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Abstract

We define a spatio-temporal logic, the Spatio-temporal Logic of Closure Spaces (STLCS). The logic is
interpreted on Kripke models, in which each state has an associated closure space. The logic extends
CTL with spatial operators, in the spirit of topological modal logic. More specifically, we add to
CTL the operators of the Spatial Logic of Closure Spaces, including the spatial until operator, with its
intended meaning of a point being surrounded by entities satisfying a specific property. The interplay
of space and time permits one to define complex spatio-temporal properties. We present a simple
model-checking algorithm for STLCS, which has been implemented in a prototype tool.

1 Introduction

This technical report is meant to provide the definitions and references for a recently developed
(prototypical) spatio-temporal model-checker. In particular, we start from spatial verification of the
Spatial Logic of Closure Spaces (SLCS), as described in [2, 3]. For an introduction to spatial logics,
we refer the reader to [11], and the QUANTICOL technical report [4].

Spatio-temporal logics may be defined by permitting mutually recursive nesting of spatial and
temporal operators. Several combinations are possible, depending on the chosen spatial and temporal
fragments, and the permitted combinations of the two. A great deal of possibilities are explored in
[10], for spatial logics based on topological spaces. We investigated one such structure in this work, in
the setting of closure spaces, namely the combination of the temporal logic Computation Tree Logic
(CTL) and of SLCS, resulting in the Spatio-Temporal Logic of Closure Spaces (STLCS). In this work,
we assume knowledge of CTL; for a further introduction to and more details on CTL and its model
checking, the reader may consult [6, 1].

The logic STLCS features the CTL path quantifiers A (“for all paths”), and E (“there exists a
path”). As in CTL, such quantifiers must necessarily be followed by one of the path-specific temporal
operators, such as1 XΦ (“next”), FΦ (“eventually”), GΦ (“globally”), Φ1 UΦ2 (“until”), but unlike
CTL, in this case Φ, Φ1 and Φ2 are STLCS formulas. Further operators of the logic are the boolean
connectives, and the spatial operators NΦ, denoting closeness to points satisfying Φ, and Φ1SΦ2,
denoting that a specific point satisfying Φ1 is surrounded, via points satisfying Φ1, by points satisfying
Φ2. The mutual nesting of such operators permits one to express spatial properties in which the
involved points are constrained to certain temporal behaviours. Let us proceed with a few examples.
Consider the STLCS formula EG (green S blue). This formula is satisfied in a point x in the graph,
associated to the initial state s0, if there exists a (possible) evolution of the system, starting from
s0, in which point x is always, i.e. in every state in the path, green and surrounded by blue. A
further, nested, example is the STLCS formula EF (green S (AX blue)). This formula is satisfied
in a point x in the graph associated to the initial state s0, if there is a (possible) evolution of the
system, starting from s0, in which point x is eventually green and surrounded by points y that, for
every possible evolution of the system from then on, will be blue in the next time step.

Spatio-temporal model checking is performed using a variant of the classical CTL labelling algo-
rithm [5, 1], augmented with the algorithm in [2] for the spatial fragment. The algorithm has been
implemented in a prototype tool, which is publicly available at [9].

2 Closure spaces

In this work, we use closure spaces to define basic concepts of space. Below, we recall several definitions,
most of which are explained in [8]. See also [2] for a thorough description of SLCS, the spatial logic
of closure spaces, and its model-checking algorithm.

1Some operators may be derived from others; for this reason, e.g., in Section 5, we shall use a minimal set of
connectives. As usual in logics, there are several different choices for such a set.
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Definition 2.1. A closure space is a pair (X, C) where X is a set, and the closure operator C : 2X → 2X

assigns to each subset of X its closure, obeying to the following laws, for all A,B ⊆ X:

1. C(∅) = ∅;

2. A ⊆ C(A);

3. C(A ∪B) = C(A) ∪ C(B).

The notion of interior, dual to closure, is defined as I(A) = X \ C(X \ A). Closure spaces are a
generalisation of topological spaces. The axioms defining a closure space are also part of the definition
of a Kuratowski closure space, which is one of the possible alternative definition of a topological space.
Below, we spell out the needed additional axiom. The link between topological and closure spaces
is deep, and also involves the so-called Alexandrov spaces; we refer the reader to, e.g., [8] for more
information.

