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1 Introduction

Population continuous Markov chain is a framework for describing Markovian population dynamics.
At the basis of any PCTMC, is the set of rules that characterize completely all possible states and
transitions of populations. There are several representations of PCTMCs, the two common ones being
the ‘master equation’ or ‘Kolmogorov equation’ on the one hand, and the mean field ‘rate equations’
on the other hand. There are other, mixed options, but we will not consider them here. An important
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feature that is characteristic to most PCTMCs is the presence of multiple temporal scales, either
through explicit rate constants or as an intrinsic property.

This report aims at presenting the temporal multi-scale phenomena, the associated potential of
model reductions, and lastly, to survey the original chemistry and physics literature on the topic.
Our specific interest here is to explore the links between the known mean field reductions, and the
appropriate stochastic reductions of which, unfortunately, only a few studies exist. Because there are
only two groups of mean field reductions, going by the quasi-steady state (QSS) and quasi-equilibrium
(QE) approximation, the discussion of stochastic reductions will be limited to those approximations.
This does not exhaust all the possibilities of stochastic reduction. Notably, we do not discuss the most
popular topic, the matrix perturbation theory, because it doesn’t have a useful mean field equivalent.
For matrix methods, we can point to the general literature [Ste90, BO91, GVL12, Ste01, Kat95] and
remark that the simplest, singular perturbation theory setting could probably be reformulated using
the matrix theory (in terms of generators).

The review is structured with the goal of presenting an easy tutorial first (sections 3, 4, 5) and a
collection of hopefully useful references second (sections 6 and 7). For compleness, the basic notions of
a PCTMC, the master equation, and the mean field limit are summarized in section 2. To illustrate key
ideas and to motivate, the Wireless Sensor Network model is presented in section 3. Is a quintessential,
familiar model1, and yet it can teach a few valuable lessons. The original QSS/QE approximations
were invented as mean field reductions; we start there as well, emphasizing their differences in section
4, all the while avoiding the hard subject of differential equations (the only ODE-related prerequisite
is the knowledge of how to solve ẋ = −kx). Then, concrete implementations of the WSN model
reductions are presented and nicely illustrated in section 5

2 Population Continuous Time Markov Chain (PCTMC)

Population continuous time Markov chain (PCTMC) is a tuple χC = (X,M, T ,D), where

1. X = (X1, . . . , Xn) is a vector of variables describing n species of the model.

2. M is the domain of X. Usually Xi counts the elements in a population of species i, therefore
we can assume that Xi ⊂ N and M ⊂ Nn (in order to allow the extinction of populations, we
assume 0 ∈ N).

3. T = {τ1, . . . , τr} is the set of r transitions of the form τ = (λ,b,a, w), where:

(a) λ is the label of a transition,

(b) a = (a1, . . . , an) is the post-vector ; ai ∈ N is the number of agents of species i, created by
the transition.

(c) b = (b1, . . . , bn) is the pre-vector ; bi ∈ N is the number of agents of species i, consumed by
the transition.

(d) w : M 7→ R+∪{0} is the rate function, satisfying the conditions w(X) ≥ 0, and w(X) = 0
if X + a− b /∈M.

The pre-, and post-vectors are combined in a state-change vector s = a − b. This vector gives
the net change on each variable due to the transition.

4. D ∈M is the initial data (population counts at t = 0).

1by being inspired by the Michaelis-Menten model[JG11] which is well known in chemistry and biology literature
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2.1 Stochastic model

The state of a stochastic model in continuous time is described by P (X; t), which is a joint probability
of there being X agents in the population at time t, conditional to an unspecified initial probability
at t = 0. The probability at later times is found by solving a system of linear ODEs, known as the
‘Master equation’ (ME) or ‘Kolmogorov’s equation’[VK92, Gar85]

∂tP (X; t) =
r∑
j=1

wj(X− sj)P (X− sj ; t)−
r∑
j=1

wj(X)P (X; t) . (1)

A slightly different formulation of the same equation can be found in the literature

∂tP (X; t) =
∑

X′∈M
W (X|X′)P (X′; t)−

∑
X′∈M

W (X′|X)P (X; t) .

The relationship between the two is established by W (X|X′) =
∑

j wj(X
′)δX,X′+sj .

2.2 Mean field limit

The mean field model is described in terms of the population density vector x(t) which is the average
population size, normalized to the total population N , in the limit when total population goes to
infinity, i.e. x(t) = limN→∞N

−1 〈X〉 (t), where the average of some function f(X) is defined by
〈f(X)〉 (t) =

∑
X f(X)P (X; t). Its temporal evolution is governed by a system of ODEs, called the

rate equations:

∂tx =
r∑
j=1

sjwj(x) = S ·w(x) (2)

Here S = (s1, s2, . . . , sr) is the stoichiometry matrix, consisting of all the state change vectors arranged
as columns (“·” denotes a matrix-vector product).

3 Wireless sensor network model (WSN)

Consider a model of a network of sensors and gateways, whose purpose is to collect and transmit data.
It could be pictured as two layers, with Ns sensors placed on the top layer, and Ng gateways placed
on the bottom layer, as in figure 1. The total number of elements in both layers is N = Ns + Ng.
In principle, there is the ambient space in which the elements are distributed, but to simplify the
discussion, we will assume that the system is ‘well mixed’, meaning that all the elements are distributed
randomly, and that each element of the gateway layer can communicate with any element in the sensor
layer.

A sensor is modelled as a automaton with three states, with the following interpretation and
notation:

sensor in a ‘collecting data’ state (SC) X1 =#SC
sensor in a ‘transmitting data’ state (ST) X2 =#ST
sensor in a ‘done’ state (SD) X3 =#SD

In our simple model, sensors are single-use devices; when a sensor is dispatched, it becomes inactive.
The variables X1, X2, X3 contain the count of sensors in a corresponding state. Colors match figure 1.

A gateway is modelled as an even simpler automaton with two states:
gateway in an ‘idle’ state (GI) X4 =#GI
gateway in a ‘receiving data’ state (GR) X5 =#GR

Similarly, X4 and X5 contain population counts in a corresponding state.
The variable of the WSN model is therefore five-dimensional: X = (X1, X2, X3, X4, X5)

ᵀ.
To complete the definition of our PCTMC, We propose the following scenario of transitions. To

make a data transfer, an idle gateway (GI) must establish a connection with one collecting sensor (SC)
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Sensor ‘population’
collecting
transmitting
dead

Gateway ‘population’

idle

receiving

Figure 1: Two layer WSN model, populated by Ns = 100 sensors (upper layer) and Ng = 25 gateways
(lower layer), each of which is assigned a state randomly, with probabilities p(SC) = 1/2, p(ST) = 1/3,
p(SD) = 1/6, p(GR) = 3/4, p(GI) = 1/4.

to become an ST-GR pair. It is easy to see that one unit of both X1 and X4 is consumed, and one unit
of both X2 and X5 is created in this transition, so the state change vector is s1 = (−1,+1, 0,−1,+1)ᵀ.

The fundamental quantity of the model is the probability of a transition to occur within a small
time interval ∆t. This probability is w1(X) ·∆t, where w1(X) is interpreted as a rate (or frequency) of
transition[Gil77]. We suppose that each gateway can decide to initiate this transition independently
of others, so in a system consisting of Ng gateways, the correct scaling of the frequency is w1 ∼ Ng.
We postulate that this transition is proportional to a joint probability that a die, tossed on the upper
plane in figure 1, lands in a square marked by (labelled SC) and that a second die, tossed onto the
lower plane lands in a square marked by (labeled GI), i.e.

w1(X) = k1X1X4/Ns .

