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1 Introduction

In these notes we provide some pragmatic considerations, based on notions of Abstract Data
Types, on how space information can be incorporated in CARMA. We assume that spatial
information is modelled in the language using component attributes. More specifically, we
assume that space is modelled by an abstract data type to be used for the values of space
attribute and in particular that each component has an attribute, posn that takes as value
the point in space where the component is in the current global state—where the meaning
of “point in space” depends on the notion of space which is used in a specific system model,
i.e. the specific type(s) used; so it can be a point in a n-dimensional Euclidean Space, or a
vertex in a graph, or an IP address, etc. Furthermore, depending on the specific notion of
space there can be more than one component in the same point.

The specification of the space type to be used in a system model N in E is assumed to
be given in the environment E of the model. We refrain here from suggesting any specific
language for defining the space type(s); we rather present some hints on the more conceptual
framework which could be used for the definition of such a language.

2 Space as a type

We consider the (parametric) class1 CS(∗) of Closure Spaces, where, for each set X, CS(X) is
the class of all closure spaces with X as set of points (we say “based on X”). The elements
of CS(X) are specific closure spaces. Each such a space (X, C) is characterized by a specific
closure operator, that is a function C : 2X → 2X satisfying the following axioms:

Definition 1 (Closure Axioms).

C1: C(∅) = ∅;

C2: A ⊆ C(A), for all A;

C3: C(A ∪ B) = C(A) ∪ C(B), for all A,B

We refer to [5, 2, 3] for details on closure spaces. Here we only want to point out that the
class CS(∗) is sufficient for expressing the most common notions of space which can be used
as basic types for (space) attribute values of CARMA components (see [4]). This can be done
via suitable instantiations, enrichments and refinements of the class CS(∗), as we will show
later on in Sect 2.1, Sect. 2.2, Sect 2.3 and Sect. 3.

Let us consider the class CS(X) of all closure spaces based on X. A join in CS(X) is
any finite family {(X, Ci)}ki=1 of closure spaces in CS(X). Furthermore, let us define operator

tki=1 : (2X → 2X)k → (2X → 2X) with (tki=1Ci)(A) =
⋃k

i=1 Ci(A) for all A ⊆ X.

Proposition 1. For join {(X, Ci)}ki=1, (X, (tki=1Ci)) is in CS(X).

Proof.

C1: (tki=1Ci)(∅) =
⋃k

i=1 Ci(∅) =
⋃k

i=1 ∅ = ∅;

C2: choose h ∈ {1, . . . , k}, recalling that Ch is a closure: A ⊆ Ch(A) ⊆
⋃k

i=1 Ci(A) =
(tki=1Ci)(A);

1In this note we freely use terminology from Object Oriented Languages and Parametric Polymorphism
in Abstract Data Types. Also, when we say set X, it can often be read as type X or, more specifically, the
carrier of type X. We do not intend to suggest any specific choice for the theoretical framework to be used as
underlying semantics for CARMA space attribute values, neither any specific syntactical construct. We leave
these choices to the actual language design activity.
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Figure 1: An annulus of components

C3: (tki=1Ci)(A∪B) =
⋃k

i=1 Ci(A∪B) =
⋃k

i=1(Ci(A)∪Ci(B)) = (
⋃k

i=1 Ci(A))∪ (
⋃k

i=1 Ci(B)) =
(tki=1Ci)(A) ∪ (tki=1Ci)(B)

So, for all X, CS(X) is closed under join closure unions, and this allows us to define,
the merge operator M : 2CS(∗) → CS(∗) with M({(X, Ci)}ki=1) = (X,tki=1Ci), for each join
{(X, Ci)}ki=1.