Definition 2.2. A topological space is a closure space where the closure operator is idempotent, that
is, for all A ⊆ X, C(C(A)) = C(A).

In [7], a discrete variant of the topological definition of the boundary of a set A is given, for the
case where a closure operator is derived from a reflexive and symmetric relation (see Definition 3.1
in the next section). Therein, in Lemma 5, it is proved that the definition coincides with the one
we provide below. The latter is only given in terms of closure and interior, and coincides with the
definition of boundary in a topological space. We also need to define two variants on this notion,
namely the interior and closure boundary (the latter is sometimes called frontier).

Definition 2.3. In a closure space (X, C), the boundary of A ⊆ X is defined as B(A) = C(A) \ I(A).
The interior boundary is B−(A) = A \ I(A), and the closure boundary is B+(A) = C(A) \A.

3 Quasi-discrete closure spaces

In this section we see how a closure space may be derived starting from a binary relation, that is, a
graph. The following comes from [8].

Definition 3.1. Consider a set X and a relation R ⊆ X ×X. A closure operator is obtained from R
as CR(A) = A ∪ {x ∈ X | ∃a ∈ A.(a, x) ∈ R}.

Proposition 3.2. The pair (X, CR) is a closure space.

Closure spaces derived from a relation can be characterised as quasi-discrete spaces (see also
Lemma 9 of [8] and the subsequent statements).

Definition 3.3. A closure space is quasi-discrete if and only if one of the following equivalent condi-
tions holds: i) each x ∈ X has a minimal neighbourhood2 Nx; ii) for each A ⊆ X, C(A) =

⋃
a∈A C({a}).

The following is proved as Theorem 1 in [8].

Theorem 3.4. A closure space (X, C) is quasi-discrete if and only if there is a relation R ⊆ X ×X
such that C = CR.

Summing up, whenever one starts from an arbitrary relation R ⊆ X × X, the obtained closure
space (X, CR) enjoys minimal neighbourhoods, and the closure of a set A is the union of the closure of
the singletons composing A. Furthermore, such nice properties are only true in a closure space when
there is some R such that the closure operator of the space is derived from R.

2A minimal neighbourhood of x is a set A that is a neighbourhood of x, namely, x ∈ I(A) = X \ (C(X \ A)), and is
included in all other neighbourhoods of x.
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4 The Spatio-Temporal Logic of Closure Spaces

We define a logic which is interpreted on a variant of Kripke models, where the valuation function
is interpreted at a point in a closure space, or, equivalently, closure models whose valuations are
parametrised over the states of a Kripke frame. In the following, we fix a set P of proposition letters.

Definition 4.1. STLCS formulas are defined by the following grammar, where p ranges over P :

Φ ::= > [True]
| p [Atomic predicate]
| ¬Φ [Not]
| Φ ∨ Φ [Or]
| N Φ [Close]
| ΦS Φ [Surrounded]
| Aϕ [All Futures]
| Eϕ [Some Future]

ϕ ::= X Φ [Next]
| Φ U Φ [Until]

A modelM of the STLCS logic is composed of a Kripke structure (S, T ), where S is a non-empty
set of states, and T is a non-empty accessibility relation on states, and a closure space (X, C), where
X is a set of points and C the closure operator. Every state s has an associated valuation Vs, making
((X, C),Vs) a closure model according to Definition 6 of [2]. An equivalent interpretation is that
the valuation function has type S × X → 2P , where P is the set of atomic propositions, thus, the
valuation of atomic propositions depends both on states and points of the space. The intuition is that
there is a set of possible worlds, i.e. the states in S, and a spatial structure represented by a closure
space. At each possible world there is a different valuation of atomic propositions, inducing a different
“snapshot” of the spatial situation which “evolves” over time. In this paper we assume that the spatial
structure (X, C) does not change over time. Other options are indeed possible. For instance, when
space depends on S, one may consider an S-indexed family (Xs, Cs)s∈S of closure spaces.