Normalization by the total number of elements N = Ns +Ng could also have been used, but Ns will
be more convenient in the limit N → ∞. There is no difference between the two normalizations so
long as Ns and N approach ∞ at the ‘same speed’, so that

ng =
Ng

Ns
(3)

is a fixed number. This scaling would not be appropriate in other situations.
Transmission could be interrupted due to something going awry with the transmitting sensor,

resulting in a breakup of an existing ST-GR pair. The state change vector of this transition is −s1.
The frequency of this transition is proportional to a chance of landing a die in a square marked with

and labeled (ST),
w2(X) = k2X2 .

An existing ST-GR pair breaks up upon a successful completion. The state change vector is now
s2 = (0,−1,+1,+1,−1). We follow the same argument as before for the frequency, obtaining

w3(X) = k3X2 .
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To complete the discussion we write out all the transitions with their corresponding labels:

τ1 = (connect, s1, w1)
τ2 = (disconnect, −s1, w2)
τ3 = (dispatch, s2, w3)

We may draw these transitions as a picture (make it a Petri net?):

SC

ST

τ1 τ2

SD

τ3

GI

GR

τ1

sync

3.1 Stoichiometry reduction of the WSN model

The stoichiometry matrix S is formed from all state change vectors, arranged as columns, so it is an
n× r integer valued matrix. The stoichiometry matrix of the WSN model is

S =
(
s1,−s1, s2

)
=


−1 1 0

1 −1 −1
0 0 1
−1 1 1

1 −1 −1

 . (4)

Stoichiometry matrix is useful, because it allows to analyze the first basic type of reduction, the
stoichiometry reduction. Consider the following three row vectors:

I1 = (1, 1, 1, 0, 0)

I2 = (0, 0, 0, 1, 1)

I3 = (0, 1, 0, 0,−1)

As one may easily check, each Ii nullifies S: Ii ·S = 0. To each I, we associate an invariant Ii = Ii ·X.
Invariants remain unchanged with respect to any of the transitions allowed by the model. Each
invariant may be assigned a sensible value Ii = ci that describes the initial state of the system. Their
meaning becomes more clear as we look at each of them individually: I1 = X1+X2+X3, I2 = X4+X5,
I3 = X2 − X5. Now it is easy to guess that the proper constants are I1 = Ns, which expresses the
fact that there is a fixed number Ns of sensors among all three groups SC, ST, SD; and I2 should be
assigned a value Ng which is, similarly, the total number of gateways. It is not evident what number
to assign to the last one, I3. The correct answer is that any valid number could be used, different
choices implying something about the initial state of the model. I3 = 0 implies that each transmitting
sensors is coupled to an idle gateway, I3 = 1 implies that there is one unaccounted for ‘transmitting’
sensor (a spy?), etc. In the following we will take I3 = 0.

You can look at invariants in this way: an invariant is a licence to eliminate one dimension (variable)
from the model. In the case of WSN, it is easier done that explained how X3, X4 and X5 may be
eliminated:

X3 = Ns −X1 −X2, X4 = Ng −X2, X5 = X2 , (5)

leaving us with only two independent variables, X1 and X2.
The general stoichiometry reduction can be summarized by the following
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Rules of thumb of stoichiometry reduction

• verify that rankS < min (r, n). Stoichiometry reduction is only possible if S is rank-deficient;

• identify the redundant variables to be eliminated;

• work directly with transitions T of the PCTMC model, and not with derived models (equations).
The number and ‘label’ of transitions must remain the same as in the original model;

• for each transition, eliminate the redundant variables in favor of the constant cis;

• truncate the state space by leaving only non-redundant variables;

• pay attention to the domain of the reduced model: because of various constraints it may have a
complicated shape.

Following these rules we get the transitions of the reduced model. Since in the following we will only
look at the stoichiometry-reduced model, from now on we use the same letters τi, wi, X = (X1, X2)

ᵀ

to denote the reduced quantities. So

τ1 =
{

connect, s1 = (−1,+1)ᵀ, w1 = k1X1(Ng −X2)/Ns

}
τ2 =

{
disconnect, −s1 = (+1,−1)ᵀ, w2 = k2X2

}
τ3 =

{
dispatch, s2 = (0,−1)ᵀ, w3 = k3X2

} (6)

3.2 Differential equation representations

3.2.1 The master equation

A probabilistic state of the WSN model is described by P (X1, X2; t), which is a joint probability of
there being an integer number X1 of collecting sensors (SC) and X2 of transmitting sensors (ST) at
a time t, conditional to some unspecified initial state at t = 0. The probability at some later time is
found by solving a system of linear ODEs, known as the ‘Master equation’ (ME) or ‘Kolmogorov’s
equation’. The Master equation of the (reduced) WSN model reads

∂tP (X) = w1(X− s1) · P (X− s1) + w2(X + s1) · P (X + s1)

+w3(X− s2) · P (X− s2)−
[
w1(X) + w2(X) + w3(X)

]
· P (X) (7)

This equation is defined on a discrete state space in two dimensions (see figure 2) that is constrained
by

0 ≤ X1 +X2 ≤ Ns, 0 ≤ X1 ≤ Ns, 0 ≤ X2 ≤ Ng. (8)

3.2.2 The rate equations

We would like to take the Ns, Ng → ∞ limit and to pass from the representation by the probability
P (X; t) to a representation in terms of variables, and we would like these coordinates to have a
non-trivial N =∞ limit. For that purpose, define ‘densities’ or ‘concentrations’ of agents as

x1 = 〈X1〉 (t)/Ns

x2 = 〈X2〉 (t)/Ns ,

where the mean is defined by 〈X〉 (t) =
∑

X XP (X; t). If we derivate both sides of this expression
with respect to time, insert the master equation on the right, and make a few simple manipulations
within this equation, we can find an exact differential equation for the expectation values:

d 〈X〉
dt

= s1 〈w1(X)〉 − s2 〈w2(X)〉+ s2 〈w3(X)〉 . (9)
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X1/Ns

X2/Ns

ng = 3/4

1 x1

x2

ng = 3/4

1

Figure 2: Domains of definition (shaded areas). The left panel represents a discrete state space of (7)
with Ns = 40 and Ng = 30. For visualization purposes, each point (X1, X2) is represented as a little
square, making the domain look as a filled area (a useful illusion). On the right, we have a continuous
⊂ R2 space of densities in the mean field limit. The two models cannot be compared directly, because
the sets of parameters are different (the situation on the right-hand side corresponds to Ns =∞ and
Ns = ∞) – we would be comparing ‘apples and apple jam’. We use a rather unusual orientation of
axes in this and the subsequent phase diagrams; we believe that this arrangement reinforces a useful
impression of X1 and X2 as being the row and column indices of a matrix (in a row-major format).

The mean field limit consists of replacing the averages of the form 〈XiXj〉 for all pairs i and j with
‘uncorrelated’ averages 〈Xi〉 〈Xj〉, and passing to the limit Ns, Ng →∞ (see [BHLM13] for the limiting
procedure). The mean field limit results in the exact system of rate equations2

dx

dt
= s1w1 − s1w2 + s2w3 (10)

w1 = k1x1(ng − x2) (11)

w2 = k2x2 (12)

w3 = k3x3 (13)

or 
dx1
dt

dx2
dt

 =

(
−1 +1 0
+1 −1 −1

)
·

 k1x1(ng − x2)
k2x2

k3x2


=

(
k1x1(x2 − ng) + k2x2

−k1x1(x2 − ng)− (k2 + k3)x2

)
(14)

From (8), we get the analogous constraints for the continuous state space (see figure 2)

0 ≤ x1 + x2 ≤ 1, 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ ns . (15)
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Figure 3: Stochastic time series of X2 with Ns = 40 and Ng = 30 (gray) and the corresponding mean
field curve, with rate constants as in the QE approximation (see section 5.1) and T = 100. The initial
steep rise defines the fast time scale, which is more than ×10 shorter than the slow scale.

