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Abstract

Formal languages with semantics based on ordinary differential equations (ODEs) have emerged as a
useful tool to reason about large-scale distributed systems. We present differential bisimulation, a behav-
ioral equivalence developed as the ODE counterpart of bisimulations for languages with probabilistic or
stochastic semantics. We study it in the context of a Markovian process algebra. Similarly to Markovian
bisimulations yielding an aggregated Markov process in the sense of the theory of lumpability, differential
bisimulation yields a partition of the ODEs underlying a process algebra term, whereby the sum of the ODE
solutions of the same partition block is equal to the solution of a single (lumped) ODE. Differential bisim-
ulation is defined in terms of two symmetries that can be verified only using syntactic checks. This enables
the adaptation to a continuous-state semantics of proof techniques and algorithms for finite, discrete-state,
labeled transition systems. For instance, we readily obtain a result of compositionality, and provide an ef-
ficient partition-refinement algorithm to compute the coarsest ODE aggregation of a model according to
differential bisimulation.

1 Introduction

There has been increasing attention to models of computation based on ordinary differential equations (ODEs).
This has been mainly prompted by a line of research which interprets an ODE as the deterministic (called fluid
or mean-field) approximation [15, 16] of a continuous time Markov chain (CTMC) underlying languages with
Markovian semantics [6, 11, 23]. The ODE semantics provides the behavior of a (concurrent) program as a
continuous trajectory representing the concentration of processes over time.

In this paper we consider the following problem: How to compare programs with ODE semantics? Our
main contribution is to lift the notion of bisimulation to languages with ODE semantics. To put it in context,
let us draw a parallel with established results of aggregation of CTMCs obtained from a Markovian semantics
of a high-level language such as process algebra (e.g., [2, 14, 4]). This involved finding behavioural relations
that induce a partition of the CTMC states which satisfies the property of ordinary lumpability [3]: a smaller
CTMC can be constructed where each state (a macro-state) is the representative of the states in a block; the
probability of being in a macro-state is equal to the sum of those of being in the block’s states. Here we proceed
analogously. We introduce differential bisimulation (DB), an equivalence relation that captures symmetries in
the ODE semantics according to the well-known theory of ODE lumpability [22]: the solution to each ODE
representing an equivalence class is equal at all time points to the sum of the solutions of the ODEs of the states
in that equivalence class.

We study DB for Fluid Extended Process Algebra (FEPA) [24], a fragment of PEPA [14] with ODE se-
mantics, extended to also capture the product-based synchronisation mechanism of [4, 12]. A FEPA model is a
composition of fluid atoms, each representing a population of identical copies in parallel of the same sequential
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process, describing its evolution over its set of local states. The interaction between fluid atoms occurs via
shared channels. A FEPA model encodes a family of systems, parametric in the population sizes of each fluid
atom. Under appropriate scaling conditions each member is represented by the same ODEs, one for each local
state of each fluid atom, giving the evolution of the number of sequential processes exhibiting that local state.

Differential bisimulation is an equivalence relation over local states of a process. This is in contrast to
Markovian bisimulations, which are defined over states of a CTMC. However, DB can be seen as a natural
generalization. Indeed it consists of two conditions, the first of which is essentially a Larsen-Skou style bisim-
ulation (cf. [17]) over local states. When a process consists of a fluid atom with one replica (i.e., a single
sequential process), the ODE and the CTMC semantics coincide, and DB collapses onto strong equivalence,
PEPA’s Markovian bisimulation. In the CTMC case such a condition suffices to imply lumpability, informally
because the CTMC transition diagram of a process term with an arbitrary synchronization tree structure is iso-
morphic to the transition system of a single sequential process (by mapping each CTMC state to a named choice
term). In the ODE semantics, instead, the synchronization structure is encoded in the function governing the
ODE evolution. This is taken into account with the second condition of DB: we introduce the novel concept of
structural interface, an equivalence relation for local states with same capability to interact with the environ-
ment. Both conditions can be checked statically, i.e., syntactically over the process term. Due to the relation
with Markovian bisimulation, it is possible to adapt partition-refinement algorithms available for discrete-state
labeled transition systems (e.g. [19, 13, 1]), offering an efficient way to compute the coarsest ODE aggregation
of a model up to DB.