Definition 4.2. A model is a structure M = ((X, C), (S, T ),Vs∈S) where (X, C) is a closure space,
(S, T ) is a Kripke frame, and V is a family of valuations, indexed by states. For each s ∈ S, we have
Vs : P → P(X).

A path in the Kripke structure denotes a sequence of spatial models indexed by instants of time;
see Fig. 1 for a pictorial illustration, in which the space is a two-dimensional structure, and valuations
at each state are depicted by different colours.

Definition 4.3. Given Kripke frame K = (S, T ), a path σ is a function from N to S such that for all
n ∈ N we have (σ(i), σ(i+ 1)) ∈ T . Call Ps the set of infinite paths in K rooted at s, that is, the set
of paths σ with σ(0) = s.

The evaluation contexts are of the form M, x, s |= Φ, where Φ is a STLCS formula, s is a state of
a Kripke structure, and x is a point in space X.

Definition 4.4. Satisfaction is defined in a model M = ((X, C), (S, T ),Vs∈S) at point x ∈ X and
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Figure 1: In spatio-temporal logics, a temporal path represents a sequence of snapshots that are
induced by the time-dependent valuations of the atomic propositions.

state s ∈ S as follows:

M, x, s |= >
M, x, s |= p ⇐⇒ x ∈ Vs(p)
M, x, s |= ¬Φ ⇐⇒ M, x, s 6|= Φ
M, x, s |= Φ ∨Ψ ⇐⇒ M, x, s |= Φ or M, x, s |= Ψ
M, x, s |= NΦ ⇐⇒ x ∈ C({y ∈ X|M, y, s |= Φ})
M, x, s |= ΦS Ψ ⇐⇒ ∃A ⊆ X.x ∈ A ∧ ∀y ∈ A.M, y, s |= Φ∧

∧∀z ∈ B+(A).M, z, s |= Ψ
M, x, s |= Aϕ ⇐⇒ ∀σ ∈ Ps.M, x, σ |= ϕ
M, x, s |= Eϕ ⇐⇒ ∃σ ∈ Ps.M, x, σ |= ϕ

M, x, σ |= XΦ ⇐⇒ M, x, σ(1) |= Φ
M, x, σ |= ΦUΨ ⇐⇒ ∃n.M, x, σ(n) |= Ψ and ∀n′ ∈ [0, n).M, x, σ(n′) |= Φ

Indeed, the syntax we provided is rather essential. Several more operators can be derived from the basic
ones; e.g., by the well known theory of Boolean logics one can define conjunction and implication using
negation and disjunction; spatial interior is defined as the dual of N ; several derived path operators
are well-known for the temporal fragment, by the theory of CTL. We do not attempt to make an
exhaustive list; for the classical temporal connectives, see e.g., [1]; for spatial operators, [3] provides
some interesting examples.

5 Model-checking

In this section we describe the model-checking algorithm, which is a variant of the well-known CTL
labelling algorithm. An exhaustive reference for CTL and its model-checking can be found in [1]. We
only remark that complexity of the currently implemented algorithm is linear in the product of number
of states, subformulas, and points of the space, which is a consequence of the algorithm described in [3]
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being linear in the number of points, and the classical algorithm for CTL being linear in the number
of states (in both cases, for each specific formula).

Our algorithm operates only in the special case of quasi-discrete closure spaces, therefore we can
safely assume that the closure space of the model is a graph. We describe the model-checking algorithm
in terms of pseudo-code, which ought to be self-explanatory. Assume the type Set implementing a
finite set-like data structure3, with elements of type El and operations union, inter, diff, times,
emptyset, with the obvious types.