4 Overview of multiple time scale reductions

The term dimensional reduction means that a model of interest may be replaced by another model
with fewer degrees of freedom. The reduced model is expected to be either exactly equivalent to
the original model, or a reasonably good approximation thereof. In order to be reducible in one
way or another, a model must qualify for the particular kind of reduction. Here we will discuss the
qualifying factors for a special class of reduction techniques, based on the hypothesis that the model
describes processes with largely separated temporal scales. We should mention that there are also
other reduction techniques, based on different principles. For example, any master equation qualifies
for the exact mean field reduction, that is based on the central limit theorem. Stoichiometry reduction
is another reduction, based on the rank-deficiency, as discussed in section 3.1.

The effects of multiple temporal scales can be visualized by plotting a curve of some coordinate,
say, x2(t) vs. t, as in figure 3. The curve should have at least two clearly identifiable legs: a brief,
steep initial rise, followed by a ‘knee’, followed by the second, slowly varying leg, extending to t = T .
The temporal extents over which x2 changes by roughly the same amount on the first and second legs
are, respectively, the fast and slow time scales. In the example of figure 3, the fast scale is ≈ 10, and
the slow scale is ≈ 100 units of time. The objective of multiple time scale reduction is to eliminate
some variables, so that the second leg of the curve would still be reproducible.

We shall limit this section with discussing mean field reductions because stochastic reductions are
still a developing field. In the following section, we will make some links between the two.

After reviewing some literature, we came up with the notion of there being four levels of multi-scale
reductions:

• canonical form of the singular perturbation theory;

• Quasi-equilibrium approximations;

• Quasi-steady state approximations;

• Purely numerical methods.

2The general form of rate equations is given by (2).
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4.1 Singular perturbation theory

The conceptually simplest case to describe is the singular perturbation theory [Ver05], applicable when
the mean field ODE is of a special, ‘canonical’ form. We require three assumptions to be satisfied: 1)
existence of a small, controllable parameter ε; 2) possibility to partition x in two groups of slow, y,
and fast, z, variables, x = (y, z); and 3) the ODE is in the form:

dy

dεt
= g(y, z) , ε

dz

dεt
= h(y, z) . (16)

We used the ‘slow time’ τ = εt scaling, because the slow scale is usually of interest. In the limit ε = 0,
the second differential equation is killed3 but the solution must satisfy

h(y, z) = 0 . (17)

In other words, the solution must lie on a surface, defined by (17), called the ‘slow manifold’.
Let’s assume that a unique solution, z = h−1(y), of (17), exists. We have to solve only the former

differential equation4, expressing the missing variable via the slow manifold equation,

dy

dτ
= g(y,h−1(y)) . (18)

Just like the variables were separated into fast and slow ones, we can think of h as representing all the
fast transitions, and g as representing all the slow transitions. Bringing rate equations to this form is
the ultimate objective of the (mean field) multi-scale reduction. What we have described here goes by
the name Tikhonov’s theorem [Ver05, Thm 8.1]. Further analytic development of this theory involves
rigorous estimates and approximations when ε > 0 is not zero (not pursued in this article).

4.2 Quasi-Equilibrium approximation (QE)

We retain the small parameter ε. The quasi-equilibrium approximation (QE) consists of two conditions.
First, we assume that certain rate functions are small because they are proportional to ε; say, the last
r − l rate functions are of the form wl+1 = εw̃l+1, wl+2 = εw̃l+2 etc. This suggests that as ε→ 0, the
original PCTMC with r transitions is equivalent, approximately, to a PCTMC with l transitions. At
the level of rate equations, this means setting ε = 0 in

dx

dt
=

l∑
i=1

siwi + ε
r∑

j=l+1

sjw̃j . (19)

This is not yet a reduction because we haven’t identified (and eliminated) the fast variables. To (19),
we associate a n × r stoichiometry matrix S = (s1, s2, . . . , sr), which is of full rank by assumption.
However if we set ε = 0, then the stoichiometry matrix loses n− l columns and as a result of this, may
become rank deficient. Hence the second condition of the QE approximation:

γ = rank(s1, . . . , sl) < n . (20)

If γ < n, then n− γ variables can be eliminated as ‘fast variables’ using the stoichiometry reduction,
described in section 3.1. It is not difficult to realize that it is possible to make a linear transformation
of variables, that brings (19) to (16). For example, suppose that I1 is a vector that nullifies the
truncated stoichiometry matrix (s1, . . . , sl). Define the new variable y1 = I1 · x and multiply (19) by
ε−1I1 on the left. We get

dy1
dεt

=

r∑
i=l+1

(
I · si

)
w̃i(x) = g1(x)

This equation is in the form of a first, the slow variable equation in (16). One such equation per each
null vector I can be constructed, and the entire model can be brought to the canonical form.

3which is the reason why this particular perturbation is called singular perturbation
4leaving aside the question of the appropriate initial condition
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4.3 Quasi-Steady State approximation (QSS)

At this point, we drop the small parameter assumption. The argument proposed in the following is
based on a ‘heuristic’ steady state assumption. The target model is given in the ‘as is’ form – with some
numerical rate constants, possibly of the same magnitude, and no clue about the separation of scales.
Based on intuition or some available heuristic argument, we could ‘declare’ certain transitions as fast
transitions, which means the following. We assume that a particular fast transition, say wa(x), reaches
a steady state (or ‘burns out’ to use more colorful language) well before the remaining transitions have
enough time to change significantly. An indication for identifying the fast transition can be had, if we
look at a derivative of the rate functions. In general, we get a linear function with respect to wa,

dwa
dt

=
w∞a (x)− wa(x)

τa(x)
(21)

where w∞a ≥ 0 and τa > 0 are known functions of x. We can interpret τi as a ‘rate of a rate’; then the
wa with a smallest τa may well be the best choice for a fast transition. Then, we can interpret w∞a as
a steady state value of this transition. The steady state declaration is thus equivalent to a statement
that there exists a special, confining surface called the QSS equation of state, defined by

wa(x) = w∞a (x) . (22)

Hence the QSS approximation consists of two parts: the ‘declaration’ of a set of fast transitions, and
of the QSS equation of state (22). The latter plays a role of the slow manifold, analogous to (17). If
our declaration was any good, then the true (simulated) value of supt∈[t1,t2) |wa(x(t))− w∞a (x(t))| is
reasonably small for most t1 < t2, justifying the ‘promotion’ of this estimate to the status of a small
parameter ε, and an expansion wa(x) = w∞a (x) + ε . . . .

It is never a bad idea to emphasize two differences between the QSS and QE approximations. The
notion of a QSS is based on ‘declarations’ which are, if we wish to put it bluntly, speculations based
on arguments that are correlated with the level of user’s expertise and may end up in good or bad
approximations. This fact appears in stark contrast with the rigor of SPT and QE approximations.
One could loosen the rigor of the QE by ‘declaring’ that some transitions can be discarded, thus making
it closer to a QSS approximation. The second point to be emphasized is a different terminology. The is
a minor difference in the jargon that often leads to a lot of confusion. In QE, we declare the transitions
as slow based on the small parameter ε of a rate function, whereas in QSS, we declare the transition
as fast based on the fast equilibration of a corresponding rate function. It may happen, that a slow
transition (QE) is equivalent to fast equilibration (QSS). An example of this is presented in section 5.

4.4 Numerical methods

By now one must have realized that the possibility of a reduction is closely related to identifying a
special embedded surface. In section 4.1, this surface was given to us by the formulation of equa-
tions(17). In section 4.2 we had to make a linear transformation of variables x to achieve the same
result. In section 4.3 a judgement call was made to declare the best candidate for such a surface
(22). In the most general case or when numerical accuracy is relevant, one may opt for a completely
numerical strategy. There are several strategies available for tackling mean field problems, and none
for stochastic models. In our opinion, three mean field techniques deserve special attention: the Com-
putational Singular Perturbation (CSP), the Invariant Low Dimensional Manifold method (ILDM),
and the Fraser’s method (FM), each of which is described in section 6.