2.1 Continuous Space(s): refinement of CS(∗)

The mono-, bi-, three-, and n-dimensional (continuous) Euclidian Spaces can be seen as
topological spaces. The (parametric) class TS(∗) of Topological Spaces can be defined as a
refinement of CS(∗), by adding an additional axiom [5, 2]:

Definition 2. TS(∗) is the (parametric) class of Topological Spaces, defined as a (parametric)
subclass of CS(∗). In particular, for each set X, the class TS(X) is composed of those closure
spaces (X, C) in CS(X) such that the following additional fourth axiom holds:

C4: C(C(A)) = C(A) for allA. 2

Note that Proposition 1 does not hold for (non-trivial) topological spaces since

(tki=1Ci)((tki=1Ci)(A)) =
⋃k

i=1 Ci(
⋃k

i=1 Ci(A)) =
⋃k

i=1(Ci(Ci(A))
⋃k

j=1,j 6=i Ci(Cj(A))) =⋃k
i=1(Ci(A))

⋃k
j=1,j 6=i Ci(Cj(A))⊃

⋃k
i=1(Ci(A)) = (tki=1Ci)(A).

Common continuous spaces are (R, C1) in TS(R), (R2, C2) in TS(R2), and (R3, C3) in
TS(R3) with classical open and closed sets, and the classical definition of closure, i.e. Cn(A) =

I(A) where A denotes the complement of set A in Rn and I(A) is the interior of A in Rn, i.e.
the union of all open sets in Rn which are included in A. Cartesian representation (x1, . . . , xn)
is assumed for the elements of Rn, which is extended to posn = (posn1, . . . , posnn) in the
obvious way.

A simple example of use of (R2, C2) in TS(R2) in CARMA is the following action

α∗[k ≤ (posn1 − this.posn1)
2 + (posn2 − this.posn2)

2 ≤ K]〈v〉{}

by means of which a process performs a broadcast action α sending value v, to all those
components which are willing/able to receive it and which are positioned in the annulus
between the circle of radius

√
k and the circle of radius

√
K, centred in the component

hosting the process, i.e. in the light-blue area in Fig. 1.
Finally, one can further refine (Rn, Cn) in TS(Rn) using topological spaces based on the

(hyper-)rectangles [a1, b1]× . . .× [an, bn], and their open variants, for a1, b1 . . . an, bn ∈ R, and
appropriate closure functions (e.g. the classical one).
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2.2 Graphs and Quasi-discrete Spaces

An interesing feature of Closure Spaces is that, given a set X and any binary relation R ⊆
X × X, the function CR defined as CR(A) = A ∪ {x ∈ X | ∃a ∈ A.aRx} satifies axioms
C1, C2, and C3 (but not necessarily C4, typically). So, for instance, any graph on X is an
element of CS(X). Such spaces coincide with so-called Quasi-discrete Closure Spaces (see [5]
for details). Notable examples of Quasi-discrete Closure Spaces are the mono-, bi-, three-,
and n-dimensional infinite regular grids, i.e. those elements of CS(Z), CS(Z2), CS(Z3), CS(Zn)
characterized by the closure CA induced by the standard binary adjacency relation A recalled
below2:

A = {((x1, . . . , xn), (y1, . . . , yn)) ∈ Zn × Zn |
n∨

i=1

(
|xi − yi| = 1 ∧nj=1,j 6=i xj = yj

)
}

where Z is the set of integer numbers. As for the continuous case, one can consider finite
grids CS({k1, . . . ,m1}× . . .×{kn, . . . ,mn}) for ki < mi ∈ Z. for i = 1, . . . , n and closure CFA

induced by FA = A|{k1,...,m1}×...×{kn,...,mn}

2.2.1 Bi-dimensional Grid with directions as enrichment of CS(Z2)

The bi-dimensional Grid with directions 2GridD is obtained by adding specific operations for
the four cardinal directions:

Definition 3. 2GridD is the closure space (Z2, CA) in CS(Z2) enriched with the following
additional operations

• North(x1, x2) = (x1, x2 + 1)

• South(x1, x2) = (x1, x2 − 1)

• East(x1, x2) = (x1 + 1, x2)

• West(x1, x2) = (x1 − 1, x2) 2

The following is a simple example of a CARMA process randomly3 walking in the grid:

Walk =
walk[>]〈•〉{this.posn← North(this.posn)}.Walk+
walk[>]〈•〉{this.posn← South(this.posn)}.Walk+
walk[>]〈•〉{this.posn← East(this.posn)}.Walk+
walk[>]〈•〉{this.posn←West(this.posn)}.Walk

2.2.2 Three-dimensional Grid with directions as enrichment of CS(Z3)

In a pretty similar way as for the bi-dimensional Grid with directions 2GridD we can define
the three-dimensional Grid with directions 3GridD:

Definition 4. 3GridD is the closure space (Z3, CA) in CS(Z3) enriched with the following
additional operations

• North(x1, x2, x3) = (x1, x2 + 1, x3)

• South(x1, x2, x3) = (x1, x2 − 1, x3)

2Again, the Cartesian representation (x1, . . . , xn) is used for the elements of Zn.
3We recall here that the precise rates and probabilities associated with specific actions are to be defined in

the environment part of the relevant CARMA model specification.
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• East(x1, x2, x3) = (x1 + 1, x2, x3)

• West(x1, x2, x3) = (x1 − 1, x2, x3)

• Up(x1, x2, x3) = (x1, x2, x3 + 1)

• Down(x1, x2, x3) = (x1, x2, x+ 3− 1) 2

The following is a simple example of a CARMA process randomly walking&jumping in the grid:

WalkAndJump =
walk[>]〈•〉{this.posn← North(this.posn)}.WalkAndJump+
walk[>]〈•〉{this.posn← South(this.posn)}.WalkAndJump+
walk[>]〈•〉{this.posn← East(this.posn)}.WalkAndJump+
walk[>]〈•〉{this.posn←West(this.posn)}.WalkAndJump+
walk[>]〈•〉{this.posn← Up(this.posn)}.WalkAndJump+
walk[>]〈•〉{this.posn← Down(this.posn)}.WalkAndJump

2.2.3 Directed Graphs as enrichment of CS(V )

Directed graphs are readily defined as follows:

Definition 5. A Directed Graph (V,E), with V the set of vertices and E ⊆ V × V the set of
edges, is the closure space (V, CE) in CS(V ) enriched with the following additional operations4:

• Post(v) = CE({v}) \ {v}

• Pre(v) = CE−1({v}) \ {v}

2.2.4 Edge Labelled Graphs as Closure Space join

Let (V,E) be a Directed Graph, with V the set of vertices and E ⊆ V × V the set of edges,
L be a finite set of labels, and consider an edge labelling total function L : E → L mapping
each edge e ∈ E to a label ` ∈ L. So, the graph can be obtained via enrichment of CS(V ), by
adding edge-labelling operators ElabE : E → L.

An alternative view follows. Let {E`}`∈L be the standard kernel partition induced by L,
i.e. {E`}`∈L where E` = {e ∈ E | L(e) = `}. For each ` ∈ L, relation E` induces in the
standard way5 the closure CE`

—abbreviated by C` in the sequel—and thus characterizes the
closure space (V, C`). Then, the LE-edge-labelled graph (V,E) is the join {(V, C`)}`∈L. We
enrich CS(V ) with operation Take defined as follows for v ∈ V and L′ ⊆ L:

• Take(L′, v) = (t`∈L′C`)({v}) \ {v}

So Take(L′, v) returns the set of those vertices v′ 6= v which are connected to v via an
edge with label in L′. Equivalently, one can consider the merge (X, CL′) =M({(X, C`)}`∈L′)
and define Take(L′, v) as Take(L′, v) = CL′({v}) \ {v}. Note thatM({(X, C`)}`∈L) coincides
with the unlabelled graph (V,E).

In the case in which labels are tuples of n elements, i.e. L = ×n
j=1Lj , function L is the

product ×n
j=1Lj of functions Lj with Lj : E → Lj . For each j we can consider the partition

{E`j}`j∈Lj
of E induced by Lj . Clearly, for ` = 〈`1, . . . , `j , . . . , `n〉 ∈ L we have that E` ⊆ E`j

for j = 1, . . . , n. Each relation E`j characterizes a closure C`j and related closure space with

4Here we use a strong version of Post, i.e. one in which v 6∈ Post(v) even in the case in which v E v.
Similarly for Pre.