We represent a finite graph as the triple

(G : Set, Pred G : El→ Set, Cl G : Set→ Set)

where the argument and result of the operators implementing closure Cl G, and predecessor Pred G,
are constrained to belong to G.

We describe a model by a pair M = (X , T ), comprising a graph representing space

X = (X, Pred X, Cl X)

and a graph representing a Kripke frame

T = (T, Pred T, Cl T).

Consider the finite set S = X times T of points in space-time; given a subset A ⊆ S, and a state
t ∈ T, we let space sec(A,t) be the subset of X containing the points x such that (x, t) ∈ A; we define
time sec in a similar way. With choose we indicate the operation of choosing an element from a
non-empty set (without making explicit how to pick it). For Φ an STLCS formula, and M a model,
we let JΦKM = {(x, t) ⊆ S | M, x, t |= Φ}.
Given a formula Φ and a model M, the algorithm proceeds by induction on the structure of Φ; the
output of the algorithm is the set JΦKM. In the following, we present the relevant code portions
addressing each case of the syntax; we omit the cases for the boolean connectives, and use a minimal
set of connectives for the temporal part, namely EX , AF, E U .

� case Φ = NΦ′:

let A = JΦ′KM;

P := emptyset;

foreach ((x,t) in A) {

P := P union (Cl_X({x}) times {t});

};

return P;

The result is computed as the set
⋃

(x,t)∈JΦ′KM{(y, t) | y ∈ CX(x)}, which is correct in a quasi-
discrete closure space (X, C), as, for all sets A, we have C(A) =

⋃
x∈A C({x}).

� case Φ = Φ1SΦ2:

let A = JΦ1KM;

let B = JΦ2KM;

F := emptyset;

foreach (t in T) {

R := space_sec(A,t);

Bs := space_sec(B,t);

3We remark that the complexity of operations on such type affect the complexity of the algorithm; however, since
the algorithm is global, it may be implemented using an explicit lookup table, as usual in model checking, obtaining the
linear complexity that we mentioned.
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U := R union Bs;

D := Cl_X(U) diff U;

while (D != emptyset) {

s := choose(D);

N := ( Cl_X({s}) inter R ) diff Bs;

R := R diff N;

D := ( D union N ) diff {s};

};

F := F union (R times {t})

};

return F;

For every state t, we consider the spatial components of A and B (namely R and Bs). Then we
apply the algorithm described in [2].

� Case Φ = EXΦ′:

let A = JΦ′KM;

return pred_time(A);

function pred_time(A) {

F := emptyset;

foreach ((x,t) in A) {

U := Pred_T(t);

F := F union ({x} times U);

}

return F;

}

The set of predecessors (in time) of the points in space-time belonging to the semantics of Φ′

are computed and returned. The auxiliary function pred time is also used in the semantics of
the until operator.

� Case Φ = AFΦ′:

let A = JΦ′KM;

M := emptyset;

foreach (x in X) {

F := time_sec(A,x);

U := F;

foreach (t in (T minus F)) {

count[t] := cardinality (Cl_T({t}));

}

foreach (t in F) {

count[t] := 0;

}

while(U != emptyset) {

U’ := U;

U := emptyset;

foreach (t in U’) {

sem_af_aux(F,U,count ,t);

}

}
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M := M union ({x} times F);

}

return M;

function sem_af_aux(F,U,count ,t) {

foreach (y in Pred_T(t)) {

if count[y] <> 0 then {

count[y] := count[y] - 1;

if (count[y] = 0)

then {

U := U union {y};

F := F union {y};