5 Reductions of the WSN model

We will skip the singular perturbation theory as it would take us too far into analysis. We will also not
mention anything about purely numerical methods because our model is too simple for that. However,
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z

h(z) ng

equilibrium

Figure 4: Illustration of the fast equilibration.

several interesting features of QE and QSS reductions can be illustrated using WSN as an example.
To isolate these features, we identify three scenarios:

• Dispatch bottleneck scenario (DB);

• Gateway current bottleneck scenario (GCB);

• Hungry sensor scenario (HS);

To illustrate the QE approximation, we use the

Dispatch bottleneck scenario (DB) The dispatch transition τ3 is the slow transition, because
the rate constant k3 (see (13)) is much smaller than the remaining ones: k3 � k1, k2.

For simulations of the dispatch bottleneck, we use k1 = 1, k2 = 1.38, k3 = 0.1, and ng = 0.75.

5.1 Mean field QE approximation

We propose a new stoichiometric invariant I = (1, 1) which, we claim, brings the WSN to the canonical
form (16). We also propose a second vector (0, 1) in order to complete the coordinate transformation.
Stacking these vectors as rows of the transformation matrix, we obtain the coordinate transformation,(

y
z

)
=

(
1 1
0 1

)
·
(
x1
x2

)
=

(
x1 + x2
x2

)
(23)

Since w3 ∼ k3 and k3 is the small ‘ε’ parameter, we can recognize that dividing these equations by
k3, we obtain the (16). Multiplying the rate equations (10) by the transformation matrix, we get the
equations for the new variables which we can write as

dy

dt
= −w3 (24)

dz

dt
= w1 − w2 − w3 (25)

5.1.1 Fast variable equilibration

Let’s focus now on the fast variable z. Substituting the coordinate transformations, we get

dz

dt
= h(z; y) = ngy − (y + ng + a)z + z2

where a = (k2 + k3)/k1. In the extreme limit k3 = 0, this equation can be solved independently from
(24), because then y is simply a constant parameter. The idea of quasi-equilibrium is to assume that
the same can be done, approximately, if k3 is non-zero but small. This is the essence of the separation
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of scales assumption: if the variable y varies a little during the interval of time that is sufficient for
the variable z to equilibrate, then we may approximately freeze y for the same interval of time.

It is reasonable to expect that typical systems ‘equilibrate’ in some sense, meaning that their
variables approach some stationary, ‘equilibrium’ values. Equilibration of the variable z(t) towards
the equilibrium z∗ is illustrated in figure 4. The condition of equilibrium is h(z∗; y) = 0. Since
h(z; y) is a parabola with respect to z, there are two h = 0 solutions. In our case, these are two
real roots: z∗ = 1

2(y + ng + a)
(
1 ±

√
1− 4ngy(y + ng + a)−2

)
. Looking at figure 4, all zs that have

the parabola above the zero ordinate have positive velocity. Therefore, they move to the right, as
indicated in the figure. Similarly, all zs with the parabola below the zero ordinate, move to the left
(also indicated in the figure). So we have a situation where the lower root ‘attracts’ all zs from its
immediate neighborhood, while the larger root ‘repels’ them. However, the larger root lies outside
of the domain of z, so we don’t need to worry about it. This argument and figure 4 prove that the
smaller root (black dot) attracts from everywhere in the domain, so indeed, it is an equilibrium.

We can estimate the speed of attraction by approximating the parabola, close to the black dot, by
a straight line. We get an exponential, z(t) ∼ z∗ +A exp (−kfastt) where

kfast =

∣∣∣∣∂h(z; y)

∂z
(z∗)

∣∣∣∣ =
√

(y + a)2 − 4y (26)

5.1.2 Slow variable equilibration

The relation between y and z, assuming that z is in local equilibrium as described in the preceding
section, is called the quasi-equilibrium equation of state. Returning to the original variables (only for
the smaller root of interest), the quasi-equilibrium equation of state is

DB : x2 =
ngk1x1

k1x1 + k2 + k3
(27)

The meaning of the equation of state is that it defines a curve (or more generally a surface) of
slow equilibration the (x1, x2) plane. If the initial conditions are not on this curve, then the fast
equilibration ‘adjusts’ the trajectory, by quickly bringing it to the DB curve. The fast time scale is
the time it takes for this ‘adjustment’.

To describe the rate of slow equilibration (along the QE curve) we return to (24) where, on the
right hand side we have w3 = k3z. To eliminate z we have to be careful to use the lower root solution,
z∗ = ngy/(ng + a+ y) + o(y/(ng + a+ y)). Approximating by the first term (for small y), we get

dy

dt
= − k3k1ngy

k1ng + k2 + k3
+O(y2) (28)

Also here, we find an exponential equilibration towards zero, y(t) ∼ B exp (−kslowt) with the rate

kslow =
k3k1ng

k1ng + k2 + k3
(29)

Since kslow is proportional to a small parameter k3, this equilibration is slower than the one described
in the preceding section, as expected.

5.2 Stochastic QE approximation

Here we would like to translate the ideas of the mean field QE reduction, from section 5.1, to the
master equation setting. The master equation of the WSN model is

∂P (X1, X2) = [k1(X1 + 1)(Ng −X2 + 1)/Ns] · P (X1 + 1, X2 − 1)

+k2(X2 + 1) · P (X1 − 1, X2 + 1) + k3(X2 + 1) · P (X1, X2 + 1)

−
{
k1X1(Ng −X2)/Ns + (k2 + k3)X2

}
· P (X1, X2) . (30)
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X2/Ns

ng = 3/4

1 x1

x2

ng = 3/4

1 the start (x0)

fast extinction

DB equation of state aka the ‘slow manifold’

slow equilibration

Figure 5: Left: Histogram of P (X; t) with P (X; 0) = δ(X −D), D = (Ns, 0), obtained from 1000
stochastic trajectories. Right: a single mean field trajectory x(t) starting at x(0) = (1, 0). Main
features of the trajectory and the QE equation of state (27) are also indicated.

5.2.1 Slow variable equilibration

An analogous coordinate transformation to (23) is Y = X1 +X2 and and Z = X2. The probability of
Y,X is Q(Y, Z) = P (Y − Z,Z). Using this relation, we find, P (X1 + 1, X2 − 1) = Q(Y,Z − 1), and
P (X1−1, X2 + 1) = Q(Y, Z+ 1), and P (X1, X2 + 1) = Q(Y + 1, Z+ 1). Substituting into (30), we get

∂tQ(Y, Z) = r1(Y, Z − 1) ·Q(Y, Z − 1)− r1(Y, Z) ·Q(Y, Z) (31)

r2(Y, Z + 1) ·Q(Y, Z + 1)− r2(Y, Z) ·Q(Y, Z)

k3
{

(Z + 1) ·Q(Y + 1, Z + 1)− Z ·Q(Y,Z)
}
.

The new rate functions r1 and r2 are: r1(Y,Z) = k1(Y − Z)(Ng − Z)/Ns, and r2(Y,Z) = k2Z.
Summing over all possible values of a variable in a joint probability, eliminates that variable; so

Q(Y ) =
∑

Z Q(Y, Z) is a probability of Y . Performing this summation in (31) eliminates the fast
variable, and we get a master equation for the probability of a slow variable

∂Q(Y ; t) =
[
k3E(Z|Y + 1; t)

]
·Q(Y + 1; t)−

[
k3E(Z|Y ; t)

]
·Q(Y ; t) (32)

where
E(Z|Y ; t) =

∑
Z

ZQc(Z|Y ; t) .

is the mean of the fast variable, conditional on Y being held fixed, and Qc(Z|Y ) is the ‘Z conditional
on Y ’ probability, found from a relation

Q(Y, Z; t) = Q(Y ; t) ·Qc(Z|Y ; t) .

This equation describes a ‘death process’ with a transition

W (Y |Y ′) = δY,Y ′−1
[
k3E(Z|Y ′)

]
which is slow, indeed, because the rate is proportional to a small parameter k3.

