈S
fP (ν) =

∑
P∈S

fP (MPMPν) =
∑
P∈S

fP ([ν]P) .

In other words, we verify Equation (5) componentwise. Exploiting Definition 10 for the model influence
upon the component rate, the vector field of the FEPA model M can be rewritten as

fP (ν) =
∑
α∈A

∑
P ′∈B(M)

q(P ′, P, α)

rα(P ′)
Rα(M, ν, P ′)−

∑
α∈A
Rα(M, ν, P ) ,

∑
α∈A

∑
P ′∈B(M)

q(P ′, P, α)

rα(P ′)
rα(P ′) · νP ′ · Fα(M, ν, P ′)−

∑
α∈A

rα(P ) · νP · Fα(M, ν, P )

=
∑
α∈A

∑
P ′∈B(M)

q(P ′, P, α) · νP ′ · Fα(M, ν, P ′)−
∑
α∈A

νP

∑
S̃∈P

q[P, S̃, α]

Fα(M, ν, P ) .
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Summing both sides over P ∈ S and using that
∑

P∈S q(P
′, P, α) = q[P ′, S, α], as well as a decompo-

sition of the sum over states, that is,
∑

P ′∈B(M) =
∑

S∈P
∑

P ′∈S , we obtain∑
P∈S

fP (ν)

=
∑
α∈A

∑
P ′∈B(M)

νP ′ q[P ′, S, α]Fα(M, ν, P ′)−
∑
P∈S

νP

∑
S̃∈P

∑
α∈A

q[P, S̃, α]Fα(M, ν, P )


=
∑
α∈A

∑
S̃∈P

∑
P ′∈S̃

νP ′ q[P ′, S, α]Fα(M, ν, P ′)−
∑
P∈S

νP

∑
S̃∈P

∑
α∈A

q[P, S̃, α]Fα(M, ν, P )


=
∑
S̃∈P

∑
P ′∈S̃

(∑
α∈A

q[P ′, S, α]Fα(M, ν, P ′)

)
νP ′ −

∑
P∈S

∑
S̃∈P

∑
α∈A

q[P, S̃, α]Fα(M, ν, P )

 νP

At this point we notice that the term corresponding to the chosen partition block S ∈ P in the
summation

∑
S̃∈P is the same in both terms (the incoming and outgoing flux). More precisely, the

first summation can be written∑
S̃∈P

∑
P ′∈S̃

(∑
α∈A

q[P ′, S, α]Fα(M, ν, P ′)

)
νP ′ =

∑
P ′∈S

(∑
α∈A

q[P ′, S, α]Fα(M, ν, P ′)

)
νP ′+

∑
S̃∈P/S

∑
P ′∈S̃

(∑
α∈A

q[P ′, S, α]Fα(M, ν, P ′)

)
νP ′

and the second

∑
P∈S

∑
S̃∈P

∑
α∈A

q[P, S̃, α]Fα(M, ν, P )

 νP =

∑
P∈S

∑
α∈A

q[P, S, α]Fα(M, ν, P ) +
∑

S̃∈P/S

∑
α∈A

q[P, S̃, α]Fα(M, ν, P )

 νP =

∑
P∈S

(∑
α∈A

q[P, S, α]Fα(M, ν, P )

)
νP +

∑
P∈S

 ∑
S̃∈P/S

(∑
α∈A

q[P, S̃, α]Fα(M, ν, P )

) νP

Therefore, we can erase the corresponding contribution obtaining

∑
P∈S

fP (ν) =
∑

S̃∈P/S

∑
P ′∈S̃

(∑
α∈A

q[P ′, S, α]Fα(M, ν, P ′)

)
νP ′ (6)

−
∑
P∈S

 ∑
S̃∈P/S

(∑
α∈A

q[P, S̃, α]Fα(M, ν, P )

) νP .

The cancellation of these two terms has a rather intuitive explanation worth mentioning. The
summation of the vector fields associated to the local states within the partition block S is made of a
positive and a negative term. The positive term corresponds to the incoming fluxes within the block S
coming from any other block S̃ of the partition, whereas the negative term corresponds to the outgoing
fluxes from the block S to any other block S̃. When accounting for the possible contribution, the case
S̃ = S is numbered amongst them. This case corresponds to the situation in which the block S is at
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the same time, source and sink. Clearly, the “self” incoming flux coincides with the “self” outgoing
one.

We are left with showing that for any ν, the right-hand of (6) does not change if we replace ν with
the corresponding [ν]P .

In order to see this, we first point out that for any S, S̃ ∈ P with S 6= S̃ and for any P ∈ S the
sum

∑
α∈A q[P, S̃, α]Fα(M, ν, P ) can be decomposed as follows∑

α∈A
q[P, S̃, α]Fα(M, ν, P ) =

∑
α∈AP

ext

q[P, S̃, α]Fα(M, ν, P ) .

Indeed, due to the fact that P ∈ S with S 6= S̃, only external actions bring a positive contribution
to the left-hand side. The sum over external actions can be further decomposed according to the
dependent action set as shown below∑

α∈AP
ext

q[P, S̃, α]Fα(M, ν, P ) =

∑
α∈AP

ext∩D(P,M)

q[P, S̃, α]Fα(M, ν, P ) +
∑

α∈AP
ext\D(P,M)

q[P, S̃, α]Fα(M, ν, P ) =

∑
α∈AP

ext∩D(P,M)

q[P, S̃, α]Fα(M, ν, P ) +
∑

α∈AP
ext\D(P,M)

q[P, S̃, α] ,

(7)

where in the last equality we exploited Proposition 1 which assures that for all actions α /∈ D(P,M),
it holds that Fα(M, ν, P ) = 1, for any ν. Each of the two summations can be rewritten as∑

α∈AP
ext∩D(P,M)

q[P, S̃, α]Fα(M, ν, P ) =
∑

α∈CDAP
ext (P,M)

q[P, S̃, α]Fα(M, ν, P ) ,

∑
α∈AP

ext\D(P,M)

q[P, S̃, α] =
∑

α∈A\CDAP
ext (P,M)

q[P, S̃, α] .