}

}

}

}

The case for AF is essentially the efficient algorithm for EG presented in [1], except that it is
presented in “dual” form, using the fact that JEGΦ′KM = J¬AF(¬Φ′)KM . The algorithm is
iterated for each point of the space. More precisely, for each x ∈ X, vector count, whose
indices are states in T, is used to maintain the following invariant property along the while

loop: whenever count[t] is 0, we have M, x, t |= AFΦ′. In order to establish such invariant
property, before the while loop, count[t] is initialised to 0 for each point in F, which is the
set of points t such that there is some x, with M, x, t |= Φ′ (therefore, also M, x, t |= AFΦ′

by definition). For each remaining state t, the value of count[t] is set to the number of its
successors. Along the while loop, the set U is the set of states t that, at the previous iteration
(or at initialisation), have been shown to satisfy M, x, t |= AFΦ′. At each iteration, for each t

in U, function sem af aux is used to inspect each predecessor y of t and decrease the value of
count[y]. When count[y] becomes 0, y is added to U, as it is proved that all the successors of
y satisfy AFΦ′; this requires one to show that no state is added twice to U (which is guaranteed
by the line if count[y] <> 0).

� Case E(Φ1 UΦ2):

let A = JΦ1KM;

let B = JΦ2KM;

F := B;

P := A diff B;

L := pred_time(F) inter P;

while(L <> emptyset) {

F := F union L;

P := P diff L;

L := pred_time( L ) inter P;

}

return F

The algorithm computes the set of points that either satisfy Φ2, or satisfy Φ1 and can reach
points satisfying Φ2 in a finite number of temporal steps. This is accomplished by maintaining,
along the while loop, the set F of points that have already been shown to be in this situation
(initialised to the points satisfying Φ2), and the set L of points that satisfy Φ1, are not in F, and
can reach F in one (temporal) step. At each iteration, F is augmented by the points in L, and L
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is recomputed. When L is empty, F contains all the required points. The set P, initialised to the
points satisfying Φ1, is used to guarantee termination, or more precisely, that no node is added
twice to L.

6 The model-checker

In the implementation, available at [9], the definition of the Kripke structure is given by a file containing
a graph, in the plain text graph description language dot for graph representation4. Quasi-discrete
closure models are provided in the form of a set of images, one for each state in the Kripke structure,
having the same size. The colours of the pixels in the image are the valuation function, and atomic
propositions actually are colour ranges for the red, green, and blue components of the colour of each
pixel. Thus, the model-checker actually verifies a special kind of closure spaces, namely finite regular
grids5.

The model-checker interactively displays the image corresponding to a “current” state. The most
important command of the tool is sem colour formula , that will change the colour of points sat-
isfying the given formula, to the specified colour, in the current state. The tool has the ability to
define parametrised names for formulas (no recursion is allowed). Formulas are automatically saved
and restored from a text file. The implementation is that of a so-called “global” model-checker, that
is, all points in space-time satisfying the given formulas are coloured/returned at once. However, for
some auxiliary functions of the model-checker, e.g. counterexample inspection/visualization, it makes
sense to consider also a current point in time, and a current formula. The complete list of commands
is reported in Fig. 2.

7 A simple example

We shall now provide an example that illustrates basic usage of the STLCS model-checker. Consider
the Kripke frame in Fig. 3. The images associated to each state are shown in Fig. 4.

We consider a green circle having a red boundary. Intuitively, the centre of the circle in the figures
moves along time towards the right, at constant speed. Its radius grows at constant speed in turn.
Then, in state 5, there is a non-deterministic choice point. In the first future (states 6 − 10), the
radius keeps growing, whereas in the second future (states 11 − 15) the radius shrinks at constant
speed again. In the following, we shall use atomic propositions g, r, evaluating to the green and red
points (boundary of the green area) in the figures.

Our first test is the formula gSr (green points surrounded by a red boundary). Such formula is
evaluated, colouring in blue the points satisfying it, by executing the command

sem blue S[<g>,<r>]

whose output is displayed in Fig. 5.
Our second example is the formula (¬(g ∨ r))Sr, computed by the command
sem blue S[!(<g> or <r>),<r>]

whose output is displayed in Fig 6. This colours the white area (not green and not red) whose
boundary is the red area.