A couple of technical details are in place. An important property of r1 and r2 was exploited in
arriving at (32). Note that r1 and r2 depend on Y without any ±1 shifts. Upon summing (31), all
terms containing r1 and r2, cancel out exactly5. If E(Z|Y ) can be approximated by a constant, then
32 is solvable (see [Gar85, Chap I] and [Gil77]).

5In general this is an approximation because there may be non-zero contributions from the boundaries.
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Figure 6: The mean field QSS reduction. Two sample trajectories stick together, therefore the model
is reducible. The two equations of state, corresponding to GCB and HS scenarios are also shown.

5.2.2 Fast variable equilibration

The fast equilibration is described by the conditional probability Qc(Z|Y ). The most important
assumption of the stochastic QE approximation is the Markovian property of Qc. With this assump-
tion, Z becomes completely decoupled from the slow dynamics described in the preceding section.
Neglecting the k3 term, we get a ‘birth-death’ master equation for the fast variable,

∂Qc(Z|Y ; t) =
∑
Z′

[
t+(Z|Z ′) + t−(Z|Z ′)

]
·Qc(Z ′|Y ; t)

−
∑
Z′

[
t+(Z ′|Z) + t−(Z ′|Z)

]
·Qc(Z|Y ; t) (33)

with the birth and death rates, respectively,

t+(Z|Z ′) = δZ,Z′+1r1(Y,Z
′) , t−(Z|Z ′) = δZ,Z′−1r2(Y,Z

′) .

Also here, the fact that Y s have no shifts in Qc in (31) was an important technical detail of derivation.

5.3 Mean field QSS approximations

The general differences between the quasi-steady state and quasi-equilibrium approximations, and the
main procedures of the QSS reduction were outlined in section 4. We have two options of declaring
the fast transition here. We discuss both of them using the ‘gateway current bottleneck’ and ‘hungry
sensor’ scenarios, below. Both scenarios are illustrated by a simulation with parameters k1 = 1,
k2 = 1.38, k3 = 0.85, ng = 0.75, and two initial conditions, x(0) = (1, 0) and x(0) = (ng, 1− ng). The
results are shown in figure 6. By design, none of the ks could be identified as small or dominant. And
yet, one can clearly see in the figure, that the QSS reduction is as effective as was the QE reduction,
where the separation of scales was guaranteed by the smallness of k3. Moreover, note that GCS and
HS scenarios are not equivalent. GCS emerges clearly as a winner here. HS is less accurate, although
it captures the overall trend.

Gateway current bottleneck scenario (GCB) Declaring either w2 = k2x2 or w3 = k3x2 as
fast transitions, and proceeding as outlined in section 4, the QSS equation of state (the steady state
condition) for the GCB scenario is found as w1 = w2 + w3. Solving for the concentrations, we find

GCB : x2 =
k1ngx1

k1x1 + k2 + k3
. (34)
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Note that it is the same equation as (27). It is an interesting result: the gateway current bottleneck
scenario, i.e. assuming that w2 and w3 are fast transitions, is equivalent to the slow dispatch scenario.
This result may strike as an odd one, because it would seem that the slow dispatch idea runs contrary
to the assumption of a fast w3. Nevertheless, the two are consistent: even if w3 is considered as fast,
it may result in a small steady current. Note also that in the QSS scenario, we didn’t assume that k3
is small. Rather, we can verify a-posteriori, that the approximation holds better if ng is not too large,
which in turn explains the title of this scenario.

Hungry sensor scenario (HS) If we declare that w1 = k1x1(ng − x2) is the fast transition, we
are implying that sensors are somehow ‘eager’ to establish a contact with gateways, or we can think
of them as being ‘hungry’. The condition of a steady current is 0 = ẇ1 = k1(ng − x2)(w1 − w2) +
k1x1(w1 − w2 − w3). Rearranging terms, it is cast as a quadratic equation for x2,

HS : x22(x1 + κ2)− x2
[
(x1 + κ2)(x1 + ng) + x1(κ3 + ng)

]
+ ngx1(x1 + ng) = 0 , (35)

where κ2 = k2/k1 and κ3 = k3/k1. Note that by being a quadratic equation, it has two solutions, as
in the QE case. Likewise, the + branch is discarded as being outside the domain of definition.

5.4 Stochastic QSS approximation

We have seen that the GCB scenario is equivalent to the DB scenario, therefore the stochastic ap-
proximation is the same. General methods for the stochastic QSS reductions do not exist yet.

6 Further reading: mean field model reductions

6.1 Singular perturbation theory

The analytic singular perturbation theory develops the picture of QE and QSS in detail, especially in its
important aspects of convergence. This theory is complicated, and does not lead to any more reduction
than what is allowed by Tikhonov theorem. However, we give a brief outline for completeness. For
more details, we recommend an excellent book by Verhulst [Ver05].

A differential equation of the form

F (t, x, x′, . . . ; ε) := F0(t, x, x
′, . . . ) + εF1(t, x, x

′, . . . , ε) = 0,

or a system of differential equations of the form

ẋ = g(x, ε) := g0(x) + εg1(x, ε),

where ε is a small parameter controlling the size of the perturbation, F1 or g1, is called singular if one
the following (equivalent) statements is true

• Differential equation F0 = 0 is of lower order than F0 + εF1 = 0. This situation occurs when,
for example, F1 contains higher derivatives than F0;

• The Jacobian matrix J(x; ε) = ∂g
∂x(x; ε) is singular (some eigenvalues are 0 or ∞) if ε = 0, and

non-singular otherwise;

In both scenarios of the WSN model a small parameter ε multiplies the first of the two equations,
namely y′1 = O(ε). If we set ε = 0, the first row of the Jacobian matrix is full of zeros, therefore at
least one of its eigenvalue is equal to zero; hence both WSN scenarios are singular. This holds as a
general rule: QE and QSS approximations are called for whenever the analytic problem contains a
singular perturbation.
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Tikhonov theorem (1958) is often quoted as the analytic foundation of the QSS approximation.
We present this theorem following [Ver05, Thm 8.1]. Consider the initial value problem

dx

dt
= f(x,y, t) + ε · . . . , x ∈ D ⊂ Rn, t ≥ 0,

ε
dy

dt
= g(x,y, t) + ε · . . . y ∈ G ⊂ Rm.

(36)

Here f and g are sufficiently smooth vector functions in x, y, and t; the dots represent (smooth)
higher-order terms in ε. Assume that,

1. a unique solution of the initial value problem exists

2. a unique solution of the reduced initial value problem exists; the reduced problem:

ẋ = f(x,y, t), x(0) = x0,

0 = g(x,y, t),

with solutions x(t), y(t).

3. Suppose that 0 = g(x,y, t) is solved by y = φ(x, t) where φ(x, t) is a continuous function and an
isolated root. Also suppose that y = φ(x, t) is an asymptotically stable solution of the equation

dy

dτ
= g(x,y, t)

that is uniform in the parameters x ∈ D and t ∈ R+.

4. y(0) is contained in an interior subset of the domain of attraction of y = φ(x, t) in the case of
the parameter values x = x(0), t = 0.

Then we have

lim
ε→0

xε(t) = x(t), 0 ≤ t ≤ L,

lim
ε→0

yε(t) = y(t), 0 < d ≤ t ≤ L (37)

with d and L constants, independent of ε.
It is easy to show that both scenarios of the WSN model, given by (??)–(??) and (??)–(??) are in

the Tikhonov form (36) if the time variable is scaled according to the formula tTikhonov = εtWSN. The
form (36) is more convenient for the statement of the theorem because it renders the initial transient
infinitely fast in the limit ε = 0.

In assumption (iii), t and x are parameters and not variables. The idea is that during the fast
motion of the variable y, the small variations of these parameters are negligible as long as the stability
requirement holds.

