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Abstract

We show that, under suitable conditions, fluid model checking bounded CSL properties of
selected individuals in a continuous PEPA population model can be approximated by checking
equivalent bounded PCTL formulas on corresponding objects in a discrete time, time synchronous
Markov population model, using an on-the-fly probabilistic approach. The proposed technique is
applied to a benchmark client-server case study showing promising results also for the challenging
case of nested formulas with time dependent truth values. The on-the-fly results are compared to
those obtained with a global fluid model checking technique.

1 Introduction

Model checking has been widely recognised as a powerful approach to the automatic verification of
concurrent and distributed systems, including aspects of their performance. It consists of an efficient
procedure that, given an abstract model M of the system, decides whether M satisfies a logical formula
®, typically drawn from a temporal logic. The separation of concerns between the formal system model
on one hand, and the formalisation of the property (or experiment) on the other, and the automatic
derivation of the analysis facilitates the exploration of different configurations and scenarios of system
behaviour. Recently, the integration of mean field and fluid approximation techniques with such formal
modelling techniques [5], 17, 23], originating in theoretical computer science, has received increasing
attention as a way to obtain scalable formal methods supporting the design of large scale collective
adaptive systems for which performance aspects are an essential feature of their desired behaviour.
The main contribution of the present paper is to show that, under suitable assumptionsﬂ a stochas-
tic model of an individual object in the context of a CTMC population model, derived from a PEPA

!See Theorem 5 of [6].
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(Performance Evaluation Process Algebra) population model [16], satisfies a robust bounded CSL
formula if and only if the probabilistic DTMC model obtained via the method described in Sect.
satisfies a bounded PCTL formula obtained from the CSL formula by scaling the time bounds ac-
cording to the uniformisation rate used in the method. A further important contribution is that the
DTMC model can be analysed in an on-the-fly manner [23], generating, from a high-level specification
of the individual behaviour to verify the given formula, only as much as strictly needed of the state
space.

Model checking approaches are often divided into two broad categories: global approaches that
determine the set of all states in a model M that satisfy a temporal logic formula @, and local
approaches in which, given a state s in M, the procedure determines whether s satisfies ® [8, [4].
When s is a term of a process language, the model checking procedure can be executed “on-the-fly”,
driven by the syntactical structure of s. On-the-fly algorithms are following a top-down approach that
does not require global knowledge of the complete state space. For each state that is encountered,
starting from a given state, the outgoing transitions are followed to adjacent states, constructing step
by step local knowledge of the state space until it is possible to decide whether the given state satisfies
the formula (or memory bounds are reached).

The global fluid model checking techniques developed in [6] 5], [I7] are based on a decoupling of the
behaviour of the single object (or subset of objects) from the behaviour of the global system. This
leads to a time-inhomogeneous continuous time Markov Chains (ICTMC) model for such individual
objects. The time-inhomogeneity leads to some complications compared to the standard global model
checking algorithms for CTMC which are mainly due to the fact that the truth values of the Continuous
Stochastic Logic (CSL) [I, 2] properties of such ICTMC models may depend on the time at which
they are evaluated.

In this paper instead, we will not completely decouple the individual behaviour from the global
system behaviour, but generate states composed of a local state of the individual object and the occu-
pancy measure of the global system from the high-level specification of the individual in an on-the-fly
manner. The resulting model can be shown to be a time-homogeneous Markov model. For continuous
time stochastic models such a setting has been studied in [5]. For discrete time, time synchronous,
probabilistic models this setting has been studied in [23], where the results have been used as the
basis for an on-the-fly mean field model checking algorithm for discrete time probabilistic population
models. The main contribution of the current paper is to relate these two results formally to develop
an on-the-fly fluid model checking algorithm for time bounded CSL formulas and PEPA population
models [I6]. In particular we show that the on-the-fly approach is facilitating the calculation of the
truth value of nested formulas, also in the case in which those depend on time. Experimental results
obtained with FlyFast, the prototype implementation of the on-the-fly fast mean field model-checker,
seem promising at least for a class of reasonably well-behaving PEPA population models.

The outline of the paper is as follows. We first introduce notation and main concepts for both
continuous time and discrete time population models and their relation in Sect. In Sect. [3] we
briefly recall the bounded temporal logic CSL and PCTL and their formal semantics. In Sect. [4] we
introduce the on-the-fly approach to fluid model checking via on-the-fly fast mean field probabilistic
model checking of appropriately defined discrete time models. Sect. [5| shows model checking results
for a larger benchmark client server example and compares the results with those available in the
literature. Sect. [0] discusses related work and Sect. [7] presents the conclusions. Detailed proofs of the
main results can be found in the Appendices[A] and

2 Population Models

We consider two types of Markov population models: continuous time models and discrete time models.
In both models we assume that the population size is N and that this size remains constant during
execution.
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2.1 Continuous Time Population Models

For CTMC population models we adopt the notation following [5]. Let Yi(N) (t) € S be the random
variable representing the state of object i at time ¢, where S = {1,2,...,n} represents the local state
space of each object. Multiple classes of agents are represented by partitioning S into disjoint subsets
and allowing state changes only within a single class. Let Q(Y) (Z) denote the n X n infinitesimal
generator matrix that depends on the fraction of objects & € [0,1]™ that are in each state of S.

The latter quantity can be computed from Yi(N) as Xi(N) t) =+ Zjvzl 1{Yj(N) (t) = i}, where 1{...}
denotes the indicator function. Xi(N)(t) is a CTMC [3] on the state space DWY) = {0, %, %, con 1
also called the occupancy measure. A population model can now be defined as a structure xW) =
(S, N, QW) a_:'(()N)), where a?(()N) e DW) s the initial state.

The average infinitesimal variation of X(¥)| given that it is in state Z is F(V)(Z) = 2T QN (&), also
called the drif If, for N — oo, QW) (Z) converges uniformly to the Lipschitz continuous generator
matrix Q(Z), and f(()N) — ¥, and furthermore if #(t) is the solution of the ODE 4 = F(7) = #7 Q(%),
then in the limit the two processes behave almost surely the same for a finite time horizon T [9, 20]@

It is possible to decouple the analysis of a single object from the analysis of the global system, by
letting the behaviour of the single object depend on the other objects only through the solution of

the fluid ODE. This result is known as fast simulation [9 25]. The stochastic behaviour of a single
object can be defined as Z(N) = Yl(N) on state space S, assuming we are interested in the behaviour
of the first object. Note that Z(™) is an ICTMC. Let z(t) be the ICTMC of an individual object with
states in S such that Pr{z(t +dt) = j|z(t) = i} = ¢; ;(Z(t))dt and let Q,(Z(t)) = (¢; ;(£(t))). We then
have that for any finite horizon T and ¢ < T the behaviour of the single object Z(V) (t) tends to the
behaviour of the object that senses the rest of the system only through its limit behaviour given by
Z, ie. z(t).

Running example: Consider the simple PEPA specification of processors and resources that
synchronise on a common task [16]:

ProcO0 := (taskl,ry).Procl
Procl := (task2,r2).Proc0
ResO = (taskl,r1).Resl
Resl := (reset,s).Res0

ProcO[Np] Bl ResO[Ng]

where Proc0[N,] is a shorthand notation for N, instances of process Proc0 in parallel, and ResO[N]
denoting N, instances of process Res0 in parallel. Such population oriented PEPA specifications have
been given a formal semantics based on ordinary differential equations (ODE) by Hillston in [16] and
by Tribastone et al. in [27]. In particular, for a population size going to infinite, and considering
only the fractions of the number of processes in their various local states (i.e. their limit occupancy
measure), the ODE associated to the example specification can be given as:

dprgio(t) = —ry.min(proc0(t), res0(t)) + rq.procl(t)
dp%il(t) = —rg.procl(t) + ri.min(procO(t), res0(t))
drejf(t) = —ri.min(procO(t), reso(t)) + s.resl(t)
(h%tl(t) = —s.resi(t) + r1.min(proc0(t), res0(t))

where proc0(t), procl(t),res0(t) and resl(t) denote the limit occupancy measure at time ¢ for each
local state respectively. The function min denotes the minimum function and originates from the

27T denotes the transpose of vector Z.
3The conditions on uniform convergence and Lipschitz continuity automatically hold for PEPA population models
because in that case the rate functions are all piecewise linear [27].