The first rewriting follows from observing that actions not in A(P ) do not contribute to the left-hand
side and by Definition 8 for the restricted current dependent action set. As far as the second equality
is concerned, we first remark that

∑
α∈AP

ext\D(P,M) q[P, S̃, α] =
∑

α∈A\D(P,M) q[P, S̃, α] as P /∈ S̃, and

thus q[P, S̃, α] = 0 for any α ∈ A \ APext. Similarly, q[P, S̃, α] = 0, for any α ∈ A \ A(P ). In light of
this, we have ∑

α∈AP
ext\D(P,M)

q[P, S̃, α] =
∑

α∈A\D(P,M)∪A\AP
ext∪A\A(P )

q[P, S̃, α] =
∑

α∈A\CDAP
ext (P,M)

q[P, S̃, α] ,

where, for the last equality, we resort to standard set theory.
At this point we use the assumption that the partition considered is indeed differential ordinary

lumpable. We exploit this information in two ways:

- It assures that for all S ∈ P, for all Q,Q′ ∈ S, for all S̃ 6= S and for all ν∑
α∈CDAP

ext (Q,M)

q[Q, S̃, α]Fα(M, ν,Q) +
∑

α∈A\CDAP
ext (Q,M)

q[Q, S̃, α]

=
∑

α∈CDAP
ext (Q′,M)

q[Q′, S̃, α]Fα(M, ν,Q′) +
∑

α∈A\CDAP
ext (Q′,M)

q[Q′, S̃, α] ,
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Therefore, in light of what above explained, it holds that for any S, S̃ with S̃ 6= S, and for any
P, P ′ ∈ S ∑

α∈A
q[P, S̃, α]Fα(M, ν, P ) =

∑
α∈A

q[P ′, S̃, α]Fα(M, ν, P ′) ,

for any ν, that is, it does not depend on the particular local state but only the corresponding
block.

- It allows us to use Lemma 9 yielding that for any P ∈ B(M), for any α ∈ CDAP
ext(P,M) and for

any ν it holds
Fα(M, ν, P ) = Fα(M, [ν]P , P ) .

This point, instead, is used together with the sum decomposition in (7) and the Proposition 1
to infer that for any S, any S̃ 6= S, any P ∈ S and for any ν we have∑

α∈A
q[P, S̃, α]Fα(M, ν, P ) =

∑
α∈A

q[P, S̃, α]Fα(M, [ν]P , P ) .

Now that all the proof ingredients have been provided, we can rewrite Equation (6) as follows

∑
P∈S

fP (ν) =
∑

S̃∈P/S

(∑
α∈A

q[P ′, S, α]Fα(M, ν, P ′)

) ∑
P ′∈S̃

νP ′

−

 ∑
S̃∈P/S

(∑
α∈A

q[P, S̃, α]Fα(M, ν, P )

)∑
P∈S

νP

=
∑

S̃∈P/S

(∑
α∈A

q[P ′, S, α]Fα(M, [ν]P , P ′)

) ∑
P ′∈S̃

[ν]PP ′

−

 ∑
S̃∈P/S

(∑
α∈A

q[P, S̃, α]Fα(M, [ν]P , P )

)∑
P∈S

[ν]PP

=
∑
P∈S

fP ([ν]P) ,

where we used that for any S ∈ P it holds
∑

P∈S [ν]PP = ν̂S =
∑

P∈S νP .
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C Results for DOL Characterisation (Proof of Theorem 2)

In this appendix we present all the results used to prove the characterisation of differential ordinary
lumpability in terms of CD-strong equivalence and CD-context.

Theorem 5. Let M be a well-posed FEPA model and P a differential ordinary lumpable partition of
B(M). Let S ∈ P and P,Q ∈ S. Then, for all α ∈ CDAP

ext(S,M) the two conditions below hold:

q[P, S̃, α] = q[Q, S̃, α] , for all S̃ ∈ P ,

Fα(M, ν, P ) = Fα(M, ν,Q) , for all ν .

Proof. Definition 11 guarantees that for any partition block S in P, and any two components P , Q in
S, we have

q[P, S̃, α]Fα(M, ν, P ) = q[Q, S̃, α]Fα(M, ν,Q) (8)

for all S̃ ∈ P, α ∈ CDAP
ext(S,M), and for all ν. The well-posedness assumption of M allows us to

use Lemma 5 on any two components in B(M). Lemma 5 tells us that, for any α ∈ A, there exists
at least a population ν̄α such that Fα(M, ν̄α, P ) = 1 = Fα(M, ν̄α, Q). Given that Equation (8) holds

for any ν, instantiating it with ν̄α we obtain q[P, S̃, α] = q[Q, S̃, α], for any α ∈ CDAP
ext(S,M), and

S̃ ∈ P, which concludes the proof of the first claim.
As regards the second claim, by applying to Equation (8) the result just shown, we have Fα(M, ν, P ) =

Fα(M, ν,Q) for every α ∈ CDAP
ext(S,M) and for any ν, which concludes the proof of the second claim.

This last step requires a more detailed explaination. We point out that for the actions in CDAP
ext(S,M)

there exists at least a local state P ′ ∈ S for which there exists at least a partition block S̃ such that
q[P ′, S̃, α] > 0. Exploiting the first claim we obtain q[P ′, S̃, α] = q[P, S̃, α] = q[Q, S̃, α] > 0, allowing
to rewrite Equation (8) as Fα(M, ν, P ) = Fα(M, ν,Q), for all ν.

The next corollary states that given a well-posed FEPA model M and a partition P of B(M),
a necessary condition for the partition to be a differential ordinary lumpable partition is that all
components within the same partition block are CD–strong equivalent.

Corrolary 1. Let M be a well-posed FEPA model and P a differential ordinary lumpable partition of
B(M). Then there exists a CD–strong equivalence inducing the partition P.

Proof. Theorem 5 assures that for any S ∈ P, for any P,Q ∈ S, and for any S̃, q[P, S̃, α] = q[Q, S̃, α] for

any α ∈ CDAP
ext(S,M). This allows us to conclude that condition (ii) required by the definition of CD–

strong equivalence holds. Instead, the remaining conditions (i) and (iii) required by the definition of
CD–strong equivalence follow, respectively, from conditions (i) and (iii) of the definition of differential
ordinary lumpability.

We now move our attention towards the relation existing among the notion of differential ordinary
lumpabilty and CD-context.

Proposition 8. Let M be a well-posed FEPA model, and Â a set of actions. Let P,Q ∈ B(M) be
such that:

i) CDÂ(P,M) = CDÂ(Q,M) ,

ii) Fα(M, ν, P ) = Fα(M, ν,Q) for all α ∈ CDÂ(P,M) (as well as for all α ∈ CDÂ(Q,M)) and for
all ν.

Then, P and Q are in CD–context with respect to Â.
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Proof. The proof proceeds by structural induction on M.