Invariant manifold is an important concept which we briefly mention here. By the very meaning of
invariance, any data, that is located on an invariant manifold initially, remains on the same manifold
forever. There are many different flavors of invariant manifolds. A special role is attributed to a
manifold with a property of being “attracting” or, equivalently “stable”. The attracting property
means that all trajectories within its “basin of attraction”, approach the manifold (distance tends to
zero), forward in time.

It is easy to check that the velocity field on the slow manifold is not parallel to the slow manifold,
y = φ(x, t), discussed in section 6.1, whenever ε > 0. Hence, the slow manifold is not an invariant
manifold. Generic long-time behavior of a typical trajectory, in relation to the slow manifold, can
be described by imprecise statements like “are approximately parallel to each other”, “stay not far
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from one another”, “have locally similar speeds,” but it is not correct to assume the slow manifold
equation as a mathematical identity. For more details, the perturbation theory must be applied,
which can be unfeasible for complex problems. Practitioners have long gone the numerical way, and
there are very nice, geometry-inspired methodologies on the market. Virtually any advanced method
builds on the concept of a slow manifold. We recommend, as a first reading, [Fra88], who explains
beautifully the relationship between the slow manifold, the invariant (center) manifold, the QSS and
QE approximations using mostly pictures. For the analytic theory an excellent book by Verhulst is
recommended [Ver05].

For a discussion of Tikhonov’s theorem in the context of SDEs, see an article by Berglund and
Gentz [BG03].

Geometric perturbation theory We only mention that a theory by Fenichel [Fen79] shows that,
under suitable conditions, there is an invariant manifold with a special meaning, called the center
manifold, which is a very important object. It is located “not far” from the slow manifold. Advanced
numerical methods mentioned below, attempt, directly or otherwise, to compute and quantify the
center manifold.

6.2 Fraser’s method

Fraser & co. have proposed a methodology, based on a very interesting geometric structure, discovered
by the authors[RF90, NF89, Fra88]. They consider a system of n mean-field equations of the form
ẋ = g(x, ε) and use the concept of a nullcline. A nullcline Ni is an embedded n − 1 dimensional
surface, defined by the equation gi(x, ε) = 0. A special geometric structure is present, authors claim,
in all chemical reaction networks which, as authors put it, can be reduced to planar flows (with
one-dimensional slow dynamics) [RF90]. To my understanding, this assumption is equivalent to the
following statements:

• the model is degenerate in the limit ε = 0 (an additional invariant exists);

• there is a global isolated equilibrium x0;

• the degenerate limit has a local equilibrium x1. The equilibrium forms a “one dimensional line”
[RF90] as a consequence of degeneracy;

• some intuitive argument can be used to identify a one-dimensional slow variable.

Authors argue that the intersection ∩Ni, splits the entire n-dimensional space in such a way that
a compact disjoint subspace can be identified which, topologically, is a tube. The cross-section of
this tube is a n − 1-simplex, determined by the intersection. The tube should possess the following
properties: 1) it contains x0 and x1 when ε > 0 is small; 2) its boundary is, locally, a dynamical
no-return surface (although this detail is not mentioned by the authors). The no-return property
means that all trajectories, entering the tube, stay inside the tube. Hence, authors claim, the tube
should contain the so-called center manifold (provided that such a manifold exists in a given system)
and they propose a simple idea how to find it. They propose a variational equation, which they
call a functional equation, that is simply the equation of the trajectory obtained from the system of
differential equations by eliminating the slow variable. Suppose for simplicity that the slow variable
is s = xn. Then, in the n− 1 dimensional vector space, y ∈ Rn−1, we may define this surface as a one
dimensional curve y(s), as a solution of

g1(y1, . . . , yn−1, s, ε)− gn(y1, . . . , yn−1, s, ε)
dy1
ds

= 0 ,

...

gn−1(y1, . . . , yn−1, s, ε)− gn(y1, . . . , yn−1, s, ε)
dyn−1

ds
= 0 ,

(38)
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and authors propose to solve this equation discretizing y(s) in the domain of interest, setting for the
initial condition y0(s) one of the intersections between two arbitrarily chosen nullclines, improving the
solution iteratively, using Newton’s iterations.

Extensions to this method to the master equation has been studied [RZ04].

6.3 Intrinsic Low-Dimensional Manifold (ILDM)

The method proposed by Maas & Pope [MP92b, MP92a] is also a geometric method in the sense that
it wants to find a certain invariant manifold, embedded in the phase space. We fix the dimension
of the surface, k, to be an arbitrary integer, 0 < k < n and ask for a k-dimensional surface S,
that best approximates the slow dynamics, with the expectation that any reaction trajectory, after a
quick transient, should land on this surface. We would like to find this surface as a parameterization
S(c1, . . . , ck) = 0 by a k-dimensional grid with coordinates c1, . . . , ck. This then corresponds to a
parametrically defined coordinates x = f(c1, . . . , ck) for some f .

The (local) n× n Jacobian matrix is defined by

J(x, ε) =
∂g

∂x
(x, ε) . (39)

It is characterized by n eigenvalues λi(x, ε), and n eigenvectors vi(x, ε). The adjective ‘local’ refers
to the fact that all of these quantities are defined with respect to a the reference point x. We may
assume without loss of generality, that all eigenvectors and eigenvalues are ordered in non-decreasing
order by the real part of the corresponding eigenvalue λi, i.e. <λi ≤ <λi+1.

The main hypothesis is that a trajectory x(t) at a point x accelerates most in the direction of the
eigenvector with the largest real eigenvalue, that is in the direction of vn; a bit less in the direction
of vn−1, and so on, down to the slowest acceleration in the direction of v1

6. The idea is to define the
ILDM surface locally, by requiring that the vector field on the surface g̃(c1, . . . , ck) = g(f(c1, . . . , ck))
is normal to n− k fastest eigenvectors of J. This results in a system of equations

vᵀ
k+1 · g̃(c1, . . . , ck) = 0

...
vᵀ
n · g̃(c1, . . . , ck) = 0
A1(c1, . . . , ck) = 0
...
Ak(c1, . . . , ck) = 0 ,

(40)

which is augmented by k additional constraints A1 . . . Ak to make the solution unique. The higher
is the k, the shorter is the transient time but on the flip side, a bigger grid is needed to tabulate
a surface with larger k. Most common numbers for k used in the literature are 1 or 2. In case of
k = 1, the ILDM surface should be the same as found by the Fraser method, given the same boundary
conditions.

We mention two important terms used in numerical methods: ‘stiffness’ of differential equations,
and ‘condition number’ of matrices. We claim that, multiple time scales, stiff differential equations,
and badly conditioned matrices, are different facets of the same reducibility phenomenon; a stiff
differential equation implies a badly conditioned Jacobian matrix, which implies multiple time scales
and vice versa. In particular, to describe the characteristic features of Jacobians of reaction networks,
we quote Maas, who describes a model of methane-air combustion [MP92b, p. 248]:

If we look at real chemical systems, sample calculations ¡...¿ show the following: Some eigenvalues
are zero ¡...¿. Almost all other eigenvalues are negative with values from typically −10−2 to −107s−1.

6This hypothesis is to be attributed to Lam and Goussis who call it “speed ranking” [LG94]. It is implicit in the
work by Maas and Pope.
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Only very few eigenvalues are positive (in the sample calculations at most one eigenvalue was positive).
At the equilibrium point all eigenvalues are zero or negative. ¡...¿ due to poor conditioning (roughly
speaking,“nearly linearly-dependent eigenvectors”), numerical difficulties could arise.

To avoid the issues with badly conditioned matrices Maas proposes to replace the eigenvectors
v with vectors of the Schur basis q which are insensitive to conditioning numbers. in [MP92b] the
following computational strategy is proposed

• Start with an initial guess of the state variables x = f(c1, . . . , ck) that fulfills the algebraic
equations A1 = 0, . . . , Ak = 0.