5We recall that CE`(A) = A ∪ {v ∈ V | ∃a ∈ A.aE` v}.
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points in V . It is easy to see that, for j = 1 . . . n, for label ` ∈ Lj the following holds, where,
for ` ∈ L, `[j] denotes the j-th element of `: C` = t`∈L:`[j]=` C`. Funtion Take is readily

extended to the case of tuple labels, for v ∈ V , L = ×n
j=1Lj and L′ ⊆ Lj :

• Take(L′, j, v) = (t`∈L′C`)({v}) \ {v} where C` is the closure defined by relation E`,
element of the partition {E`j}`j∈Lj

induced by Lj .

In the sequel, we will use often the notation QDCS(∗) instead of CS(∗) when we want
to enphasize that we are dealing with a Quasi-discrete closure space generated by a binary
relation.

2.3 Metric and Distance Spaces

It is often useful to enrich the class CS(∗), or its refinements, with a metric function:

Definition 6. MS(∗) is the (parametric) class of Metric Spaces, defined as the (parametric)
subclass of CS(∗) enriched with a function d : ∗ × ∗ → R≥0 ∪ {+∞} such that:

D1: d(x, y) = 0 iff x = y;

D2: d(x, y) = d(y, x);

D3: d(x, z) ≤ d(x, y) + d(y, z)

for all x, y, z. 2

In some cases, requiring all of D1 to D3 to hold can be too restrictive. For instance,
due to one way roads it may happen that di distance to be covered to go from x to y is
different from that to be covered for going from y to x, i.e. d(x, y) 6= d(y, x)—this is always
the case for directed graphs with non-symmetric edge relation—or one might be interested
in approximating a distance by using just a finite set of values like 1 for “short distance”,
2 for “medium distance”, and 3 for “long distance”, in which case D3 would not make any
sense (“short” plus “short” is not “medium” . . . ). In all these cases it might be more useful
to use a distance function instead of a metric function: a distance function is a function in
∗ × ∗ → R≥0 for which only D1 is required to hold. Finally, sometimes it might be useful to
use a pseudo-metric which is a function satisfying

D1’: d(x, x) = 0

instead of D1, so that different points in space may be at distance 0. A classical example of
a metric is the Euclidean distance in (R2, C) with

d((x1, x2), (y2, y2)) =
√

(y1 − x1)2 + (y2 − x2)2

A common example of use of (R2, C) with Euclidean metric d in CARMA is the action

α∗[d(posn, this.posn) ≤ d]〈v〉{}

by means of which a process performs a broadcast output action α, sending value v, to all those
components which are closer than d from the hosting component, and which are willing/able
to receive it (actions also have updates, which in our examples are the empty set {}).

A typical distance function in directed graphs (V, CE) is

d(v, v′) = min{n | ∃v0 = v, . . . , vn = v′.n > 0 =⇒ ∧n−1j=0 vj E vj+1} with min ∅ = +∞

that is, the length of the minimal path from v to v′, if such a path exists (otherwise ∞).