QUANTICOL 3 September 10, 2014



On-the-fly FMC (Revision: 1.0; September 10, 2014) September 10, 2014

specific definition of action synchronisation of the semantics of PEPA [I6]. For example, for initial
values for the fractions of processes and resources in their respective initial states n, = 0.5 and
ng = 0.5 and the following values for the individual transition rates r; = 10,70 = 3 and s = 7, the
limit occupancy measure as solution of the ODE is shown in Fig.

The infinitesimal Q-matrix of an individual object that depends on the behaviour of the global
system via its limit occupancy measure can be retrieved as follows (see [5]). From the PEPA semantics
of the synchronisation (cooperation) operator we know that the total rate of a shared taskl action is
given by min(ry.procy(t), r1.reso(t)). The rate of an individual process performing a taskl action is
then this global rate divided by the fraction of objects present in the system at time ¢, i.e. procy(t).
The rate of an individual process performing a tasks action is simply ry because this action does not
depend on the limit occupancy measure &, where 7 (t) = (procy(t), proci (t), reso(t), resi(t)). Similar
reasoning applies to the rates of a resource object. So, in summary, we obtain the following rate
functions for the Q-matrix of an individual object of type ‘process’ which depends on Z(t):

Qproco,proct (Z(t)) ri.min(proc0(t), res0(t))/procO(t)
Qprocl,proco (f(t)) = T2

and for an individual object of type ‘resource’:

Qresores1 (Z(t)) = ri.min(proc0(t), res0(t))/res0(t)
QT’esl,resO(f(t)) = S

The rate functions used in the Q-matrix are all continuous and bounded, at least as long as we do
not divide by zero.

2.2 Discrete Time Population Models

For DTMC population models we consider again a system of N interacting objects. Let Wi(N)(k) es
the random variable representing the state of object ¢ at step k, where S = {1,2,...,n} represents
the local state space of each objec Let K(V) (m) denote the n x n one step transition probability
matrix that depends on the fraction of objects m € [0, 1]™ that are in each state of S. This fraction

can be computed as Mi(N)(k:) =+ Z;VZI 1{W]-(N)(k:) =i} Mi(N)(k:) is a DTMC [25] on the state space
DW) A population DTMC model can now be defined as a structure MD) = (S,N,K(N),ﬁ’zéN)),

where n‘i[()N) € DW) is the initial state. The average variation of M), given that it is in state 17 is

FMN) () = KW (m). If, for all i, j and for N — oo, the elements KZ(JJV) (m) converge uniformly in
(V)

m to some K; ;(n), which is a continuous function of ni, and m; ' converges almost surely to 7o,
and furthermore define m(k) as follows: 7.(0) = 1y and m(k + 1) = (k)T K (i (k)); then, for any
fixed step t, almost surely, the two processes behave the same [25]. As for CTMC population models,
it is possible to decouple the analysis of the single object from the analysis of the global system using
a fast simulation approach involving the solution of a difference equation rather than an ODE.

Example: Taking probabilities «; for the rates r; in the processes and resources example, we
obtain the following difference equations for 7T (k) = (mpo(k), mp1(k), myo(k), m1(k))):

mpo(k + 1) = myo(k) — ar.min(mpo(k), myo(k)) + cg.mp1 (k)
mp1(k + 1) = mp1(k) + ar.min(mpo(k), meo(k)) — ag.mp1 (k)
myo(k + 1) = myo(k) — cn.min(mpo(k), meo(k)) + as.myr (k)
my1(k + 1) = my1(k) + c.min(mpo(k), mro(k)) — ag.mp1 (k)

where my;(k) and m,;(k) denote the limit occupancy measure at step k for processes and resources.
We can also retrieve the one step probability matrix for each individual process and resource object

4As for CTMC population models, multiple classes of agents are represented by partitioning S into disjoint subsets
and allowing state changes only within a single class.
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(a) Solution of the ODE for r1 = 10,72 = 3, s = 7, (b) Solution of the difference equations for a; =
np = 0.5 and ng = 0.5 0.1,a2 = 0.03, s = 0.07, np = 0.5 and ng = 0.5

Figure 1: Occupancy measure of process and resource states

using a similar reasoning as in the CTMC case:

Kpop1 (mi(k)) = ar.min(myo(k), mro(k))/mpo(k)
Kpipo(mi(k)) = az

Ko (i(k)) = ax.min(mpo(k), mro(k))/mao(k)
Krl,rO(m(k)) = Q5

Note that the difference equations can be obtained from K by mi(k + 1) = m(k)T. K (m(k)).

2.3 Relation Between the Models

It is possible to establish a close behavioural relation between the continuous and the discrete time
population models by deriving an appropriate value for the probabilities a from the rates in the
continuous model. This derivation takes two aspects into consideration. First of all, we want that the
discrete model of the individual objects has the same local states as the individuals in the continuous
model. A well-known approach to obtain this is by uniformisation. The second observation is that the
difference equations should give a solution that provides an acceptable approximation of the solution
of the original ODEs. This is possible by recognising that we can interpret the difference equations as
an instance of the Euler forward method for solving ODEs under the condition that a suitable step
size can be found that guarantees absolute stability of the method and a sufficient accuracy (see for
example [26]).

Uniformisation involves finding a uniformisation rate ¢ that is at least as large as the maximal exit
rate of the states in the CTMC at hand, obtaining the one step probability matrix K of a DTMC by
K=1+ % - Q, where Q is the infinitesimal rate matrix. Note that in our case the rates in Q may
depend on the occupancy measure m. However, 0 < m; < 1 for all ¢ € |S], so assuming rate-functions
that include minimum functions and linear combination (but not rational functions)lﬂ that derive from
PEPA specifications we can easily find a suitable ¢ given that the occupancy measure is at most 1.
The Q matrix we intend here includes the rates of the possibly multiple classes of objects.

The uniformisation rate might, however, not be large enough to lead to stable and accurate calcula-
tions in the difference equations that are derived from the one step transition matrix of the individual
objects obtained by uniformisation. First we have to check that the global error does not grow expo-
nentially. For linear systems of I differential equations where u(t) € R! and d u(t)/dt = Au where A

"These are piecewise linear functions leading to the class of split-free PEPA models [14].
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s,$tEMma & a € l(s)

st Epm @ < not s,t Epm @

$;$tEM PV Oy & st Pyor st Eam Do

$,t Em Poap(p) < Pr{c € Pathspm(s,t) | o,t Fam @} < p

o,t ':M <I>1Z/IST<I>2<: dm st. 0< o <7,
cQro,t + T2 'IM Dy A
vo<mn < Ta, 0'@7'1,t+’7‘1 ':M (o3

Table 1: Satisfaction relation for the fragment of CSL.

is an [ x [ matrix a necessary condition is that kA is in the stability region of the Euler method for
each eigenvalue A of matrix A and step size h. So, for each eigenvalue A we need that |1 + h\| < 1,
which implies that —2 < hA < 0 [26]. For non-linear systems we need to determine the range of each
eigenvalue and make sure that the step size h is taken small enough so that A\ stays within the region
of absolute stability for its complete range.