• M = P : This case follows from noticing that all local states in B(P ) have empty current
dependent set, and thus are in CD–context in P with respect to any set of actions.

• M = M1 ‖HL M2 : We can have that either P and Q belong to the same sub-model Mi, for
i ∈ {1, 2}, or not. Without loss of generality, for the former case we assume P,Q ∈ B(M1),
while for the latter P ∈ B(M1), Q ∈ B(M2).

We consider now the case P ∈ B(M1), Q ∈ B(M2). By the assumption of the proposition

we know that CDÂ(P,M) = CDÂ(Q,M), and that Fα(M, ν, P ) = Fα(M, ν,Q), for any α ∈
CDÂ(P,M) and for any ν. We want to show that this implies that P and Q are in CD–
context with respect to Â. Due to the assumption P ∈ B(M1), Q ∈ B(M2) and Definition 13,

showing that P and Q are in CD–context with respect to Â reduces to show that CDÂ(P,M) =

CDÂ(Q,M) = ∅. To prove this, let us assume, towards a contradiction, that CDÂ(P,M) 6= ∅,
and let α be in this set. We have to distinguish among two cases: α ∈ L, α 6∈ L.

– α ∈ L: By Definition 10 we have

Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
= Fα(M2, ν,Q)

rα(M1 ‖HL M2, ν)

rα(M2, ν)
.

From the well-posedness of M, together with Proposition 3, we can apply Lemma 4 firstly
to M1 choosing a population ν̄1 such that Fα(M1, ν̄1, P ) = 1, and rα(M1, ν̄1) = K, for a
positive real K. We can then apply Lemma 4 to M2, choosing a population ν̄2 such that
Fα(M2, ν̄2, Q) = 1, and rα(M2, ν̄2) = K + 1. Therefore, we have found a ν̄ = (ν̄1, ν̄2) such
that Fα(M, ν̄, P ) 6= Fα(M, ν̄, Q), obtaining a contradiction. Note that rα(Mi, ν) depends
only on the population functions assigned to the elements in B(Mi).

– α 6∈ L: By Definition 10 we have

Fα(M1, ν, P ) = Fα(M2, ν,Q) .

The assumption that α ∈ CDÂ(P,M) and the information α /∈ L implies α ∈ CDÂ(P,M1)
and thus α ∈ D(P,M1) . We also remark that, taken a population function ν0

1 forM1 which
assign 0 population to all the local states in B(M1), Definition 3 implies rα(M1, ν

0
1) = 0.

We can thus apply Lemma 6 toM1, obtaining Fα(M1, ν
0
1 , P ) = 0. Moreover, we know that

M2 is a well-posed model, thus Proposition 4 assures the existence of a population function
ν2 for M2, such that Fα(M2, ν2, Q) > 0. Hence, we have found a population function
ν = (ν0

1 , ν2) for M such that Fα(M, ν, P ) 6= Fα(M, ν,Q), leading us to a contradiction.

We consider now the case P,Q ∈ B(M1). In what follows we show that we can use the I.H. on
M1 and thus infer that P and Q are in CD–context with respect to Â inM1. This information,

together with the assumption that CDÂ(P,M) = CDÂ(Q,M), assures that P and Q are also
in CD–context with respect to Â inM (this can be deduced from Definition 13 and by noticing
that the assumption P,Q ∈ B(M1) implies that if there exists an occurrence M =M′1 ‖HL′ M′2
with P ∈ B(M′1) and Q ∈ B(M′2) within M, it must be an occurrence within M1). In order to
use the I.H. on M1, we have to prove that:

a) CDÂ(P,M1) = CDÂ(Q,M1).

b) Fα(M1, ν, P ) = Fα(M1, ν,Q) for all α ∈ CDÂ(P,M1) (as well as for all α ∈ CDÂ(Q,M1))
and for all ν.
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We first show a). It is worth mentioning that assumption i) alone it is not enough to prove
a). As a matter of fact, to prove this point we shall exploit assumption i) and ii) of the
proposition, together with Proposition 5 and Lemma 7. More precisely, let us assume towards

a contradiction that CDÂ(P,M1) 6= CDÂ(Q,M1). Without loss of generality, we may assume

that there exists an action α such that α ∈ CDÂ(P,M1) and α /∈ CDÂ(Q,M1). Moreover, by

Proposition 5 and by the assumption CDÂ(Q,M) = CDÂ(Q,M) we obtain that α ∈ CDÂ(P,M)

and α ∈ CDÂ(Q,M), and therefore α ∈ A(P )∩ Â and α ∈ A(Q)∩ Â. From the above it follows
that α ∈ D(P,M1), whereas α /∈ D(Q,M1). We now distinguish among two cases and show
that, in either of them, we run into contradiction.

– α /∈ L : If α /∈ L and α ∈ CDÂ(P,M1), the assumption CDÂ(Q,M) = CDÂ(Q,M) implies

that α ∈ CDÂ(Q,M1) and thus the contradiction.

– α ∈ L : If α ∈ CDÂ(P,M1) then, by Proposition 5, α ∈ CDÂ(P,M). Hence, by assumption
ii) of the proposition and by Definition 10 we have

Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
= Fα(M1, ν,Q)

rα(M1 ‖HL M2, ν)

rα(M1, ν)
,

for any ν. As mentioned before, we have that α ∈ D(P,M1) and α /∈ D(Q,M1). We
can then apply Proposition 1 to infer that Fα(M1, ν1, Q) = 1 for any ν1 on M1 (in fact
α /∈ D(Q,M1) ), as well as Lemma 7 (α ∈ D(P,M1), andM1 is well-posed due to the well-
posedness assumption on M and Proposition 3) which assures for any K, ε, the existence
of a function νK,ε on M1 such that Fα(M1, νK,ε, P ) = ε and rα(M1, νK,ε) = K. The
well-posedness assumption on M then also assures the existence of a population function
ν2 on M2 such that rα(M2, ν2) > 0. Therefore, choosing K > 0 and ε < 1, we have found

a ν̄ = (νK,ε, ν2) such that:
rα(M1‖HLM2,ν̄)

rα(M1,ν̄) > 0, Fα(M1, ν̄, P ) = ε and Fα(M1, ν̄, Q) = 1

and thereby Fα(M, ν̄, P ) 6= Fα(M, ν̄, Q), which contradicts the assumption ii).

We address below the proof of b). Let α ∈ CDÂ(P,M1) (note that CDÂ(P,M1) = CDÂ(Q,M1)).
We now distinguish among two sub-cases: α ∈ L, α 6∈ L.