QUANTICOL 6 June 17, 2015



On Space in CARMA (Revision: 1.2; June 17, 2015) June 17, 2015

3 An Example

In this section we consider a bike-sharing system. The system consists of a set of bike-stations,
each located in a different place of a city and a set of bike-agents. An agent starts from a
place where a bike-station is located and repeatedly chooses (at random) a place in the city
where the destination station is located and—with the help of its (local) planner—heads to
the chosen destination. The city is represented by a city-map where each street is composed
of several segments, each segment being identified by the portion of the street along a block.
Segments of the same street are connected by city places, typically corresponding to street
crossings (but they can also correspond to the beginning or end of the street). Each bike-
agent is provided with a local planner that, given the chosen destination and the current
agent location, on the basis of a local strategy, and possibly previous experience, chooses the
best street-segment to take next6 so that the bike-agent moves to the next place, i.e. the
other end-point of the selected street-segment. This procedure continues until the bike-agent
reaches the destination, unless a relevant update is received from the destination station.
In fact, each station repeatedly broadcasts the number of its free parking slots to all those
bike-agents which are heading to the station’s location and which are sufficiently close to
such a place. Upon receiving the information on the free slots, a bike-agent (planner) decides
whether to continue the trip to such a destination station (i.e. the risk to find no parking place
when arriving is acceptable) or to head to one of a set of alternative stations. The planner
acquires knowledge about these alternative stations by first broadcasting to all convenient
stations a request about their state and then taking into consideration a limited number of
answers from such convenient stations. Typically, a station is convenient if it is close to the
original destination station and has more free slots than the latter.

In the following, we assume CARMA provides the user with the built in standard types
like Int, Bool, etc. as well as standard type definition mechanisms like

• set notation { } and enumeration types (e.g. {a,b,c,d}: EnumSet or
{(a,b),(c,d)}: EnumRelation on ...), set-theoretic operations, e.g. Cartesian prod-
uct (*,**,*** ...), test on singleton and subset singleton, subset of, etc.

• parametric lists [*] (e.g. lists of pairs integer-boolean [(Int,Bool)]).

We assume a function RANDOM(dist) is provided by CARMA such that for each type T,
RANDOM(distr)(T) returns an element of T randomly chosen according to ditribution distr.
We furthermore assume the parametric type CS(∗) (and TS(∗)) of closure spaces (topological
spaces) is provided to the user as well as the parametric type QDCS(∗) of quasi-discrete
closure spaces; for each finite set (of points) V, QDCS(V) is the collection of all quasi-discrete
closure spaces based on V. Each specific element of QDCS(V) is introduced by declaring its
characterizing edge relation, E ⊆ V × V according to the following schema:

V = {v1,v2, ...,vn} : EnumSet;

E = {(v1,v2), ..., (vh,vk)} : EnumRelation on V;

VE = (V,E) : QDCS(V);

We assume that by processing the above declarations CARMA provides the user with a closure
function Closure(V,E) such that, for each subset A of V, Closure(V,E)(A) returns the closure
of A according to the standard definition of closure based on binary relations (see Section 2.2).
This easily extends to edge labelled graphs as joins, as in the following example:

V = {v1,v2, ...,vn} : EnumSet;

L = {l1,l2, ...,ln} : EnumSet;

6One way to think of the planner is a smartphone application.
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E_l1 = {(v1,v2), ..., (vh,vk)} : EnumRelation on V;

E_l2 = ... : EnumRelation on V;

...

E_ln = ... : EnumRelation on V;

VE = {(V,E_l1), (V,E_l2), ... (V,E_ln)} : Join in QDCS(V);

with

TAKE(label:L,v:Point)=

let c = case label of l1:: Closure(V,E_l1)({v})\{v} ... ln::Closure(V,E_ln)({v})\{v}

in if singleton(c) then element(c) else error;

/* Note that for simplicity the first argument of TAKE is a label and not a set of labels.

Graphs with tuple-labels can also be dealt with, as in the following example:

V = {v1,v2, ...,vn} : EnumSet;

L_1 = {l11,l12, ...,l1n_1} : EnumSet;

L_2 = {l21,l22, ...,l2n_2} : EnumSet;

...

L_h = {lh1,lh2, ...,lhn_h} : EnumSet;

L = (L_1, ..., L_h);

E_l11 = {(v1,v2), ..., (vh,vk)} : EnumRelation on V;

E_l21 = ... : EnumRelation on V;

...

E_lhnh = ... : EnumRelation on V;

VE = {(V,E_l11), (V,E_l2), ... (V,E_lhn_h)} : Join in QDCS(V);

with TAKE ...

The CARMAformalization of the example is given below7. The relevant type definitions
are given below. The CityMap is an edge-labelled graph with labels in StreetNames, i.e. a
Join in QDCS(Places).