Example: For the running example, with ;1 = 10,7y = 3.0 and s = 7.0, we obtain uniformisation
rate ¢ = 10 and eigenvalues \; = 0 or —r;1 —r9 < A1 < —rgand Ag = 0 or —1r1 — s < Ay < —s,
showing that all eigenvalues are in a bounded range, with a maximum absolute value of 17. So when
taking h = 1/q we get that 0 < 17 % 1/¢g < 2. This implies that ¢ = 10 guarantees stability of the
method. However, to obtain better accuracy we may choose a higher value, for example ¢ = 100.
Also empirically this gives a close correspondence of the solution of the difference equation to that of
stochastic simulation of the same model for large N. For example, for initial values for the fractions of
processes and resources in their respective initial states n,, = 0.5 and n, = 0.5 and the following values
for the individual transition rates r1 = 10,79 = 3 and s = 7 as before, the solution of the difference
equations, for ay = 10/¢q, a3 = 3/q and as = 7/q is shown in Fig.

Our aim is now to use the individual discrete time model to verify bounded temporal logic proper-
ties of an individual in the continuous model via an on-the-fly fast mean field model checking procedure
for discrete time synchronous population models presented in [23].

3 Individual Objects Properties

Properties of the behaviour of individuals in the context of a large population model can be expressed
as formulas of a suitable temporal logic. For the purpose of this paper, properties of continuous models
are expressed in bounded CSL (Continuous Stochastic Logic) [II 2], and properties of discrete models
are expressed in bounded PCTL (Probabilistic Computation Tree Logic) [13].

3.1 Continuous Stochastic Logic for ICTMC

Given a set & of atomic propositions, the syntax of the fragment of bounded CSL we consider is
defined below, where a € &, 7 € Q¢ and xe {>, <} and p € [0,1] N Q:

Pu=a|-D| PV P | Puylp) where ¢ := OUST .

CSL formulas are interpreted over state labelled (I)CTMCs (M, ¢), where M is an (I)CTMC with
state set S and ¢ : S — 27 associates each state with a set of atomic propositions. We define the
satisfaction relation on M and the logic in Table[l} We abbreviate (M, ¢) with M, when no confusion
can arise, with Q its infinitesimal generator matrix. A path o over M is a non-empty sequence of
states sg o s1 .. such that the probability of going from s; to s;11 at time T; = Z§'=0 t; > 0 for
all i > 0. We let Pathsp(s,t) denote the set of all infinite paths over M starting from state s at time
t. We require that all subsets of paths considered are measurable. By o[i] we denote the element s;
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sEMma & a€l(s)

s Em P < mnotskEm @

sEM PV Py & sEMm P or s Eam P2

s Em Poap() <  Pr{o € Pathsp(s) | o =m @} ap

cEMPIUSFD, = FO< h<kstoolhlEm P A
YO <i<h.oli] Em @

Table 2: Satisfaction relation for the fragment of PCTL.

of path ¢. Finally, in the sequel we will consider ICTMCs equipped with an initial state sg, i.e. the
probability mass is initially all in sg.

Example: An example of a CSL property for the processes and resources model is the state
formula P, (ProcO U <t Procl) expressing that a process will manage to get a resource within ¢ time
units with probability at least p.

3.2 Probabilistic Logic for DTMC

Given a set &2 of atomic propositions, the syntax of the fragment of bounded PCTL we consider is
defined below, where a € &, k € N and € {>,<} and p € [0,1] N Q:

Pu=a|-®| PV ®|Puylp) where p 1= dUSF D,

PCTL formulas are interpreted over state labelled DTMCs in a similar way as for CTMCs. We assume
P to be the one step probability matrix for M. A path o over M is a non-empty sequence of states
50,81, -+ where Py, 5, > 0 for all i > 0. We let Pathsyy (s) denote the set of all infinite paths over
M starting from state s. Will consider DTMCs equipped with an initial state so. We define the
satisfaction relation on M and the logic in Table

Example: An example of a PCTL property for the processes and resources model similar to that
for CSL is the state formula P~ ,(Proc0 USF Procl) expressing that a process will manage to get a
resource within & steps (instead of time units), with probability at least p.

4 On-the-fly Fluid Model Checking via Discrete Time Models

On-the-fly fast mean field model checking is a model checking technique that exploits deterministic
approximation and fast simulation results, but in the context of discrete time, time synchronous
probabilistic population models such as those introduced in [25].

The main result of the current paper is to show that, under the assumptions of Theorem 5 of [6],
a stochastic model derived from a PEPA population model satisfies a robust bounded CSL formula
if and only if the appropriately uniformised probabilistic population model satisfies a bounded PCTL
formula obtained from the CSL formula by scaling the time bounds according to the uniformisation
rate.

We first define two transformation functions. Function 73 takes an ICTMC z(t) with infinitesimal
generator matrix Q(¢) and initial state so. It takes a step size d € Q and a time bound b > d. It
returns a DTMC with state set S x{0,..., ng }, initial state (sg,0) and one step transition probability
matrix U as follows:

Definition 1. For all 0 < d € Q,b € R with b > d, and infinitesimal generator matriz Q(t),
Tar(Q(t),d,b) is the one step transition probability matriz U, defined by:

I+d-Q(i-d))ss,if i’ =i+1,Qi-d)s,s # O,
U(s,i),(s’,i’): 1, 'Lf V= i, s = S, Q(i-d)&s = 0,
0, otherwise

QUANTICOL 7 September 10, 2014
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where the indexes of U are assumed to be ordered as follows:

(50,0), ..., (5n,0), (50, 1), ..., (8, 1), ..., (S0, LSJ), ceey (Sn, ng).

Function 7p transforms bounded CSL into bounded PCTL formulas.

Definition 2. For atomic propositions a, ing, bounded CSL formulas ®, ®1 and ®o, and d € Q,
function Tr is defined as follows:

TF[[G]]d =a

Tr[~®]a = ~Tr[®]a

Te[®1V ®2]q = Tr[Pi]a V Tr[P2]a

Tr[Poap(®1 UST @3)]q = Pocp(Tr[@1]a UL Ti[@2]4)

where atomic proposition ins is defined as (s',w) [ ins iff 8 = s for any DTMC M with states in
S x W, for some set W.

Bounded CSL until formulas translate to bounded PCTL until formulas with the same probability
bound and structure, but with a time bound 7 where 7 was the original time bound in the CSL
formula. In the sequel, we let |®| denote the duration of ®, i.e. the length of time to which it refers,
as follows:

Definition 3. For any bounded CSL formula ® the duration of ®, |®| is defined as follows:

la| =0

|=®| = |9

|®1 V ®o] = max{|®q], |Po|}

| Pop(®1 UST ®9)| = 7 + max{|®], |2}

Recall that we assume that time bounds in until formulas are rational numbers. For formula @,
we let Tp = (11,...,7), denote the vector of all time bounds occurring in the (until subformulae of)
®; furthermore we define dg and Dg as follows: dp = max{d € Q | 4 € N, for j = 1...l} and

Dy = {d € Q] there exists w € Ns.t. d = dd’} Note that dg is well defined since 7; € Q, for
j = 1...1; actually, letting 7; = ‘gl, such that ged(a;, b;) = 1, it is easy to see that dg = m
where M CM denotes the maximal common multiple. We are now ready to state the main Theorem

for robust CSL formuladtt

Theorem 1. Let XN) be a sequence of CTMC population models, with deterministic fluid limit Z(t)
for any fized time t < T, under initial condition Z(0) = &y, and let z = z(t) be the stochastic process
defined from XN) as in Sect. - Let @ be_a robust CSL formula for z. There exists Ny € N, such
that, for all d € Dg, with d < 1 7 asin Sect. and for all N > Ny and b > [' ‘1 the following holds:

St Dl (s Lgn e e[l

The proof is by induction on the structure of the bounded CSL formula ®. One is usually interested
in the result for ¢ = 0. A detailed proof is provided in Annex [B]

The result of Theorem [l| shows that it is indeed possible, under suitable conditions, to use PCTL
and a discrete time Markov population model to obtain similar results as by global fluid model checking
CSL formulas on ICTMCs. There are a few reasons why this is useful. First of all, the ICTMC model
can be translated into an individual IDTMC model, from which the full DTMC U can be generated
in an on-the-fly manner, generating only those states that are required for the verification of the
property of interest. Second, we can reuse the probabilistic fast mean-field model-checker FlyFast for

SWe refer to [6] for the definition of formula robustness and to [20} [7] for constraints on time horizon T'.
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which a prototype implementation exists (see [23]) that, in turn, is based on an efficient on-the-fly
probabilistic model checker [24]. Finally, the approach outlined in this paper does not require the
a priori calculation of discontinuity points, i.e. points in time in which the truth values of time-
dependent (sub)-formulas of the until formula change [5]. Such points are detected on-the-fly during
calculation of the probabilities, up to a difference of the size of the step size.