– α ∈ L : By Proposition 5 we know that CDÂ(P,M1) ⊆ CDÂ(P,M). Therefore, by
assumption ii) of the proposition and by Definition 10 we have that for any ν it holds

Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
= Fα(M1, ν,Q)

rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

For all ν such that
rα(M1‖HLM2,ν)

rα(M1,ν) > 0, we have Fα(M1, ν, P ) = Fα(M1, ν,Q). For those

ν such that
rα(M1‖HLM2,ν)

rα(M1,ν) = 0, instead, we can have that rα(M1, ν) = 0 or rα(M2, ν) =

0. In the case rα(M1, ν) = 0, we can exploit Lemma 6 assuring that Fα(M1, ν, P ) =

Fα(M1, ν,Q) = 0 (indeed, we know that if α ∈ CDÂ(P,M1) and CDÂ(P,M1) = CDÂ(Q,M1),
then α belongs to D(P,M1) and D(Q,M1)).

For those ν such that rα(M1, ν) > 0 and rα(M2, ν) = 0 instead, we first recall a few facts;
(a) ν can be seen as ν = (ν1, ν2), with νi defined for the modelMi. (b) Fα(M1, (ν1, ν2), P ′) =
Fα(M1, ν1, P

′), for any ν2, and any P ′ ∈ B(M1), and (c) rα(Mi, ν) = rα(Mi, νi). With
this results in mind, we exploit now the well-posedness of M (and the Proposition 3)
which assures the existence of a population ν̄2 such that rα(M2, ν̄2) > 0. Hence, being

rα(M1, ν1) > 0 and rα(M2, ν̄2) > 0, we would have that
rα(M1‖HLM2,(ν1,ν̄2))

rα(M1,(ν1,ν̄2)) > 0, implying

Fα(M1, ν1, P ) = Fα(M1, ν1, Q).
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To sum up, we have just shown that for any α ∈ CDÂ(P,M1) ∩ L, Fα(M1, ν, P ) =
Fα(M1, ν,Q) for any ν.

– α 6∈ L : By Proposition 5 we know that CDÂ(P,M1) ⊆ CDÂ(P,M). Therefore, by
assumption ii) of the proposition and by Definition 10 we have

Fα(M1, ν, P ) = Fα(M1, ν,Q) .

Hence, we have just shown that for any α ∈ CDÂ(P,M1)\L, Fα(M1, ν, P ) = Fα(M1, ν,Q)
for any ν.

Combining the results of the cases α ∈ L and α 6∈ L, we have that for any α ∈ CDÂ(P,M1),
Fα(M1, ν, P ) = Fα(M1, ν,Q) for any ν. This having been proved, we can apply the I.H. to
M1, ensuring that P and Q are in CD–context with respect to Â in M1. As mentioned before,

this together with the fact that CDÂ(P,M) = CDÂ(Q,M) implies that P and Q are also in
CD–context with respect to Â in M, and concludes the proof.

Remark 1. The previous proposition together with Theorem 5 implies that elements of a block of a
DOLP P are in CD–context with respect to APext. In fact, Proposition 8, instantiated with Â = APext,
can be applied to any pair of local states of any block of a DOLP by noticing that the assumption i) of
the proposition follows directly from Definition 11, whilst assumption ii) is guaranteed by Theorem 5.

The next proposition proves the reverse implication with respect to Proposition 8, i.e., that two
local states in CD-context with respect to a set of actions Â always receive the same influence from
the rest of the model through Â.

Proposition 9. Let M be a well-posed FEPA model, and Â be a set of actions. Let P,Q ∈ B(M)

be in CD–context with respect to Â. Then, for all α ∈ CDÂ(P,M) and for all ν, Fα(M, ν, P ) =
Fα(M, ν,Q).

Proof. The proof proceeds by structural induction on M.

• M = P : This case is trivial, as CDÂ(P ′,M) = ∅ for any P ′ ∈ B(P ).

• M = M1 ‖HL M2 : We can have that either P and Q belong to the same sub-model Mi, for
i ∈ {1, 2}, or not. Without loss of generality, for the former case we assume P,Q ∈ B(M1),
while for the latter P ∈ B(M1), Q ∈ B(M2).

We now consider the case P ∈ B(M1), Q ∈ B(M2). By the assumption that P and Q are

in CD–context wrt Â and by Definition 13, we know that CDÂ(P,M) = CDÂ(Q,M) = ∅
and the claim is therefore vacuously true. We now focus on the case P,Q ∈ B(M1). Let

α ∈ CDÂ(P,M) = CDÂ(Q,M) and consider the two sub-cases: α ∈ L, α 6∈ L.

– α ∈ L : By Definition 10 we have

Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
,

Fα(M, ν,Q) = Fα(M1, ν,Q)
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

What we are after is to prove that Fα(M, ν, P ) = Fα(M, ν,Q) for any ν. By Proposi-

tion 7 we know that P and Q are in CD–context wrt Â in M1, and thus CDÂ(P,M1) =

CDÂ(Q,M1). Moreover, by Proposition 5 we also know that CDÂ(P,M1) ⊆ CDÂ(P,M)
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and CDÂ(Q,M1) ⊆ CDÂ(Q,M). If α ∈ CDÂ(P,M1) = CDÂ(Q,M1), we can ex-
ploit the I.H. to infer that Fα(M1, ν, P ) = Fα(M1, ν,Q) for every ν. Such an equal-

ity persists when one multiplies both terms for the same function
rα(M1‖HLM2,ν)

rα(M1,ν) obtain-

ing the claim. If α 6∈ CDÂ(P,M1) = CDÂ(Q,M1), instead, by the assumption that

α ∈ CDÂ(P,M) = CDÂ(Q,M) we know that α ∈ A(P )∩Â and α ∈ A(Q)∩Â, allowing us
to conclude that α /∈ D(P,M1) and α /∈ D(Q,M1). Therefore, by Proposition 1 we have
that Fα(M1, ν, P ) = 1 = Fα(M1, ν,Q) for every ν and thus the claim follows.

– α 6∈ L : By Definition 10 we have

Fα(M, ν, P ) = Fα(M1, ν, P ) ,

Fα(M, ν,Q) = Fα(M1, ν,Q) .