/*Constants:

Places = { ... } : EnumSet;

StationPlaces = { ... } : EnumSet subset_of Places;

StreetNames = {nm_1,nm_2,...,nm_k} : EnumSet;

StreetSegms_1 = { ... } : EnumRelation on Places;

StreetSegms_2 = { ... } : EnumRelation on Places;

...

StreetSegms_k = { ... } : EnumRelation on Places;

CityMap = {(Places,StreetSegms_1),

(Places,StreetSegms_2),

...

(Places,StreetSegms_k)} : Join in QDCS(Places);

with

TAKE(label:StreetNames,p:Places)=

let c = case label of

nm_1:: Closure(Places,StreetSegms_1)({p})\{p}

...

nm_k:: Closure(Places,StreetSegms_k)({p})\{p}

in if singleton(c) then element(c) else error;

min_slots : Int; /* used by process Planner as threshold for considering a Station risky

7It is worth noting that the model we provide here is quite a detailed one; probably too much detailed for
the model to be analyzed by automatic tools and maybe more appropriate for execution. On the other hand,
in this report, we abstract from all those issues which are not relevant for the purpose of the report like all
aspcts related to time and probability, e,g the rate function definition.

QUANTICOL 8 June 17, 2015



On Space in CARMA (Revision: 1.2; June 17, 2015) June 17, 2015

updatereq : Nil; /* used by process Planner for requesting status reports from Stations

capacity : Int; /* The max number of slots of a Station

We assume that, by construction:

• for each p in Places and nm j,nm h in StreetNames TAKE(nm j,p) has at most one
element and, for j 6= h, TAKE(nm j,p) and TAKE(nm h,p) do not share any element. So
edges are actually functions rather than relations and there is no place p′ which can be
reached from another place p via two segments (with different names) departing from
p and both ending in p′;

• the name attribute uniquely identifies a component;

• different station components reside at different Places.

The CARMA code for the bike-agent component is given below. The store consists of the
following attributes:

name:ComponentName the name of the component. We assume each component is uniquely
identified by its name;

posn:Places the place where the component is currently located;

count:Int a counter for fixing the max number of status reports from convenient stations;

alternatives:[(Places,Int)] a list of status reports from convenient stations; each status
report is a pair where the first component is the place of the station and the second is
the number of free slots in the station (at the time the report has been sent).

The behaviour of the component is composed of two proceses, namely Biker and Planner

running in parallel:

/* Bike-Agent Component:

((Biker | Planner),

gamma_ba{name:ComponentName,posn:Places,count:Int,alternatives:[(Places,Int)]})

The Biker process is shown below; a short description follows:

Biker =

choose_destination*[False]<_>

{destination <-- RANDOM(Uniform)(StationPlaces \ {this.posn})}.

BP_destination[name = this.name]<destination>{}.

BS_pick[posn = this.posn](_){}.

Travelling

Travelling =

(PB_move[name = this.name](nextstreet){posn <-- TAKE(nextstreet,posn)}.

(([posn!=destination] Travelling)

+

([posn=destination] BS_release[posn = this.posn](_){}.Biker)

)

)

+

(SB_free_slots*[True](free_slots).

BP_free_slots[name = this.name]<free_slots>.

PB_alternative[name = this.name](alternative_destination)

{destination <-- alternative_destination}.

BP_destination[name = this.name]<destination>{}

Travelling

)
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A Biker process can be in one of two states:

Biker This is the initial state and the state in which the bike-agent starts a (new) journey.
The Biker selects the destination by means of spontaneous action choose destination

and uses function RANDOM; it then communicates the destination to its Planner (i.e. the
Planner in the same component, identified by attribute name) by action PB destination;
then, the Biker interacts with the station in its current location, by picking a bike; state
Biker is left and state Travelling is entered at this point. It is assumed that each
bike-agent component is initially located in a Place where a station is located as well.
Recall that input actions are blocking.