The proof of Theorem [1] also provides insight in where the various approximation steps are applied,
and therefore in where approximation errors may get introduced or where the method could be further
improved.

e If discontinuity time points were available a priori, one could do with much fewer model checking
invocations, since in between the discontinuity points the sets of goal states and unsafe states
do not change. This is the approach followed in the global fluid model checking approach in [5].
The on-the-fly model checking method gives an approximation also when these discontinuity
times are not available and uses a model checking procedure reusing model checking results of
earlier checks in an efficient way. Which of the two ways is more efficient depends also on the
computational effort needed to compute the discontinuity points. The latter involves finding all
zeros of an analytic function.

e We need a balanced estimate of a suitable step size. If the step size is much smaller than
required for uniformisation and an acceptable approximation of the ODE solution, then the
model checker is invoked more often than necessary. This is particularly so for nested formulas.
Moreover, model checking times will also increase considerably when large time bounds are used
in the CSL formulas since they will be transformed into PCTL formulas with a high number of
steps in the time bound.

e The quality of the results depend also on whether the Euler method is absolutely stable [20]
for the particular model, property and chosen step size, as well as whether the local error in
each step is sufficiently small. This requires a careful analysis of the model before applying the
model checking technique and an awareness from those using the model checker of the specific
class of models for which the technique gives reliable results. Suitable guidance provided by an
integrated tool suite could be very useful in this case.

e An open issue is whether instead of the first order Euler method higher order approximation
methods or adaptive step size methods could be used in combination with the on-the-fly model
checking technique, and what their effect would be on the computational efficiency and accuracy
of the results.

Let us continue with some model checking results for the running example and a comparison of a
more extended benchmark client-server example in the following sections.

4.1 Using FlyFast to Approximate Fluid Model Checking Results

The on-the-fly probabilistic model checking algorithm implemented in FlyFast abstracts from any
specific language and different semantic interpretations of a language. Only an abstract interpreter
function is assumed that, given a generic process term, returns a probability distribution over the set
of terms. Below, we let proc be the (generic) type of probabilistic process terms while we let formula
and path_formula be the types of state- and path- PCTL formulas. Finally, we use lab to denote the
type of atomic propositions.

The abstract interpreter can be modelled by means of two functions: next and lab_eval. Function
next associates a list of pairs (proc,float) to each element of type proc. The list of pairs gives the
terms, i.e. states, that can be reached in one step from the given state and their one-step transition
probability. We require that for each s of type proc it holds that 0 < p’ < 1, for all (s, p’) € next(s) and
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action tasklp :  min(oy,gq * fre (Proc0), oy 611 * fre (Res0)) /frc (Proc0);
action tasklr : min(ayyg)q * fre (Proc0), ag g1 * fre (Res0)) /fre (Res0);
action task2 D O4agk2s

action reset I Oresets

state ProcO{tasklp.Procl} state ResO{tasklr.Res!}
state Procl{task2.Proc0} state Res{reset.Res0}
system mySystem =< Proc0[1000], Res0[1000] >

Table 3: Processes and Resources specification in FlyFast with uniformisation rate ¢ = 100, and the
following values for the probabilities (not shown in the Table): a;,q1 = 10.0/¢q, a4 aq0 = 3.0/q and

Qreset = 7-0/4.

Z( o p/)Enext(s) p’ = 1. Function lab_eval returns for each element of type proc a function associating a
bool to each atomic proposition a in lab. Each instantiation of the algorithm consists in the appropriate
definition of next and lab_eval, depending on the language at hand and its semantics.

The local model-checking algorithm is defined as a function, Check. On atomic state-formulas, the
function returns the value of lab; when given a non-atomic state-formula, Check calls itself recursively
on sub-formulas, in case they are state-formulas, whereas it calls function CheckPath, in case the sub-
formula is a path-formula. In both cases the result is a Boolean value that indicates whether the state
satisfies the formula.

Function CheckPath takes a state s € proc and a PCTL path-formula ¢ € path_formula as input.
As a result, it produces the probability measure of the set of paths, starting in state s, which satisfy
path-formula ¢.

On-the-fly fast PCTL approximated model-checking on the limit DTMC U is obtained by instan-
tiating proc with & x U ISI where U!S! is the set of all occupancy measures over the local state set S,
and lab with the set of atomic propositions &; next is instantiated with nexty, for C,C’ € S, defined
as follows:

nextu ((C,7)) = [((C, 7 - K()), p') | K()ocr = pl > 0],

with K(m) as in Theorem 4.1 of [25] and in Sect. i.e. the one step probability matrix of an IDTMC
in which the probabilities may depend on the limit occupancy measure; lab_eval is instantiated as
expected. Note that, in the worst case, nexty((C, m)) returns |S| states only, due to the collapse of
the occupancy measure vectors to a single one, at the relevant step. For further details we refer to [23].

Going back to our running example of processors and resources, in Table [3| we show the model as
defined in the FlyFast input language. Note that in the probability functions associated to the action
in the table one has to make sure that no division by zero ever occurs. In our running example, this
is indeed the case, as can be seen from the transient occupancy measure values of Proc0 and Res(
shown in Fig. [I The constants «, in Table [3| denote the probability of the activities x obtained from
uniformisation of the rates involved in the PEPA model, frc (X) denotes the fraction of the popula-
tion in state X and < Proc0[1000], Res0[1000] > denotes the initial system state composed of 1000
processors and 1000 resources in their respective initial states. The definitions state Xi{action.Xs}
define the possible state transitions of the individual objects. We recall that the uniformisation rate
is ¢ = 100 (see Sect. . Suppose that we would be interested in the verification of the CSL path
formula ¢ = ProcO <! Procl for a selected processor object in local state Proc0 of the example PEPA
population model. Using Def. [2] we can translate the CSL formula into an equivalent, properly scaled
PCTL path formula ¢/ = ProcO U=!¥% Procl so that we can approximate the probability of ¢ by
evaluating ¢’ on the discrete time model specified (see Table [3)) in the input language of the prototype
FlyFast fast mean-field PCTL model-checker [23].

Fig. shows the probability mass of the PCTL path formula ProcO0 &< Procl for values of
T = |t - q] ranging from 0 to 100 corresponding to the CSL formula Proc0 U<! Procl with ¢ ranging
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Figure 2: FlyFast model checking results for processors and resources model

from 0 to 1.

Example: Fig. shows how the probability mass of the PCTL path formula Res0 ¢/='° Resl
changes when it is evaluated at different initial times of the global system within 10 steps. This
formula shows the probability that a specific selected resource is assigned to a process. The formula
corresponds to the CSL formula Res0 U/=%! Resl for initial times ranging from 0 to 1. Note that the
satisfaction probability of the path formula changes depending on the initial time (step) at which it is
evaluated. This also implies that a state formula containing such a path formula as sub-formula, for
example Pg4(Res0 U=V Resl), changes its truth value, in this case around time step 16, from false
to true. This is exactly what we would expect and in line with similar observations using Fluid Model
Checking of time-inhomogeneous CTMC models [6].

In Sect. [5| we provide a comparison for a larger Client-Server example of our results and those
obtained with Fluid Model Checking as developed by Bortolussi and Hillston in [6].