What we are after is to prove that Fα(M, ν, P ) = Fα(M, ν,Q) for any ν. By Propo-
sition 7 we know that P and Q are in CD–context wrt Â in M1. By the assumption

α ∈ CDÂ(P,M) = CDÂ(Q,M) and α /∈ L, by resorting to Definition 8 we can apply basic

set theory and conclude that α ∈ CDÂ(P,M1) = CDÂ(Q,M1). In that case we use the
I.H. to infer that Fα(M1, ν, P ) = Fα(M1, ν,Q) for any ν. The proof is then complete.

The next theorem gives the desired characterisation of differential ordinary lumpability, and con-
cludes this appendix.

Theorem 2. Let M be a well-posed FEPA model and P a partition of B(M). P is differential
ordinary lumpable if and only if there exists a CD–strong equivalence inducing the partition P, and
the local states of each block of P are in CD-context with respect to APext.

Proof. If P is a differential ordinary lumpable partition, then Corollary 1 guarantees that the partition
P is induced by a CD–strong equivalence. Moreover, Theorem 5 and the assumption that the partition
P is a DOLP assure that the assumptions in Proposition 8 are met if instantiated with respect to
the set of actions APext. We can therefore conclude that the local states of each block of P are in
CD–context with respect to APext.

As regards the opposite implication, the assumption that local states of each partition block
S ∈ P are in CD–context with respect to APext allows us to use Proposition 9 to infer that for all

P,Q ∈ S, for all α ∈ CDAP
ext(P,M) = CDAP

ext(P,M) and for all ν, Fα(M, ν, P ) = Fα(M, ν,Q).
Furthermore, the assumption that the elements of the partition blocks of the same partition are also
CD–strong equivalent assures that q[P, S̃, α] = q[Q, S̃, α] for all S̃ ∈ P, and for all α ∈ CDAP

ext(P,M) =

CDAP
ext(Q,M). From the above, it follows that condition (ii) required by the definition of differential

ordinary lumpability holds. On the other hand, conditions (i) and (iii) required by the definition of
differential ordinary lumpability follow, respectively, from condition (i) and (iii) of the definition of
CD–strong equivalence.
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D Results regarding CoDOL (Proofs of Theorems 3,4)

In this appendix we provide the technical results regarding congruent differential ordinary lumpability.
We start by stating that congruent differential ordinary lumpability is a congruence with respect

to parallel composition.

Theorem 3. Let M1 and M2 be two FEPA models, and let P1 and P2 be congruent differential
ordinary lumpable partitions of B(M1) and B(M2), respectively. Then, the partition P = P1 ∪ P2 is
a congruent differential ordinary lumpable partition of B(M1 ‖HL M2), for any L ⊆ A.

Proof. We first notice that for any interaction set L it holds B(M1 ‖HL M2) = B(M1)∪B(M2). This,
together with the disjointness assumption of the fluid atoms (yielding B(M1) ∩ B(M2) = ∅), assures
that P = P1∪P2 is a partition of B(M1 ‖HL M2). We are then left with proving that P is a congruent
differential ordinary lumpable partition. The first condition, that is, for all S ∈ P and for all P,Q ∈ S
it holds A(P ) = A(Q), follows from noticing that any block of P is either a block of P1 or of P2, and
they both satisfy (i) by assumptions. To prove condition (ii) instead, we need to show that for any
S, S̃ ∈ P, for any P,Q ∈ S, for any α ∈ A(P ) = A(Q) and for any ν it holds that

q[P, S̃, α]Fα(M1 ‖HL M2, ν, P ) = q[Q, S̃, α]Fα(M1 ‖HL M2, ν,Q) ,

for any L ⊆ A. Due to the disjointness assumption of the fluid atoms we can assume without loss of
generality that S, S̃ are partition blocks of P1.

We need to distinguish between two cases, α /∈ L and α ∈ L.

- α /∈ L : The assumption that S, S̃ ∈ P1 implies that P,Q ∈ B(M1). Hence, exploiting Defini-
tion 10 we need to show that for any ν it holds

q[P, S̃, α]Fα(M1, ν, P ) = q[Q, S̃, α]Fα(M1, ν,Q) .

The assumption that P1 is a congruent differential ordinary lumpable partition of B(M1) assures
that

q[P, S̃, α]Fα(M1, ν1, P ) = q[Q, S̃, α]Fα(M1, ν1, Q) ,

for any population function ν1 for M1. This, together with the observation that Fα(M1, ν, P )
does not depend on the population function assigned to local states in B(M2), proves the claim.

- α ∈ L : The assumption that S, S̃ ∈ P1 implies that P,Q ∈ B(M1). Hence, exploiting Defini-
tion 10 we need to show that for any ν it holds

[q[P, S̃, α]Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
= q[Q, S̃, α]·

· Fα(M1, ν,Q)
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

Similarly to the previous case, the assumption that P1 is a congruent differential ordinary
lumpable partition of B(M1) and the fact that Fα(M1, ν, P ) does not depend on the popu-
lation function assigned to local states in B(M2) assures that

q[P, S̃, α]Fα(M1, ν, P ) = q[Q, S̃, α]Fα(M1, ν,Q) ,

for any population function ν. Multiplying both sides for the same function
rα(M1‖HLM2,ν)

rα(M1,ν) the
equality persists, and thus the claim follows.
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The following proposition, given in Section 5, states that congruent differential ordinary lumpability
(see Definition 14) implies differential ordinary lumpability (see Definition 11).

Proposition 2. LetM be a well-posed FEPA model, and P be a partition of B(M). If P is a congru-
ent differential ordinary lumpable partition, then it is also a differential ordinary lumpable partition.

Proof. We need to show that for any S ∈ P and any two local states P,Q ∈ S conditions (i), (ii) and
(iii) of Definition 11 are satisfied.

We first notice that if P is a congruent ordinary lumpable partition of B(M), then for any S ∈ P
and any P,Q ∈ S it holds that CD(P,M) = CD(Q,M). To see this, let us assume towards a
contradiction, that CD(P,M) 6= CD(Q,M). Without loss of generality, we may then assume that there
exists an α ∈ CD(P,M) such that α /∈ CD(Q,M). Assumption (i) of CoDOL (i.e. A(P ) = A(Q))
together with the definition of current dependent action set, would then imply that α ∈ D(P,M)
and α /∈ D(Q,M). Exploiting Proposition 1 for Q (guaranteeing that Fα(M, ν,Q) = 1, for any ν)
and Lemma 6 for P (assuring the existence of a population function ν̄ such that Fα(M, ν̄, P ) = 0)
condition (ii) of CoDOL, instantiated with ν̄ would read

q[P, S̃, α]Fα(M, ν̄, P )

α∈
D(P,M)

= 0
CoDOL

= q[Q, S̃, α]Fα(M, ν̄, Q)

α/∈
D(Q,M)

= q[Q, S̃, α] ,

for any S̃ ∈ P. This, however, contradicts the assumption α ∈ A(Q), which implies the existence of
at least a S̃ ∈ P such that q[Q, S̃, α] > 0. Therefore, any two elements P,Q of a block of a congruent
differential ordinary lumpable partition also satisfy condition (i) of DOL, that is, CD(P,M)∩APext =
CD(Q,M) ∩ APext (we recall that the set APext does not depend on the local state).