Travelling While in state Travelling the process can receive (from its Planner, via ac-
tion PB move) the name of the next street to take, or (from any station, via action
SB free slots) the number of remaining free slots. As we will see, not all stations
will send the number of their free slots to all bike-agents: each station will broadcast
the information only to those bike-agents heading to that station. The number of free
slots is sent to the local Planner—via action BP free slots—which returns a (possibly
different) destination and the Travelling cycle restarts (the additional communication
with the Planner, via action BP destination is there for symmetry and readability).
When receiving the next street name, the process takes such a street (recall that we
assume unicity of outgoing street names) and checks whether the destination has been
reached. If so, the bike is released via an appropriate interaction with the station in the
current place and a new journey can start. Otherwise the journey continues.

The Planner process is shown below.

Planner =

(BP_destination[name = this.name](BP_dest).

PB_move[name = this.name]<BestStreet(MyMap,this.posn,BP_dest)>{}.

Planner)

+

(BP_free_slots[name = this.name AND free_slots >= min_slots](free_slots).

PB_alternative[name = this.name]<BP_dest>{}.

Planner)

+

(BP_free_slots[name = this.name AND free_slots < min_slots](free_slots).

PS_updates[convenient(posn,this.posn,BP_dest,st_free_slots,free_slots...)]<update_req>

{count <-- max_alternatives, alternatives <--[ ]}.

(Updating | Manage_Alternative_Destination | Timeout)

)

Updating =

timeout[name=this.name]<set>{}.Upd

Upd=

(SP_updates[convenient(posn,this.posn,BP_dest,st_free_slots,free_slots...) AND count>0]

(posn,free_slots) {count <-- count-1, alternatives <-- [(posn,free_slots)|alternatives]}.

Upd)

+

(SP_updates[convenient(posn,this.posn,BP_dest,st_free_slots, free_slots...) AND count=0]

(posn,free_slots){}.

UM_syn[name = this.name]<alternatives>.

nil)

+

(timeout[name=this.name](_){}.

UM_syn[name = this.name]<alternatives>.

nil)
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Manage_Alternative_Destination =

UM_syn[name = this.name](alternatives).

PB_alternative[name = this.name]

<BestAlternativeDestination(this.posn,BP_dest,alternatives,...)>{}.

Planner)

It is worth noting that the choice for the next street is made by means of function BestStreet

applied to the current position, the current destination and the local view MyMap of the city-
map. We do not deal with the details of BestStreet or MyMap. We only want to point out
that, for instance, MyMap could be a sub-graph of CityMap. Another possibility could be that
if CityMap is a graph labelled by (street-name, segment-length) then MyMap could be a graph
labelled by (street-name, segment-time), where segment-time would be the average time for
the bike-agent to cover the street segment and its value could be learned/adjusted by the
Planner on the basis of experience.

In case the number of free slots is risky, i.e. is less than constant min slots, the Planner

sends a request for an update on their status to all stations that are considered convenient to
be taken into consideration as alternative destination. The update process consists of getting
status information from (at most) count statations; termination is guarateed by means of a
timer, the details of which are not shown in the specification. We do not consider the details
of the predicate convenient; we only point out that a possible definition of the predicate
could be one which implies:

close(posn,this.posn): the potential alternative station is close to the (the current po-
sition of the) bike-agent, so that it should not take too long for it to get there and
consequently less likely to find it full upon arrival;

close(posn,BP dest): the potential alternative station is close to the destination; obvious;

st free slots > free slots: the number of free slots of the potential alternative station
must be larger than those of the current destination station, otherwise it is not worth
changing destination.

In the description above we have used predicate close(p1,p2) which presumes the exis-
tence of a notion of distance. We shall briefly discuss the issue at the end of this section. We
first show the definition of the station component, which is straightforward.

/* Station Component:

((Bike_Mgt | (Promotion | StatusReport)),

gamma_s{st_free_slots:Int, posn: Places})

Bike_Mgt =

(([st_free_slots < capacity]BS_pick[posn = this.posn]<_>{st_free_slots <-- st_free_slots+1}.