5 Example and Comparison

Let us now consider the analysis of a larger example which is the client-server model presented in the
paper introducing fluid model checking by Bortolussi and Hillston [6l [5]. The PEPA model consists
of two processes, each composed of four states. One denotes a Client (see Fig. |3) which in the initial
state (CQ) can only perform a request (rq) to the server and then waits (CW) for either a timeout
(to) or a reply (rp) from the server to happen. After a timeout it goes to a state to recover (CR), and
then returns to the initial state when recovery completed (rc). After receiving a reply (rp) the Client
enters a thinking state (CT') after which it returns to the initial state upon completing thinking (th).
The Server process (see Fig. [3) is initially (SQ) ready to receive a request (rq) from a Client. If it
receives it, either a timeout (top) may occur or it may process the request (pr) moving to the reply
state (SR). From the latter it may either produce a timeout (tor) or deliver a reply (rp) to the client
and in both cases the server moves to a log-state (SL) and afterwards returns to the initial state (SQ)
upon completion of logging (lg). So, the behaviour of Clients and Servers are synchronising via two
actions: request and reply. The various timeouts are occurring independently.

The continuous time population model shown in Fig. |3| can be transformed into a discrete time
population model by finding a suitable, high enough uniformisation rate to guarantee that both models
have the same local states. Moreover, this rate is inversely proportional to the step size, which in turn
should be small enough to guarantee convergence and absolute stability of the Euler method [26] that
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Figure 3: Client and Server process. Client rates: th=1, rp=100, rq=1, rc=100, t0o=0.01; Server
rates: rq=1, pr=0.1, top=0.005, tor=0.005, rp=1, 1g=10.

is used to approximate the solution of the differential equations of the fluid approximation of the
population model.

First note that the rate of an action shared by two types of objects can never be higher than the
rate of the objects that contribute to the synchronisation, and will be proportional to the normalised
population size of the model. Therefore, we choose a uniformisation rate equal to the maximum total
exit rate of any of the states of the objects. In the client-server case this maximum is 100.01 (the sum
of the rates for Client actions rp and to). This may be an overestimation of the maximal rates, since
the reply action of the Client is synchronised with that of the much slower Server (with reply rate 1).
However, also the rate of the Client to recover (c_rc) is 100 and does not involve a synchronisation, so
the uniformisation rate will need to be at least 100, which is the value we take.

Table [l shows the translation of the continuous time model into a discrete time model in the
probabilistic language of FlyFast. Note that, in the latter model, actions of different objects must be
distinct. This is easily achieved by appropriate prefixing c_ for Client actions and s_ for Server ones,
in the example). We derive the discrete time model of this example by taking the continuous time
models of the individuals and replacing their rates with probabilities by dividing these original rates
by the uniformisation rate ¢ = 100. Note that in the simplified probability function of action c_rq we
assume that the quantity C'Q is always positive. This this is indeed the case is shown in Fig.

We take this model as a first benchmark to compare the on-the-fly fluid model checking results
with those of global fluid model checking presented in [6, 5]. A first check consists in comparing the
transient occupancy measure of the two processes for the specification and parameter values shown
in Table[d The results are shown in Fig. [ Given that we have taken the uniformisation rate equal
to 100, we have that 1 time unit in continuous time corresponds to 100 time steps in the discrete
model. In the initial state there are twice as many clients than servers. Each start in their initial
state CQ (resp. S@). The results for both analyses are very similaxﬂ and in turn show also good
correspondence to results obtained with stochastic simulation of the model shown in [0 [5]. The close
correspondence of the transient occupancy measures is also an indication that the step size used in
the Euler forward method is small enough for leading to a satisfactory approximation for the time
horizon of interest.

A further comparison concerns model checking results. In [5] fluid model checking is applied
on a client process. One property concerns the probability mass of the CSL path formula (CQ V
CW) USTCR, i.e. the probability that the client reaches the recover state CR after a time-out within
T time-units, while passing only through client request CR and wait CW states being initially in
the request state, for time bound T varying between 0 and 50 time-units. The result is shown in
Fig. Considering the scaling of time-units w.r.t. the number of steps and the translation of
the CSL property in the corresponding PCTL property (see Def. , the results show a very good
correspondence with those obtained via the fluid model checking procedure proposed in [5] on a

"There are some differences that are most likely to do with rescaling of the graphs in [5]. There the number of clients
in state CQ appears to be initially 100%, whereas the proportions were supposed to be 2 clients for every server, so an
initial percentage of 66%), as shown in Fig. seems what was intended.
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action c.rq 1 min(aerq * fre (CQ), asrq x fre (SQ)) /fre (CQ);

actioncto  :  ac_to;

action corc 1 Qere;

action c.th @ octh;

actioncrp @ min(acrp * fre (CW), as_rp * fre (SR)) /fre (CW);

action s.rq 1 min(aerq * fre (CQ), aerq * fre (SR)) /fre (SQ);

action s.pr : Qs_pr;

action s_tor :  Qs_tor;

action s_.top  : Qs_top;

action s.rp @ min(acrp * fre (CW), as_rp * fre (SR)) /frc (SR);

action s_lg D Qg

state CQ{crq.CW} state SQ{s_rq.SP}

state CW{c_to.CR + c_rp.CT} state SP{s_pr.SR+ s_top.SL}
state CR{crc.CQ} state SR{s_tor.SL + s_rp.SL}
state CT{c_th.CQ} state SL{s_lg.SQ}

system mySystem =< C'Q[1000], SQ[500] >

Table 4: Client and Server specification in FlyFast with uniformisation rate ¢ = 100 and the following
values for the probabilities (not shown in the specification): a4, = 1/q, acrp = 100/q, cerq = 1/,
aere = 100/q, ceto = 0.01/q, asrq = 1/q, a5 pr = 0.1/q, a510p = 0.005/q, s tor = 0.005/q, s rp =
1/q, as19 = 10/q.

continuous time model of the client. Fig. shows model checking results of the same model, but
for a fixed time bound 7" = 5000 and varying initial times t0 ranging from 0 to 2500 steps. The latter
correspond to a time bound of 50 time-units in the original continuous model and initial times ranging
from 0 to 25 time-units.

Fig. [5| shows results concerning the nested, time-dependent formula tt UT(Py67[tt U CRY]),
where CR denotes that a client timeout action c¢_to has occurred and the Client process has entered
state CR. Nested formulas are computationally the most complex to analyse. The property is the
PCTL version of the corresponding CSL nested property analysed by the global fluid model checking
approach in [0, [5]. Since the discrete model has been obtained using a uniformisation rate of 100,
the time bound of 50 time units in the CSL formula correspond now to 5000 steps in the discrete
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Figure 4: Occupancy measure of client and server states
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Figure 5: Model checking path formulae for Client process

time setting. The results for 7' from 0 to 250 steps (corresponding to the first 2.5 time units in the
continuous model) are shown in Fig.

Note that the client-server model uses parameter values that differ several orders of magnitude,
making the model very stiff and requiring a relatively high uniformisation rate. Fig.|6(a)[shows FlyFast
results for the same property, but for a model in which the recovery rate has been reduced to 1 (instead
of 100), leading to a uniformisation rate of 10 (instead of 100). This makes the model checking much
faster, but, of course, leads to different results. Note however, that three of the four curves are the
same as in the previous case. This is because for those particular initial states of the individual Client
process the rate of recovery is not involved. It is clear that for those curves the results correspond well
also for higher values of T, including those used in the original model in [0, 5] (see Fig. adopted
from [5] to facilitate comparison).