Finally, we test the formula AGg, describing those points that will be green forever in all futures.
The output from the command

sem blue AG <g>

is shown in Fig. 7.
In states 1− 5, the valuation of the formula in each state is the intersection of two circular areas,

namely the intersection of the green area in the chosen state and the green area in state 15. In states

4Further information on the dot notation can, for example, be found at http://www.graphviz.org/Documentation.php.
5We note in passing that the internal implementation (available at [9]) actually represents images using a graph-like

data structure; thus a loader for graphs in the dot format is planned.
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show store; Shows currently defined formulas.

show status; Shows the current status of the tool, comprising current state and point in space, current formula,
and (local) truth value of the current formula on the current time and point.

show future; Shows the possible next states, and truth value of the current formula at the current point, in
the next states.

show space; Colours on the map the current point.

show time; Shows the name of the current state (an integer value coming from the .dot file representing the
Kripke structure).

show formula; Shows the current formula.

set space <int> <int>; Sets the current point.

set time <int>; Sets the current state.

let <ide> = <fsyntax>; Defines a new formula. Use @x, @y, @z ... for formal parameters (implicitly as-
sumed in the function declaration at the moment, will be changed in the future).

sem <color> <ide>;

sem <color> <ide> <fsyntax> ... <fsyntax>;

sem <color> <fsyntax>; Colours the points corresponding to the semantics of a formula.

save store; Saves the currently defined formulas in the file formula.fr.

load store; Loads formulas from formula.fr

save image <filename>; Saves a set of images corresponding to the current status of the tool (including
coloured points). Files are named filenameNN.bmp where NN is replaced by the name of each state of the
Kripke frame.

reset; Resets the system status.

refresh; Reloads the images.

exit; Exists.

Figure 2: Commands of the model-checker.

0 1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 3: The Kripke frame of our example.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 4: The images providing valuations for the atomic propositions.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 5: The points satisfying gSr are displayed in blue.

1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 6: In blue, the semantics of (¬(g ∨ r))Sr.
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1 2 3 4 5

6 7 8 9 10

11 12 13 14 15

Figure 7: In blue, the semantics of AGg.

11−15, the situation is similar, since state 15 is a possible future. On the other hand, in states 6−10,
state 15 is not reachable, thus the area which will be forever green is larger.

8 Future work

The use of a spatial model checker provides us with a sophisticated tool for checking complex properties
over systems where location plays an important role, as it does in many collective adaptive systems.
By enhancing the existing spatial logic and model checker with a temporal perspective, the interplay
of space and time allows one to define complex spatio-temporal formulas, predicating over the relation
between points of an image that varies over the states of a branching temporal model.

Current work is focused on defining collective variants of spatial and spatio-temporal properties;
that is, the satisfaction value of a formula is defined on a set of points, rather than on a single point,
so that the satisfaction value of a formula with respect to a set of points (a collective property) is
not necessarily determined by the satisfaction values over the points composing the set (an individual
property). Such interpretation of spatio-temporal logics is particularly motivated by the setting of
collective adaptive systems.

High priority in future work will be given to the investigation of various kinds of optimisations
for spatio-temporal model-checking, including partition refinement of models, symbolic methods, and
on-line algorithms taking advantage of differential descriptions of the changes between system states.

An orthogonal, but nevertheless interesting, aspect of computation is the introduction of proba-
bility and of stochastic features. Such features can also be added to our spatio-temporal logic, and
investigating efficient model checking algorithms in this setting is important for practical applications,
which are very often quantitative rather than boolean. The applications in the evaluation of correction
strategies that we presented would be very much enhanced by forms of quantitative analysis. Such
methodologies would be able to address questions like “how likely it is that a given strategy fixes the
problem?” or “how frequently does the problem manifest itself, before and after applying a given
strategy?”.
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