The fact that for any S ∈ P and any P,Q ∈ S condition (ii) of DOL is also satisfied follows
directly from condition (ii) of CoDOL by noticing that CD(P,M) ∩ APext ⊆ A(P ) for any P .

We are then left with proving that for any S ∈ P and any P,Q ∈ S condition (iii) of DOL is

satisfied. To see this, we remark that for any S ∈ P and any P ∈ S the set A \ CDAP
ext(P,M) can be

written as

A \ CDAP
ext(P,M) = (A \ A(P )) ∪

(
A \ APext

)
∪ (A \ D(P,M)) . (9)

Moreover, for S̃ 6= S, the only actions bringing a contribution to the summation
∑
A\CDAP

ext (P,M)
q[P, S̃, α],

are those actions α such that q[P, S̃, α] > 0. Exploiting Equation (9), the actions to be considered when
verifying condition (iii) of DOL are only those actions α such that α /∈ D(P,M) and α ∈ A(P ). In fact,
if α ∈ A\A(P ), then q[P, S̃, α] = 0 for any S̃. Moreover, if α ∈ A\APext, then q[P, S̃, α] = 0 for any S̃
such that P 6∈ S̃ (otherwise α would belong to APext). For any S ∈ P and any P,Q ∈ S the assumption
that P is a congruent differential ordinary lumpable partition assures that A(P ) = A(Q) and, as shown
above, that CD(P,M) = CD(Q,M). Thus, we can also infer that A(P )\D(P,M) = A(Q)\D(Q,M).
Therefore, the set of actions bringing a non-zero contribution to the summation appearing in condition
(iii) of DOL is the same for any P,Q ∈ S. For any action α in this set, condition (ii) of CoDOL
implies that q[P, S̃, α] = q[Q, S̃, α] for any S̃ (and thus in particular any S̃ 6= S). Indeed, for any
α ∈ A(P ) and α /∈ D(P,M) Proposition 1 assures that q[P, S̃, α]Fα(M, ν, P ) = q[P, S̃, α] for any for
any S̃ and for any ν.

We now extend the characterisation results for differential ordinary lumpability presented in Ap-
pendix C to the congruent case. Although the results, as well as the proofs, are very similar in nature
to those previously introduced for the DOL case, we provide them for the sake of completeness.

The following theorem is analogous to Theorem 5.
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Theorem 6. Let M be a well-posed FEPA model and P a congruent differential ordinary lumpable
partition of B(M). Let S ∈ P and P,Q ∈ S. Then, for all α ∈ A(P ) = A(Q) the two conditions
below hold:

q[P, S̃, α] = q[Q, S̃, α] , for all S̃ ∈ P ,

Fα(M, ν, P ) = Fα(M, ν,Q) , for all ν .

Proof. Definition 14 guarantees that for any partition block S in P, and any two components P , Q in
S, we have

q[P, S̃, α]Fα(M, ν, P ) = q[Q, S̃, α]Fα(M, ν,Q) (10)

for all S̃ ∈ P, α ∈ A(P ) = A(Q), and for all ν. The well-posedness assumption of M allows us to
use Lemma 5 on any two components in B(M). Lemma 5 tells us that, for any α ∈ A, there exists at
least a population ν̄α such that Fα(M, ν̄α, P ) = 1 = Fα(M, ν̄α, Q). Given that Equation (10) holds
for any ν, instantiating it with ν̄α we obtain q[P, S̃, α] = q[Q, S̃, α], for any α ∈ A(P ) = A(Q), and
S̃ ∈ P, which concludes the proof of the first claim.

As regards the second claim, by applying to Equation (10) the result just shown, we have Fα(M, ν, P ) =
Fα(M, ν,Q) for every α ∈ A(P ) = A(Q) and for any ν, which concludes the proof of the second claim.
This last step requires a more detailed explaination. We point out that for an action α ∈ A(P ) = A(Q)
there exists at least a partition block S̃ such that q[P, S̃, α] > 0. Exploiting the first claim we obtain
q[P, S̃, α] = q[Q, S̃, α] > 0, allowing to rewrite Equation (10) as Fα(M, ν, P ) = Fα(M, ν,Q), for all
ν.

The next corollary states that given a well-posed FEPA model M and a partition P of B(M),
a necessary condition for the partition to be congruent differential ordinary lumpable is that all
components within the same partition block are strong equivalent.

Corrolary 2. Let M be a well-posed FEPA model and P a congruent differential ordinary lumpable
partition of B(M). Then there exists a strong equivalence inducing the partition P.

Proof. Theorem 6 assures that for any S ∈ P, for any P,Q ∈ S, and for any S̃, q[P, S̃, α] = q[Q, S̃, α]
for any α ∈ A(P ) = A(Q). This allows us to conclude that condition (ii) required by the definition
of strong equivalence holds. Conditions (i) required by the definition of strong equivalence, instead,
directly follows from conditions (i) of the definition of congruent differential ordinary lumpability.

We now move our attention towards the relation existing between the notion of congruent differ-
ential ordinary lumpability and congruent CD–context. Given a modelM, the next proposition states
that the notion of congruent CD–context is preserved while descending the syntax tree of the model.

Proposition 10. Let M be a FEPA model. Let P,Q ∈ B(M) be such that they are in congruent
CD–context in M. Then for any sub-model M′ of M such that P,Q ∈ B(M′), P and Q are in
congruent CD–context in M′ as well.

Proof. We have to prove that either condition i) or ii) of Definition 16 hold for M′. If M does not
occur inM, then neither it occurs inM′. If insteadM occurs inM, then the fact that P and Q are
in congruent CD–context inM, and that P,Q ∈ B(M′) implies thatM must be an occurrence within
M′, with CD(P,M) = CD(Q,M) = ∅.