6 Related Work

Closest to our work is that by Bortolussi and Hillston [0} [5] presenting a technique for global Fluid
Model Checking. We have briefly recalled some of the elements of this technique in Annex [B] and
compared their model checking results with those obtained by our on-the-fly technique. To the best of
our knowledge, the global Fluid Model Checking technique has not been fully implemented as yet, so
we leave a more detailed comparison of the performance of both techniques to future work. Work on
fluid model checking can also be found in [I7] which uses in part similar techniques as [6]. On-the-fly
probabilistic model checking for bounded PCTL has also been developed by Della Penna et al. [10]
but they do not consider its use for on-the-fly fast mean field model checking as we did in [23].
Another stochastic technique that addresses scalability is statistical model checking [15] 12} 28, 22].
In these techniques scalability is obtained by replacing a full state space search by a statistical analysis
of a random set of executions of pre-established finite depth. This leads in many cases to a good
scalability, however, the performance does remain dependent on the population size of the system
under verification. The performance of techniques based on mean field and fluid approximation are
independent of the population size, and thus scale to systems with an arbitrarily large population
size. This is obtained, however, at the cost of abstracting from the individuality of the objects
of which the system is composed. Rather than keeping track of the state of each individual, the
fraction of objects in a particular local state at each time is taken as the system state, also called the
‘occupancy measure’. The stochastic dynamics of the system approximates a deterministic function
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when the population size tends to infinite (this approach is correct under suitable conditions as shown
by a number of convergence theorems both for the stochastic continuous time and the discrete time
case [20], 21, 9, 25]). Such a deterministic function can be obtained as the solution of a set of ordinary
differential equations (in the continuous time setting) or as difference equations (in the discrete time
setting). A number of selected individuals can be analysed in combination with the approximation
of the overall system behaviour. In this case the behaviour of the individual objects depends on the
average “evolution” of the global system. This approach is justified by a corollary of the convergence
theorems mentioned before and also known as fast simulation [9, [I1].

7 Conclusions

We have illustrated an alternative way to perform fluid model checking of bounded CSL properties
of individual entities in the context of CTMC population models. This alternative makes use of the
prototype implementation of an on-the-fly fast mean field model checker FlyFast to check bounded
PCTL formulas of individuals in the context of synchronous, discrete time DTMC population models.
We have provided a correctness proof and obtained promising results compared to those available in
the literature. Future work will consist in comparing the efficiency of our technique with that of global
fluid model checking when prototype tools become fully available to us, to study further examples, to
integrate the model and formula translations into FlyFast and to study the possibility of producing
error bounds along with the analysis results.
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A Lemmas and Auxiliary Definitions

First we present a few lemmas concerning Def. [1] and Def. [2] which will be useful in the proof of
Theorem [I}

Lemma 1. For matrices Q and U of Definition|[l, s,s’ € S, step size 0 < d € Q, and k,n € N the
following holds:

I QG )] = 07 i

8,8

Proof. By induction on n
Base case (n =0):

Trivial, since Hfz_kl [I+d-Q(i-d)] = I, by definition of IT and U° = I. Note that the resulting identity
matrices have dimension |S|- LgJ x|S|- LgJ, whereas the one within the product has dimension |S| x |S|

Induction step n + 1:

!

L1 QUi - )

8,8

= {Calculus}

T+ d- Qe+ d)] - R T+ d- Q- )]

/

= {Calculus}

[T+d-Qk-d)] - T- TS T4 d- Q- d)|

8,8’

= {Calculus}
Y wreslT+d- Q- )]s - |[T- TP I+ d- Qi d)]}
~  {LH)}
S sl d- Qk - d)losr - (U] o) (wieron)

= {By definition of U when considering n + &k < | 4]}

ars

S

> sres Ul s 41y (O (o kb1 (57 ket 14m)
= {Calculus}

QUANTICOL 18 September 10, 2014



On-the-fly FMC (Revision: 1.0; September 10, 2014) September 10, 2014

U] 0

(S’k)v(slvk""n""l)

We also introduce a notation for the transformation of states that satisfy a CSL formula ¢ at time
t into absorbing states at the level of an individual ICTMC Q-matrix.

Definition 4. For CSL formula ® and ICTMC model M = (S, o, Q) we let M[®] be the ICTMC
resulting from M by making all states satisfying ® at time t absorbing at time t, i.e. M[®] = (S, a, Q')
where, for s # s
0, if s,t Em P,
Q{s,s’ (t) =
Q;.s(t), otherwise.

We use the same notation for the relevant infinitesimal generator matrices Q[®], () = Q. ./ (t).
Furthermore, for formula ®, k,n € N, i = k,..., k + n and step size 0 < d € Q we let set A (i fd) =
{se€8|s,i-d}=, ®}and set Ay = Uf’:,? (s,i)|s € Ag(i-d)}. With a some abuse of notation, we let
Q[As(i- d)](i-d) = Q[®](i - d). Finally, we define U’ as follows:

I+d QAs(i-d)](i-d)lsy, if i' =i+1,5¢ Ag(i-d),
U,(s,i),(s’,i’) = 1, if ¢/ = 1, s = s,8 € A(I)(Z . d),
0, otherwise.

It is easy to see that U’ = U[/qu,], i.e. U where states in Ag are made absorbing (by making them
self-loops with probability 1):

Lemma 2. For all bounded CSL formulas ®, U’ = U[Ag)

Proof.

!
U(s,i),(s’,i’)
= {By definition of U’}

I+d Q[As(i-d)(i-d)]ss, ifi' =i+1,5¢ As(i-d),
1, if i =i, =s,5s€ Ap(i-d),
0, otherwise.

= {By definition of Q[A(i-d)](i-d)}
I+d-Ql,y, if s¢ Aa(i-d) and @' =i+ 1,

1, if s€ Ag(i-d) and s = s and i’ =i,

0, otherwise.
= {s € Ag(i - d) implies (s,7) € Agp}
U[As](s.0),(s'.7) O

The following corollary of Lemma [2]is readily proven:

Corollary 1. For matrices Q and U of Definition |1, s,s’ € S, step size d € Q, and k,n € N the
following holds:

L d- QU ) d))] = [UlAa]]
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Proof.
10T+ d - Q[Aa(i - )] - d)]

8,8’

= {Definition of U’}

[U/]?s,k),(s’,k+n)
= {Lemma[} U’ = U[4s])}

n

[U[Aé]} O

(s,k),(s",k+n)

B Proof of Main Theorem

In the proof of Theorem [If we need some additional definitions and lemmas that concern the case of
time-dependent reachability probability Pu,(®1 UST ®2). The definition of this probability in bounded
CSL is characterised as a piecewise transient analysis problem for global Fluid Model Checking as
shown in [5] and involves two time-dependent sets, the set of goal states G(t), i.e. the set of states
that satisfy ®o at time ¢, and the set of unsafe states U(t), i.e. the set of states that satisfy neither
@1 nor @5 at time t. These sets may change depending on the time at which formulas are evaluated
and in the global Fluid Model Checking approach in [5] it is assumed that the time instances 7; in
which such discontinuities in the sets occur are given a prior{)}

Let’s assume k; + 1 of such points in time over a time interval of interest I of length 7 starting
at t, with Ty = ¢t and Ty,41 = t + 7, where ¢ is the initial time and 7 the time bound of the
formula. Moreover, due to time-inhomogeneity, one also needs to deal in an appropriate way with
the various time episodes in-between discontinuities and accumulate the probability of several sets
of paths that satisfy the reachability property. This is taken care of by using two complementary
mechanisms. One is to transform the n x n rate matrix Q(t) into a 2n x 2n matrix Q(¢) making
relevant states absorbing, but also by duplicating the local states s € S into states 5 € S, so called
‘shadow states’, and redirecting transitions from states made absorbing to their shadow counterparts
to accumulate the relevant reachability probability obtained during the various time episodes. The
other is a transformation of the transient probability matrix P(7;_1,7}) at the end of each episode by
multiplication by a suitable 0/1 matrix ((7;). The operations and their justifications are treated in
more detail in [5]. Here we only briefly recall their definitions. The matrix Y is defined as:

Y(t,t+7) =Pt T1)(T)P(T1, 12)¢(T2)..C(The, )P (T, , t + 7)
where P(T;, T;+1) is the transient probability matrix associated with the matrix Q(t) of ICTMC z(t).
Definition 5. The rate matriz Q(t) is defined as follows:
1. for 31 € S and any so € SUS, G5, 5,(t) = 0;
2. for s1 a goal or unsafe state at t and all sy € SUS, s, s,(t) = 0;
3. for s1 neither a goal nor unsafe state att and sy € S\G(t), Gs, s5(t) = qs,,55(t), while s, 5,(t) = 0;
4. for s1 neither a goal nor unsafe state att and sy € G(t), Gs, 5, (t) = @s;,5,(t), while Gs, 5,(t) =0

Definition 6. Matriz ((T;) is the 2n x 2n matriz:

(1)) = ( CWéTi) CGSTi) )

8The sets of goal states and unsafe states may change over time because the satisfaction of formulas depend on time
(via the occupancy measure) in ICTMCs.
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where I is the n X n identity matriz, Cw(T;) the n x n matriz equal to 1 only on the diagonal
elements corresponding to s; that are neither a goal state nor an unsafe state both right before and
right after time T;, and 0 elsewhere. Furthermore, (c(T;) is the n X n matriz equal to 1 only on the
diagonal elements corresponding to s; that are neither a goal nor an unsafe state right before T;, but
become a goal state right after T;.