Bike_Mgt

)

+

((st_free_slots > 0]BS_release[posn = this.posn]<_>{st_free_slots <-- st_free_slots-1}.

Bike_Mgt

)

)

Promotion =

SB_free_slots*[destination = this.posn AND close(posn,this.posn)]<this.st_free_slots>{}.

Promotion

StatusReport =

PS_updates[True](x){}.SP_updates[True]<(this.posn,this.st_free_slots)>.

StatusReport
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We close this section with some considerations on distances and possible choices for their
representation as well as related refinements of the models. We have been using predicate
close(p1,p2) which intuitively calls for a notion of distance. One way for defining a distance
function is to refine CityMap so that each edge label is no longer just a StreetName but a
pair in (StreetNames,Distance) where Distance could be Int or Float and the intended
meaning of a label (nm h,d) labelling a street-segment (i.e. edge) is of course that the length
of that particular segment of street named nm h is d. A distance function dist(p1,p2) can
then be defined directly on the graph as, e.g. the length of the shortest path from place
p1 to place p2. Note that in this case function TAKE(label:StreetNames,j:Int,p:Places)

should be used—with j =1—instead of TAKE(label:StreetNames,p:Places), as discussed
at the end of Section 2.2.4.

An alternative option, when appropriate, could be to consider the CityMap as laying on the
Euclidean bi-dimensional space, to be represented by TS(Floating) with standard Euclidean
metric E dist together with a mapping cordinates: Places → (Floating,Floating),
to be defined in the model, which associates each element of Places with a distinct pair of
Cartesian coordinates (x,y) so that the distance between p1 and p2 in Places is given by
E dist(coordinates(p1),coordinates(p2)).

4 Conclusions

In these notes we provided some pragmatic considerations, based on notions of Abstract Data
Types, on how space information can be conveniently incorporated in CARMA. It is proposed
to model space as an abstract data type, to be used for the values of space attributes. A
range of models of space have been presented, all defined as instantiations, refinements and
enrichments of a generic class of Closure Spaces.

We close by mentioning that the approach is compatible with the Spatial Logic for Closure
Spaces (SLCS) presented in [2] and could bring to very sophisticated addressing mechanisms
based on properties of space. For instance, the following

α∗[posn : φ1Sφ2]〈v〉{}

by means of which a process performs a broadcast action α sending value v, to all those
components whose position posn satisfies φ1 and are surrounded by components satisfying
φ2 (and which are willing/able to receive it). For instance, φ1 could be a spatial property
satisfied only by safe points in space whereas φ2 could characterize dangerous points.

Finally, it could be interesting to investigate on the possibility of extending the present
proposal with the use of affine geometry [1].
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A Some Properties of Closure Spaces

The following are some useful notions and results concerning Closure Spaces [5, 2].

Definition 7. Let (X, C) be a closure space, x ∈ X and A ⊆ X. Then:

• the interior I(A) of A is the set C(A);

• A is a neighbourhood of x iff x ∈ I(A);

• A is closed if A = C(A) and it is open if A = I(A). 2

Lemma 1. Let (X, C) be a closure space and A,B ⊆ X. Then:

1. A is open iff A is closed;

2. A ⊆ B implies C(A) ⊆ C(B) and I(A) ⊆ I(B)

3. Finite intersections and arbitrary unions of open sets are open. 2

Definition 8. Let (X, C) be a closure space and A ⊆ X. Then:

• the boundary of A is B(A) = C(A) \ I(A);

• the interior boundary of A is B−(A) = A \ I(A);

• the closure boundary of A is B+(A) = C(A) \A

where \ denotes set-theoretic difference.

Proposition 2. The following equations hold:

B(A) = B+(A) ∪ B−(A) (1)

B+(A) = ∩B−(A) = ∅ (2)

B(A) = B(A) (3)

B+(A) = B−(A) (4)

B+(A) = B(A) ∩ A (5)

B−(A) = B(A) ∩ A (6)

B(A) = C(A) ∩ C(A) (7)

2
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