Given two local states of a model, the presence of symmetries in their current actions, and in the
influence they receive from the model through those actions, provides information on the structure
of M for what concerns the interactions affecting the two local states. More specifically, given a
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model M, a partition P of B(M), and two local states P , Q with the same current action set, if
the model exerts the same influence on the rates with which P and Q perform their current actions
regardless of the population functions, then we can infer that P and Q are in congruent CD–context.
The subsequent proposition formally addresses this issue.

Proposition 11. Let M be a well-posed FEPA model. Let P,Q ∈ B(M) be such that:

i) A(P ) = A(Q) ,

ii) Fα(M, ν, P ) = Fα(M, ν,Q) for all α ∈ A(P ) = A(Q) and for all ν.

Then, P and Q are in congruent CD–context.

Proof. The proof proceeds by structural induction on M.

• M = P : This case follows from noticing that P and Q satisfy condition (i) of Definition 16,
as P,Q ∈ B(P ), and thus it does not exist any occurrence M = M1 ‖L M2 within M with
P ∈ B(M1), and Q ∈ B(M2) (or vice versa).

• M = M1 ‖HL M2 : We can have that either P and Q belong to the same sub-model Mi, for
i ∈ {1, 2}, or not. Without loss of generality, for the former case we assume P,Q ∈ B(M1),
while for the latter P ∈ B(M1), Q ∈ B(M2).

We consider now the case P ∈ B(M1), Q ∈ B(M2). By the assumption of the proposition we
know that A(P ) = A(Q), and that Fα(M, ν, P ) = Fα(M, ν,Q), for any α ∈ A(P ) = A(Q)
and for any ν. We want to show that this implies that P and Q are in congruent CD–context.
Due to the assumption P ∈ B(M1), Q ∈ B(M2) and Definition 16, showing that P and Q are
in congruent CD–context reduces to show that CD(P,M) = CD(Q,M) = ∅. To prove this, let
us assume, towards a contradiction, that CD(P,M) 6= ∅, and let α be in this set. We have to
distinguish among two cases: α ∈ L, α 6∈ L.

– α ∈ L: By assumption ii) of the proposition and by Definition 10 we have that for any ν
it holds

Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
= Fα(M2, ν,Q)

rα(M1 ‖HL M2, ν)

rα(M2, ν)
.

From the well-posedness of M, together with Proposition 3, we can apply Lemma 4 firstly
to M1 choosing a population ν̄1 such that Fα(M1, ν̄1, P ) = 1, and rα(M1, ν̄1) = K, for a
positive real K. We can then apply Lemma 4 to M2, choosing a population ν̄2 such that
Fα(M2, ν̄2, Q) = 1, and rα(M2, ν̄2) = K + 1. Therefore, we have found a ν̄ = (ν̄1, ν̄2) such
that Fα(M, ν̄, P ) 6= Fα(M, ν̄, Q), obtaining a contradiction. Note that rα(Mi, ν) depends
only on the population functions assigned to the elements in B(Mi).

– α 6∈ L: By Definition 10 we have

Fα(M1, ν, P ) = Fα(M2, ν,Q) .

The assumption that α ∈ CD(P,M) and the information α /∈ L implies α ∈ CD(P,M1) and
thus α ∈ D(P,M1) . We also remark that, taken a population function ν0

1 for M1 which
assign 0 population to all the local states in B(M1), Definition 3 implies rα(M1, ν

0
1) = 0.

We can thus apply Lemma 6 toM1, obtaining Fα(M1, ν
0
1 , P ) = 0. Moreover, we know that

M2 is a well-posed model, thus Proposition 4 assures the existence of a population function
ν2 for M2, such that Fα(M2, ν2, Q) > 0. Hence, we have found a population function
ν = (ν0

1 , ν2) for M such that Fα(M, ν, P ) 6= Fα(M, ν,Q), leading us to a contradiction.
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We consider now the case P,Q ∈ B(M1). In what follows we show that we can use the I.H. on
M1 and thus infer that P and Q are in congruent CD–context inM1. This information assures
that P and Q are also in congruent CD–context in M (this can be deduced from Definition 16
and by noticing that the assumption P,Q ∈ B(M1) implies that if there exists an occurrence
M =M′1 ‖HL′ M′2 with P ∈ B(M′1) and Q ∈ B(M′2) withinM, it must be an occurrence within
M1).

In order to use the I.H. on M1, we only have to prove that Fα(M1, ν, P ) = Fα(M1, ν,Q) for
all α ∈ A(P ) = A(Q) and for all ν. Let α ∈ A(P ) = A(Q). We now distinguish among two
sub-cases: α ∈ L, α 6∈ L.

– α ∈ L : By assumption ii) of the proposition and by Definition 10 we have that for any ν
it holds

Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
= Fα(M1, ν,Q)

rα(M1 ‖HL M2, ν)

rα(M1, ν)
. (11)

For all ν such that
rα(M1‖HLM2,ν)

rα(M1,ν) > 0, we have Fα(M1, ν, P ) = Fα(M1, ν,Q). For those ν

such that
rα(M1‖HLM2,ν)

rα(M1,ν) = 0, instead, we can have that rα(M1, ν) = 0 or rα(M2, ν) = 0.

For those ν such that rα(M1, ν) > 0 and rα(M2, ν) = 0, we first recall a few facts; (a) ν
can be seen as ν = (ν1, ν2), with νi defined for the model Mi. (b) Fα(M1, (ν1, ν2), P ′) =
Fα(M1, ν1, P

′), for any ν2, and any P ′ ∈ B(M1), and (c) rα(Mi, ν) = rα(Mi, νi). With
this results in mind, we exploit now the well-posedness of M (and the Proposition 3)
which assures the existence of a population ν̄2 such that rα(M2, ν̄2) > 0. Hence, being

rα(M1, ν1) > 0 and rα(M2, ν̄2) > 0, we would have that
rα(M1‖HLM2,(ν1,ν̄2))

rα(M1,(ν1,ν̄2)) > 0, implying

Fα(M1, ν1, P ) = Fα(M1, ν1, Q).

In the case rα(M1, ν) = 0, instead, we distinguish among three cases:

(i) α ∈ D(P,M1) and α ∈ D(Q,M1),

(ii) α 6∈ D(P,M1) and α 6∈ D(Q,M1),

(iii) α ∈ D(P,M1) and α 6∈ D(Q,M1) (or vice versa).