The time-dependent reachability can then be defined as

Prob®(s,t, ®; US™ &y) = Z Y5t t+7)+1{se G}
58

Under the condition that the sets G and U converge robustlyﬂ to their limit sets, and that they do
not have a discontinuitym at the same time for the same state, and that the rate functions involved in
Q(t) are piecewise real analytiﬂ, it has been shown [5] that the time-varying reachability probability
for process Z(N) converges to the limit process z.

In the discrete setting we need a discrete version of the matrix ((¢), that we call 7. Instead of
checking whether a state changed its status (e.g. becoming a goal state) at exactly time instance T;,

in the discrete setting we need to check whether something changed from one step to the other around
T;.

Definition 7. For k € N the 0/1 matriz n(k) is the 2n x 2n matriz:

(k) = < nwo(k) nGI(k:) ) '

where I is the n X n identity matriz, nw (k) the n x n matriz equal to 1 only on the diagonal
elements corresponding to s; that are neither a goal state nor an unsafe state both at step d -k and
d-(k+1), and 0 elsewhere. Furthermore, ng(k) is the n X n matriz equal to 1 only on the diagonal
elements corresponding to s; that are neither a goal nor an unsafe state at d - k, but become a goal
state at d -k + 1.

Definition 8. For all 0 < d € Q,b € R with b > d, 5,8 € SUS, the matriz n(k) defined as in
Def. E and infinitesimal generator matriz Q(t), the one step transition probability matriz U is defined

as follows:
[T+d-QG-d)]-n(i)lsy, if s ¢S and ' =i+1,

Uiy =14 L ifse€S,s =sandi =i,

0, otherwise

where the indexes of U are assumed ordered as follows:

(307 0)7 (81, 0)? T (snv 0)7 (§070)7 <‘§17 0)7 B (En,O),
(807 1)7 (Sla 1)7 T (Snv 1)’ (507 1)’ (517 1)’ B (gm 1)a

(307 \.gJ)? T 7(Sm LgJ)v (§07 ng)v e 7(5717 L%J)

Lemma 3. For matrices Q and U, of Definitions @ (md@ s,s' € SUS, step size 0 < d € Q, and
k,n € N the following holds:

[T YT+ d - QG- )] - ()] (o)

?See [5] for a precise definition.

0By discontinuity here means that a state changes status at time ¢ (e.g. from goal to unsafe, etc.).

YA function f: T — R, where I is an open subset of R, is said to be analytic [I8] in I if and only if for each point o
of I there is an open neighbourhood of I in which f coincides with its Taylor series expansion around .
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Proof. By induction on n.

Base case (n = 0):

Trivial, since Hf;kl[[l +d-Q@i-d)] n@i) = I, by definition of II and UY = I. Note that the re-
sulting identity matrices have dimension |[S US| - [4] x |[SU S|+ |4], whereas the one within the

product has dimension |[SUS| x [SU S|

Induction step n + 1:

[T 4 d - Qi d)] - ()]

/

= {Calculus} N
L[+ d- Q- )] - ()] - I L+ d- QG- )] - n@)]]
= {Calculus} |
[T+d-QUe- )] (k)] - T- I T+ d- QG- )] - )]
= {Calculus} |
Soresll+d- Qk-d)] - n(k)]ser - [T LT+ d- QG- d)]-n(0)]],
=  {LH}
Seslil+d- Q- - n(k)]ssr - (O] i) (o irromy
=  {By definition of U when considering n + &k < [ 4|}
ZS”GS [ﬁ] (s,k),(s" k+1) [ﬁn] (8" k+1),(s k+14n)
= {Calculus}
[ﬁnﬂ] (8,k),(s" k4+n+1) -

Lemma 4. For matrices U and U, and set R = {(51,n)[51 € SA|4] <n < [(t+7)/d]} we have
that

(s |OL +1{s € G([4))} 1)

J
:| (S,LéJ),(gl,k)

2 (s51,K) =y (o) T [l {U[TFﬂﬁ@l]]d V Tr[®2]alla! (2)

(s,Lg1)s(s1,k)

Proof. First observe that if state s is a goal state at initial time ¢ then the probability in Eq.
amounts to 1. In Eq. this means that state (s,|5]) has been turned into an absorbing state
because it satisfies the PCTL equivalent of CSL formula ®5. This means that the only value for s;
and k for which the elements indicated by coordinates (s, |4]), (s1,k) in U[Tp[~®1]q V Tp[®2]4] are
not zero is (s, |4]), (s, %)) itself. The value of this element is equal to 1 (since it has been made
absorbing).

If s is not a goal state at time ¢, then we need to collect the probability of all paths that reach a
goal state at some time starting from s at time t. In the case of U these probabilities are collected
in the shadow states. These states are absorbing by definition of Q, that redirects transitions from
s to its shadow for the period of time in which s is a goal, and matrix ¢ that takes care that the
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accumulated probabilities are not lost but appropriately accumulated. This is essentially the role of
the identity matrix in the lower right quadrant of {. In [fJ’]LgJ the probabilities of the shadow states
that can be reached from s in |7/d| steps are present in the elements (s, |5]), (51, k). If 51 was not a
goal state for some time steps k the corresponding probability for those time steps is zero. The same
result is obtained in Eq. by summing the probabilities corresponding to (s1, k) that satisfy @9 at
time step k, meaning that it is a goal state at those steps. Turning (s, k) into an absorbing state
when it satisfies 9 means that the reachability probability of paths reaching s; from s at time ¢ in
| 7] steps is preserved in the same way as it is in (51,k). The reason why we do not need shadow
states anymore is because the states & of the ICTMC have now been disambiguated by inserting the
time step explicitly in the state.

For what concerns the unsafe states, one has to take care that the probability of paths passing
through those states do not contribute to the total reachability probability. In the case of Eq.
this is taken care of by the matrix ¢, in particular by its left upper quadrant. The diagonal elements
in 7 corresponding to states that are unsafe are set to zero. The effect of this is in Eq. (2) that in
the product of U the columns corresponding to unsafe states are always turned into zero, and so, the
probability to leave unsafe states is effectively zero. The same effect can be reached by turning unsafe
states into absorbing states. Also in that case, the probability to leave the state is zero. The final
probability in the transient probability matrix corresponding to unsafe states is therefore not set to
zero explicitly. But since only the probability of goal states count, the final reachability probability of
interest is the same. O

Proof of Theorem The proof of this theorem is by induction on the structure of the CSL
formula ®.

Proof.