• For i=0,1,2, . . . , compute the Jacobian J and the Real Schur decomposition QᵀJQ = T, referring
to the old variable xold. Solve

Qᵀ
L

dxnew

dt
= Qᵀ

Lg̃ (41)

A = 0 (42)

until a steady state is obtained.

• If ||xnew − xold|| < µ accept solution, set x = xnew and leave the loop.

Maas & Pope propose to approximate the solution of the differential-algebraic equation (41)–(42) by
the extrapolation method.

ILDM has become quite popular in chemistry, and various special case studies and extensions exist.
For example ILDM can be coupled with transport and diffusion equations or temperature, to account
for non-ideally mixed reactions [BM07]. Coupling with spatial degrees require other techniques to
be used to handle the added complexity. In this context, Principal component analysis (PCA) and
multivariate adaptive spline regression (MARS) have been used in conjunction with ILDM[YPC13].
Overview of other applications and recent developments can be found here [KSR+11].

6.4 Computational Singular Perturbation (CSP)

Computational Singular Perturbation by Lam & Goussis [LG94, Lam93, LG91, LG89] is a numerical
technique to do practical computations with singularly perturbed systems. The final version of the
method [LG94] is widely cited within the numerical combustion community, but is also used outside
of it. For an example of its use outside of chemistry, circadian rhythms in Drosophila, see [GN06].
Authors consider CSP as, simply, an integrator for stiff differential equations (by repeatedly pointing
out that their method eliminates the ‘stiffness’ feature). Authors skillfully manage the subtleties of the
special structure of equations of reaction kinetics to craft a theoretically sound strategy. Their superior
craftsmanship shows also where it is mostly useful to the reader: presenting intuitive interpretation of
the intermediate steps, and making analogies with simpler reaction systems and analytic computations.
This method is our favorite pick of the section.

It is based on the availability of the Jacobian matrix, and requires the ability to compute some
of its eigenvectors, and eigenvalues. Dense matrix inversion is a prerequisite as well, but hopefully
inversion does not have to be performed very often. The original exposition is quite heuristic; for
a more formal presentation and error analysis [ZKK04b, ZKK04a] could be consulted as well. See
[Lam13] for a non-numerical application. Although conceived for the numerical combustion problems,
it seems to be applicable to general reaction network models. Of possible interest is [WQH13], where
software is presented, written for a special case study of CSP reduction. It is possible that ChemSuite
(?) implements CSP [references needed].

The starting point is a chemical reaction network of N nonlinear ODEs

dx

dt
= g(x) =

R∑
i=1

sir
i(x) (43)
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where in the last expression, sr are constant stoichiometric vectors, and ri are rate functions. Since
g can be expanded in a basis of “trial” column basis vectors ai, and row basis vectors bi. The two
sets are adjoint by the orthogonality bi · aj = δij . The velocity field is expanded as follows

g =
N∑
i=1

aif
i, f i = bi · g (44)

The expansion coefficients f i are called “modes”. Mode dynamics is governed by

df i

dt
=

N∑
j=1

Λijf
j (45)

Two equivalent representations of the matrix (Λij) can be found by differentiating (44) with respect
to time;

Λij =
(dbi

dt
+ bi · J

)
· aj = bi ·

(
− daj

dt
+ J · aj

)
(46)

Consider the ideal picture of a linear model: if bi and ai are left and right eigenvectors, respectively,
of J, then Λij = diag(λ1, . . . , λN ) and so mode dynamics is decoupled. Lam and Goussis propose

a to proceed as follows. Le’s suppose we have information that Λij is diagonal initially, so that its
eigenvalues are ordered in decreasing order.

A certain threshold time scale τ is defined by the user. All time scales, smaller than τ are declared
to be “fast”, equivalently, all eigenvalues of Λ that are greater than 1/τ are declared to be “large”.
Suppose there are M such eigenvalues, clearly M < N . If initially the eigenvalues are arranged
in decreasing order, then the upper M ×M diagonal block contains the Jordan form of the “fast”
subspace, the bottom (N −M) × (N −M) diagonal block contains the Jordan form of the “slow”
subspace. Ideally, the fast and slow subspaces are decoupled, so the upper-right and lower-left corners
of Λ are zero-matrices. We show the structure of Λ in (47)

Λ =

 Λ̃ B

C D

 , f =

 f̃

f

 (47)

In real situations B and C are not exactly zero. We have

df̃

dt
= Λ̃f̃ +Bf = Λ̃

(
f̃ − f̃∞

)
(48)

where f̃∞ = −Λ̃−1Bf . Authors claim that f̃ − f̃∞ is a “smaller” quantity that f̃ . If we consider a
new variable f̃new = f̃ − f̃∞ then, we have

df̃new

dt
= Λ̃

(
f̃new − f̃new∞

)
(49)

where f̃new∞ = Λ̃−1 df̃∞dt . Because Λ̃ is “big”, f̃new∞ is supposed to be “smaller” (in appropriate limit)

than f̃∞. And so on... In the last version of the method, authors propose to use the following iterative
“refinement” scheme, acting on the basis vectors:

• First step:

b̃new = Λ̃−1
(db̃

dt
+ b̃ · J

)
, ãnew = ã (50)
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• Second step:

b̃new = b̃, ãnew =
(
− dã

dt
+ J̃ · a

)
Λ̃−1 (51)

Here, a is a matrix whose columns are column vectors ai, b is a matrix, whose rows are row-vectors bj .
Authors claim that these two steps may be performed singly, or in tandem in any order, or recursively
any number of times – provided the most current T̃ is used always. Authors acknowledge that this
iteration scheme is an extension of the Mises Power Method to compute the eigenvectors, corresponding
to the largest eigenvalues of a matrix. The time derivatives of a and b can be computed using their
expressions in terms of x and the time derivative ẋ = g. The iterations maintain orthogonality of ai
and bi. The first step “depresses” the block B, while the second step “depresses” the block C.

After the modes are decoupled to a satisfactory accuracy, we stop. This procedure provides two
interesting results. First, it gives a new system of differential equations in which the fast and slow
degrees are decoupled, and the equation for the slow degrees only, can be approximated as

dx

dt
= g(x) ≈

N∑
J=M+1

anew
J fJnew (52)

The second result is M approximate equation of state,

fmnew = bmnew · g(x) ≈ 0 (53)

6.5 Polynomial reaction rates

Gorban, Karlin & associates have developed the Method of Invariant Manifolds (MIM) [GK92, GK03].
The fundamental additional assumption about the rate functions is

ri(x) = k+i

d∏
j=1

x
αij

j − k
−
i

d∏
j=1

x
βij
j (54)

The polynomial rate functions (54) is indeed to most common assumption in chemical reaction mod-
eling, but their relevance for our project needs to be verified.

With (54) in place, chemical reaction kinetics could be reformulated using certain “potentials”, like
the Lyapunov function, and quantities like temperature and other “global” quantities. Gorban and
Kaitlin advocate a thesis whose gist is as follows. Chemical reaction dynamics is fuzzier, and funda-
mentally more inaccessible to verification, than one would wish. As a result, creative reaction paths,
out-of-the-hat reaction rates and similar “frivolities” are commonplace in the business of chemical
reaction modeling. An alternative theory would be superior to a detailed, but too “creative” reaction
kinetics, if it could somehow manage to operate in terms of fewer quantities and those quantities
could be measured unambiguously from observations (thermodynamic potentials are candidates for
such quantities)[GK03]. It is a kind of reduction, in the sense that authors advocate a reductionist
view of chemical reaction networks. It seems to me that authors to fall short of providing concrete
strategies of how such a theory could be implemented in practice. Instead they fall back to reformu-
lating the reaction rate kinetics using thermodynamic potentials, which ends up being an alternative
formulation of the same theory. Be it as it may, the idea is an interesting one.