In the (i) case, we can exploit Lemma 6 assuring that Fα(M1, ν, P ) = Fα(M1, ν,Q) = 0. In
the case (ii) we can exploit Proposition 1 assuring that Fα(M1, ν

′, P ) = Fα(M1, ν
′, Q) = 1,

for any ν ′. As regards the case (iii), instead, we now show that this case contradicts the
assumption ii) of the proposition, and hence does not have to be considered. In case (iii)
we have that Fα(M1, ν

′, Q) = 1 for any possible ν ′, allowing us to rewrite Equation (11)
as

Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
=
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

Given that α ∈ D(P,M1) (and M1 is well-posed due to the well-posedness assumption
and Proposition 3), we can apply Lemma 7, which assures that for any K, ε there exists
a νK,ε on M1 such that Fα(M1, νK,ε, P ) = ε and rα(M1, νK,ε) = K. The well-posedness
assumption on M then also assures the existence of a population function ν2 on M2 such
that rα(M2, ν2) > 0. Therefore, choosing K > 0 and ε < 1, we have found a population

ν̄ = (νK,ε, ν2) such that:
rα(M1‖HLM2,ν̄)

rα(M1,ν̄) > 0, Fα(M1, ν̄, P ) = ε and Fα(M1, ν̄, Q) = 1 and

thereby Fα(M, ν̄, P ) 6= Fα(M, ν̄, Q), which contradicts the assumption ii).

To sum up, we have just shown that for any α ∈ A(P ) ∩ L, Fα(M1, ν, P ) = Fα(M1, ν,Q)
for any ν.
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– α 6∈ L : By assumption ii) of the proposition and by Definition 10 we have

Fα(M1, ν, P ) = Fα(M1, ν,Q) .

Hence, we have just shown that for any α ∈ A(P ) \ L, Fα(M1, ν, P ) = Fα(M1, ν,Q) for
any ν.

Combining the results of the cases α ∈ L and α 6∈ L, we have that for any α ∈ A(P ) = A(Q),
Fα(M1, ν, P ) = Fα(M1, ν,Q) for any ν. This having been proved, we can apply the I.H. toM1,
ensuring that P and Q are in congruent CD–context in M1. As mentioned before, this implies
that P and Q are in congruent CD–context in M, and concludes the proof.

Remark 2. The previous proposition together with Theorem 6 implies that elements of a block of a
congruent differential ordinary lumpable partition are in congruent CD–context. In fact, Proposition 11
can be applied to any pair of local states of any block of a CoDOLP by noticing that the assumption i) of
the proposition follows directly from Definition 14, whilst assumption ii) is guaranteed by Theorem 6.

The next proposition proves the reverse implication with respect to Proposition 11, i.e., that two
local states in congruent CD–context always receive the same influence from the rest of the model.

Proposition 12. Let M be a well-posed FEPA model. Let P,Q ∈ B(M) be in congruent CD–context.
Then, for all α ∈ A(P ) = A(Q) and for all ν, Fα(M, ν, P ) = Fα(M, ν,Q).

Proof. The proof proceeds by structural induction on M.

• M = P : This case is trivial as, for any P ′ ∈ B(P ), Fα(P, ν, P ′) = 1 for any α ∈ A and any ν.

• M = M1 ‖HL M2 : We can have that either P and Q belong to the same sub-model Mi, for
i ∈ {1, 2}, or not. Without loss of generality, for the former case we assume P,Q ∈ B(M1),
while for the latter P ∈ B(M1), Q ∈ B(M2).

We now consider the case P ∈ B(M1), Q ∈ B(M2). By the assumption that P and Q are in
congruent CD–context and by Definition 16, we know that CD(P,M) = CD(Q,M) = ∅, i.e.
D(P,M)∩A(P ) = D(Q,M)∩A(Q) = ∅. We thus have that all actions that we are considering
in this proposition (i.e. those in the set A(P ) = A(Q)) are independent for both P and Q, and
thus applying Proposition 1 we have Fα(P,M, ν) = 1 = Fα(Q,M, ν) for any α ∈ A(P ) = A(Q)
and any ν.

We now focus on the case P,Q ∈ B(M1). Let α ∈ A(P ) = A(Q) and consider the two sub-cases:
α ∈ L, α 6∈ L.

– α ∈ L : By Definition 10 we have

Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
,

Fα(M, ν,Q) = Fα(M1, ν,Q)
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

What we are after is to prove that Fα(M, ν, P ) = Fα(M, ν,Q) for any ν. By Proposition 10
we know that P and Q are in congruent CD–context inM1, allowing us to exploit the I.H.
on M1 to infer that Fα(M1, ν, P ) = Fα(M1, ν,Q) for every ν. Such an equality persists

when one multiplies both terms for the same function
rα(M1‖HLM2,ν)

rα(M1,ν) obtaining the claim.
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– α 6∈ L : By Definition 10 we have

Fα(M, ν, P ) = Fα(M1, ν, P ) ,

Fα(M, ν,Q) = Fα(M1, ν,Q) .

What we are after is to prove that Fα(M, ν, P ) = Fα(M, ν,Q) for any ν. By Proposition 10
we know that P and Q are in congruent CD–context inM1, allowing us to exploit the I.H.
onM1 to infer that Fα(M1, ν, P ) = Fα(M1, ν,Q) for every ν. The proof is then complete.

The next theorem gives the desired characterisation of congruent differential ordinary lumpability,
and concludes this appendix.

Theorem 4. Let M be a well-posed FEPA model and P a partition of B(M). P is congruent
differential ordinary lumpable iff there exists a strong equivalence inducing P, and the local states of
each block of P are in congruent CD-context.

Proof. If P is a congruent differential ordinary lumpable partition, then Corollary 2 guarantees that
the partition P is induced by a strong equivalence. Moreover, Theorem 6 and the assumption that the
partition P is congruent differential ordinary lumpable assure that the assumptions in Proposition 11
are met. We can therefore conclude that the local states of each block of P are in congruent CD–
context.

As regards the opposite implication, condition (i) required by the definition of a congruent differ-
ential ordinary lumpability follows from both the definition of strong equivalence, as well as from that
of congruent CD–context. As regards condition (ii), the assumption that local states of each partition
block S ∈ P are in congruent CD–context allows us to use Proposition 12 to infer that for all P,Q ∈ S,
for all α ∈ A(P ) = A(Q) and for all ν, Fα(M, ν, P ) = Fα(M, ν,Q). Furthermore, the assumption
that the elements of the partition blocks of the same partition are also strong equivalent assures that
q[P, S̃, α] = q[Q, S̃, α] for all S̃ ∈ P, and for all α ∈ A(P ) = A(Q). From the above, it follows that
condition (ii) required by the definition of congruent differential ordinary lumpability holds.
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