Case a:

s,t =, a if and only if a € /(s), by definition of |=,. By definition of Tpy we have Tr[a]q = a, for
all d. Furthermore, by definition of Tys, Tas(z,d,b) has the same states as z, for all d and b. So

(s, 1 5]) Fraszan) @

Case —®:

s,t =, —® if and only if s,¢ =, ® does not hold, by definition of |=,. Thus, by the induction hypothe-
sis there exists Ny such that for all d € Dg, N > Ny and b > [%l], (s, 15]) ETus(zdp) TP[®]a does not
hold, i.e. using the fact that |[-®| = |®|, we get that there exists Ny such that for all d € Dg, N > Ny

and b > [Z27 (s, [L]) oy eap) Te[~®]a, by definition of =7y, (2 ap)-

Case ¢V ®o:

s,t . @1V Po if and only if s,t =, ®; or s,t =, o, by definition of |=,. Thus, by the induction
hypothesis, there exist N7 such that for all d € Dg and for all N > N; and b > [%L (s, [5]) ETui(zdp)
Tr[P1]4 or there exist No such that for all d € Dg and for all N > Ny and b > (%], (s, 15]) ETas(z.a.0)
Tr[®2]a-

Thus, noting that ['%‘1 < [%L for j = 1,2, we get that there exist Ny > max{Ny, Na} such
that for all d € Dg, and for all N > Ny and b > [%1 we have (s, | 7]) Fry(zap) TF[P1V @2la-
Case Pogy(P1 UST By):

8,t =2 Pogp(®1UST ®9) if and only if Pr{p € Paths,(s,t) | p,t E, ®1UST @2} < p, by definition of

I=.. Let us define Prob®(s,t, ®; UST ®y) = Pr{p € Paths,(s,t) | p,t =. ®1UST ®3}. The following
shows that Prob*(s,t, ®; US" ®3) can be approximated by

Prob (=) (s, Lg D, Tol®1]a USLE) To[®s])

QUANTICOL 23 September 10, 2014



On-the-fly FMC (Revision: 1.0; September 10, 2014) September 10, 2014

Let T; with ¢ € {1,--- kr} be the k; time instances in time interval I in which discontinuities occur
in the sets of goal and unsafe states. We can then proceed with the following reasoning:

Prob®(s,t,®1 UST ®g)

= {Expressing the reachability probability for CSL path formula ®; UST ®,, as a piecewise
transient analysis problem as for Fluid Model Checking [5], with 7; the given time instances at which
discontinuities occur.}

Ssres Yom (Bt +7) +1{s € G(t)}
= {By Def. of Y and taking the 7; into consideration}

> 51esP (@t T)C(T)P(T1, T2)¢(To) - - - (T, )P (Thy t + 7)) + s € G(1)}

At this point, we approximate the transient probability matrices P by those obtained from a
forward Fuler approximation with step size d. The step size is chosen sufficiently small such that
the Euler approximation is stable and sufficiently accurate. We replace P(t,T}) by its Euler ap-
proximatio with step-size d, P(t,|T1/d|d), and for i € {1,...,k;} the matrices P(T}, Ti41) by
P(|T;/d|d, | Ti+1/d|d) and finally P(Ty,, t+7) by P(|Tk,/d)d, | (t+7)/d]d), where |t/d] is the largest
integer less than or equal to t/d. This approximation also implies that due to the fixed small step size
d in the Euler approximation the end time of each transient probability may occur slightly before the
time instances 7; in which a discontinuity in a state occurs, but by an amount strictly less than step
size d. This is a possible source of small errors in the calculation of the total transient probability.

Also the function ((7;) should take this switch to steps of size d into account. Instead of checking
whether a state changed its status (e.g. becoming a goal state) at exactly time instance T;, we should
check whether something changed from one step to the other around T;.

If we assume that the probability that |7;/d|d = T; for each T; is zero, then we have that T; — d <
|T;/d|d < T;. Let j; = |T;/d]| then the reachability probability can be approximated by:

m=kr—1
STt adnGi+ D [ Plmd, jmerd)n(mer + 1)P Gk, d, [(t+7)/d]d)]s s, +1{s € G(t)}
5165 m=1

Using the definition of P and the fact that f’(t, t) = I, where [ is the identity matrix, and moreover
using the definition of Q defined earlier, the above can be rewritten as:

it m=ki=1  Jmi1 L(t7) /]
Do |- TT 1 +dQGad))nG +1). ( [T - IT i +dQG.dlnGim+1 + 1)) q- I E+dQG.ad)|+1{s € G(ng)}

51€8 | i=[t/d] m=1 i=jm i=jk,

5,51

The above formulation uses the fact that the discontinuity points T; are known in advance. Com-
puting such time instances a priori in the continuous time setting is however quite a delicate issue
because this involves finding all zeros of an analytic function (i.e. the points in time in which a time
bound of a formula is reached). This may in general not be decidable. See Bortolussi and Hillston [5]
for a more detailed discussion of this issue. Note however, that in the new setting based on discrete
time steps, we can in principle perform the 7 transformation after every step of the Euler approxi-
mation. In the case that none of the states change status at step i, the n transformation behaves as
follows. First note that 7 in this case is almost the identity matrix. The submatrix ng(4) is the zero
matrix, and the submatrix ny(7) has a 1 on the diagonal for all states that are neither unsafe nor goal
states. For those that are unsafe or goal states the value is zero. But those states had already a special
treatment. For goal states s the probability is collected in their shadow states 5 and no transitions
lead the former, so the elements in the transient probability matrix corresponding to those states s

23ee for example [19] p. 274.
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can safely be set to zero. A similar argument holds for the unsafe states, because their probability
should not be taken into account either. This means that we can rewrite the reachability probability
as:

J1 m=kr—1  Jm41 L(t+7)/d]
- I[ [+dQ(-d)nG). ( T - 11 [I+d-Q(i-d)}ﬂ(i)}> - I [+4QGa) +1{s € G(Lé])}

51€8 i=|t/d] m=1 i=jm 1=Jk;

5,51

Since we now check for discontinuities at every step, we can simplify the definition considering
only the initial and end time of interest and not the discontinuities at T;, giving:

L(t+7)/d) ) ¢
SNl ] U+dQed)nt)| +1{se G701}
5165 i:Lt/dJ S

8,51

The above product matrix can equivalently be represented as a (possibly large) DTMC where the
time steps are explicitly recorded in the states and which can be seen as a sort of ‘unfolding’ of the
discretised ICTMC of the individual object. The dimension of this DTMC is (|[SUS| - [(t+7)/d]) x
(|SUS|-|(t+7)/d]). Let’s denote this DTMC by U since it includes also the shadow states S.
Lemma [3| shows the correctness of this transformation. Furthermore, the states over which we need
to sum are now R = {(s1,n)|s1 € SA L] <n < [(t+7)/d]}:

. t
Z ulal ety
(51.k)ER [ ](SvLZJ),(sl,k) pi

The next step is to show that this formulation is equivalent to the standard definition of reach-
ability probability for ordinary DTMCs. In fact, at this point we can replace the method based on
shadow states of the ‘bookkeeping’ procedures involved in the ICTMC setting by the usual method of
computing transient probabilities of a DTMC in which the unsafe and goal states are made absorbing.
The correspondence is formally shown in Lemma[d Note that since the states also have the time step
included, making a state absorbing in the DTMC setting therefore corresponds to an original ICTMC
state being absorbing at a particular time.

> {U[TF[[ﬁ‘I)lﬂd v Te[®s]4)la!

t 51,
(Slyk)':TA{(z,dyb)TF[[(I’g]]d (SdeJ):( 1,k)

This formulation directly reflects the standard way to compute the reachability probability in
DTMC by reducing it to a transient analysis problem with one-step probability transition matrix U
in which the unsafe and goal states are made absorbing. More formally:

Prob T (=d8) (5. Lg D, Te[@1]a U= Te[®s]a)

The latter bounded reachability probability for DTMC can also be computed in an on-the-fly
manner as shown in [23]. The on-the-fly approach is convenient in this case, because the DTMC
U may be very large due to the usually small step size d that needs to be considered in order for
the difference equations involved in the Euler approximation to be stable and converging. With the
on-the-fly approach only that part of the state space is generated from the high-level model that is
strictly necessary to check the property of interest. O
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