Polynomial rates are ubiquitous and quite a few researchers have dabbled with them. Already
Fenichel [Fen79] has described a method of computing the slow manifold with polynomial rates (see
also [NW11].) Nicolini et al. mention normal forms in the polynomial bases [NF13a, NF13b]. See also
[vdSRJ13] for a recent article about polynomial rates.
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6.6 Sensitivity analysis

Sensitivity analysis is a very old method to gain some information about the system [REFERENCES?].
It is essentially linear analysis, where derivatives of product concentrations with respect to rates are
assembled into a matrix, and this matrix is played with. It seems like the methods discussed up to now
are superior to sensitivity analysis. Model reduction methods, based on dynamic sensitivities from
the impulse parametric sensitivity analysis (iPSA) and the Green’s function matrix (GFM) analysis
have been developed by [PMKTG13]

6.7 A mix combinations and extensions of the previous methods

Geometric interpretation has been pursued by [NF13a, NF13b] where QSSA ideas of Fraser, Maas and
other are further developed. In particular Nicolini & associates introduce a concept of “attractiveness”
of certain slow manifolds. Acknowledging the relevance of slow manifolds, Bykov et. al. focus on the
details of fast manifolds [BG13]. Hybridization of the QSSA-ILDM and CSP methods is proposed in
[ZAI13]. A very interesting discussion of the fast-slow manifolds and the associated degeneracy prob-
lems is presented by Goussis in [Gou13] where the van der Pol oscillator is discussed, whose equilibrium
state is oscillatory rather than a stagnation point. Lebedev & co. have developed an advanced tool for
reduction of detailed kinetic mechanisms with a ‘minimal human effort’ [LOC+12]. The tool includes
10 reduction and 2 analysis methods which are based on the results of zero-dimensional modeling.
The methods can be combined and applied in sequence. The reduction tool has been implemented
as a part the Chemical Workbench computational package and has been tested for a number of large
kinetic mechanisms of gas-phase processes. Equivalence of the leading order asymptotic analysis and
the geometric approximations (QE, QSS) is discussed in [Gou12]. Chiavazzo & Karlin claim to have
developed a fully adaptive methodology for reducing the complexity of large dissipative systems. Ac-
curate reduced description is achieved, by construction of a hierarchy of slow invariant manifolds,
with an embarrassingly simple implementation in any dimension [CK11]. Possibly interesting ideas
concerning algorithmic implementation are [BM11]. A very efficient computational technique, based
on the ILDM method and in situ adaptive tabulation (ISAT) of the accessed region of the composition
space is presented by Pope [Pop97]. Test results show excellent control of errors; and a speed-up factor
of about 1000 compared to the direct approach of numerically integrating the reaction equations. This
is a very popular computational technique in combustion community.

7 Further reading: stochastic model reduction

The oldest reduction technique based on the separation of scales is the so-called adiabatic elimination
of fast variables, applied to the Fokker-Planck equation (FPE). A classic example is the Smoluchowski
equation for the Brownian motion of a light particle[Gar85, Chap 6]. The ambient space of a particle,
the probability P (x, v; t), and the full FPE is six dimensional (three space coordinates x, and three
velocity coordinates v). However, its Langevin equation (ẋ = v, µv̇ = −λv + F (x) + γξ(t)) is in a
Tikhonov form with respect to the small mass parameter µ so, setting µv̇ → 0 we can eliminate the
velocity and, consequently, reduce the dimensionality of the ambient space. Formulating a new FPE
for a probability PSmol(x; t) in the reduced space, we obtain a simpler model because it contains half
the dimensions of the original model. Rigorous derivation of this reduction is a classical subject, for
which a classic text by Gardiner is recommended[Gar85].

7.1 Langevin equation

The idea of building reduction techniques, starting from the Langevin equation representation of a
Markov chain is being advocated by Kurtz & co. [BKPR06, KK13]. Authors introduce the system
size parameter N , and a set of exponents γ, α1,. . . , αs, and β1, . . . , βr by which the time, each of
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the s species, and each of r reaction rates are scaled as follows: t → τ = tNγ , Xi → Zi = N−αiXi,
and kj → k′j = Nβjkj . The ‘classical’ RRE are obtained if γ = 0, αi = 1 and βi = 0 (−1) for unary
(binary) reactions. By considering N and all the exponents as free parameters, authors show that,
in the limit N → ∞, approximate or exact reduced models can be obtained, which involve different
subsets of chemical species, depending on the different choices of exponents.

7.2 QSS and QE

Stochastic partial equilibrium assumption (PEA) is a multi-scale stochastic simulation algorithm
(MSSA) which makes use of Gillespie’s stochastic simulation algorithm (SSA) together with a new
stochastic formulation of the partial equilibrium assumption (PEA) [CGP05b]. I think it is also re-
ferred to as the “slow-scale” simulation. Pioneering works in model reduction, applied to a class of
‘stochastic Michaelis-Menten’ models by Rao & Arkin [RA03], Haseltine & Rawlings [HR02, HR05],
Cao et al. [CGP05b], Goutsias [Gou05] integrate the Gillespie algorithm at some stage of approxima-
tion. The prerequisite is a model in a standard QSS form. Then the joint probability for all variables
P (x, y) is split as a product of the slow variable probability P (x) and the ‘fast conditional on slow’
probability Pc(y|x) by a relation P (x, y; t) = P (x)P (y|x). The master equation for the slow variable
is found by marginalizing over the fast variables. The result is, typically, a death or a birth-death
process master equation, whose rates are expressed in terms of averages over the conditional prob-
ability Pc . The fast variables are treated by making the assumption that Pc is Markovian. This
requirement implies that Pc depends on the slow variable as if it were a time-dependent parameter
x(t), i.e. Pc(y|x) = P̃ (y;x(t)). Then, Rao & Arkin [RA03] propose to approximate Pc by a stationary
distribution (followed by further approximations needed to find such a stationary distribution), and
then apply the Gillespie algorithm to the slow rate equation. Haseltine & Rawlings[HR02] propose to
use the deterministic approximation for the fast variables.

7.3 Gillespiada

The stochastic simulation algoritm (SSA) aka ‘the Gillespie algorithm’ an exact algoritm to simulate
the Langevin equation. It is simple to code, simple to parallelize and, indeed, has become the method
of choice to simulate reasonably simple stochastic models. Gillespie shares his take on stochastic
chemical kinetics, paying particular attention to numerical simulation algorithms [GHP13]; a slightly
older review on a similar subject is [Gil07].

Tau leaping or τ -leaping, is a framework for approximation and solution of multi-scale systems,
where the scales are over a range of populations of chemical species from moderate to very large
numbers [Gil01, GP03, RPCG03, RPCG05]. The stochastic version of the Michaelis-Menten has been
benchmarked with τ -leaping here [WFCP11].

Slow-scale + SSA = ssSSA Cao et. al. develop a systematic approximate theory that allows
one to stochastically advance the system in time by simulating the firings of only the slow reaction
events. When it works, very substantial increases in simulation speed can be realized. Some examples
[CGP05a] and recent developments [CP08a]. The Michaelis-Menten model, stochastified using the
ssSSA procedure, and it’s deterministic progenitor, are compared in [GSP11].

Software: StochKit, StochKit2, StochMA, etc. Gillespie, Petzold & co. have been busy with
creating useful software for SDEs. Their first version of the popular “StochKit software toolkit”
[CP08b], and the follow-up major upgrade [SWR+11]. The next version is interesting because of its
model-reducing capabilities: Automatic model analysis algorithm using an adaptively weighted Petri
net to dynamically identify opportunities for model reductions for both the stochastic simulation
algorithm and tau-leaping simulation, with no requirement of expert knowledge input [WFLP12].
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QSS in evolutionary biology Quasi stationary distributions (QSD) in CTMCs are reviewed in
[vDP13]. A typical example: biological systems where populations are certain to “die out” eventually,
but appear to be stationary over any reasonable time scale.
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