2 Preliminaries: FEPA

The grammar of FEPA has two levels. The first level specifies a fluid atom, i.e. a sequential process evolving
over a discrete state space. Let A denote the set of actions and K the set of constants. Each P ∈ K is a
sequential component, defined as P def

=
∑

i∈IP (αi, ri).Pi, where IP is an index set, αi ∈ A, ri∈R≥0 is a rate,
and Pi ∈ K. The multi-set of outgoing transitions from P , denoted by out(P ), is defined as the one containing

a transition P
(αi,ri)−−−−→ Pi for each occurrence of (αi, ri).Pi in the definition of P . We now define the second

level of the grammar. The parallel operator is parameterised by a binary synchronisation function, denoted by
H(·, ·). As discussed, we support two such functions,H = min andH = · (product). According to the chosen
interpretation, fluid atoms may correspond to, e.g., jobs and servers in a computing system, or to molecular
species in a chemical reaction network.

Definition 1 (FEPA Model). A FEPA modelM is generated by

M ::= P :: M ‖HL M , with L ⊆ A and P ∈ K

Let G(M) be the set of fluid atoms of a FEPA model M, recursively defined as G(P ) = {P}, and
G(M1 ‖HL M2) = G(M1) ∪ G(M2). For P ∈ G(M), the local states of P , denoted B(P ), are the smallest

set such that P ∈ B(P ) and if P ′ ∈ B(P ) and P ′
(α,r)−−−→ P ′′ ∈ out(P ′), then P ′′∈ B(P ). We use B(M) for⋃

P∈G(M)B(P ). For any two P,Q ∈ G(M), we assume B(P ) ∩ B(Q) = ∅. This is without loss of generality
(e.g., by renaming with fresh variables). For P ∈B(M) we use A(P ) for the set of actions labeling transitions
from P . The compositional operator ‖HL , parametrized by an action set and by the function H, specifies the
type of synchronisation and the channels used for interaction. Notably, different instantiations ofH can appear
in a FEPA model.

Example 1. LetMF , P1 ‖H{α} Q1, with P1, Q1 defined as

P1
def
= (β, r).P2 + (β, r).P3, P2

def
= (α, s).P1, P3

def
= (α, s).P1

Q1
def
= (γ, 2r).Q2, Q2

def
= (α, s).Q1
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We now move to the semantics of FEPA, starting from two quantities specifying local states’ dynamics,
independently from their possible interaction with other local states.

Definition 2 (Apparent and total conditional rate). Let M be a FEPA model, P ∈ B(M), B ⊆ B(M)
and α ∈ A. The α-apparent rate of P and the total α-conditional transition rate from P to B are defined,
respectively, as

rα(P ) ,
∑

P
(α,r)−−−→P ′∈out(P )

r q[P,B, α] ,
∑
P ′∈B

∑
P

(α,r)−−−→P ′∈out(P )

r

The α-apparent rate of a local state P can be understood as a normalized capacity, i.e., the capacity at
which a unitary concentration of P -processes performs α-transitions. The total α-conditional transition rate
restricts the former with respect to a set of target local states; e.g., forMF of Example 1 we have rβ(P1) = 2r,
and q[P1, {P2}, β] = r.

Since a fluid atom is a representative of a group of sequential components of the same type, the specification
is completed by fixing the group size.

Definition 3 (Concentration function). LetM be a FEPA model. We define an initial population function for
M as ν0 : B(M)→ N0, and a concentration function forM as ν : B(M)→ R≥0.

Definition 4 (Population-dependent apparent rate). LetM be a FEPA model, ν a concentration function, and
α∈A. The apparent rate of α inM with respect to ν is

rα(M1 ‖HL M2, ν),

{
H
(
rα(M1, ν), rα(M2, ν)

)
, if α ∈ L,

rα(M1, ν) + rα(M2, ν), if α /∈ L,

rα(P, ν),
∑

P ′∈B(P )

νP ′ · rα(P ′) .

The α-apparent rate in M is the total rate at which α can be performed, for some ν. It is affected by
synchronisations, e.g., inMF of Example 1 we have rα(MF, ν) = min(s νP2+s νP3 , s νQ2), or rα(MF, ν) =
(s νP2 + s νP3)s νQ2 , depending on the chosen synchronisation function H. The α-apparent rate in M is
intended as the overall speed at which α is performed in the model; e.g., it is zero if νQ2 is zero, capturing the
blocking effect of synchronisation for both choices ofH.

Definition 5 (Model influence). Let M be a FEPA model, ν a concentration function for M, α ∈ A, and
P ∈ B(M). The model influence on P due to α inM is defined as

Fα(M1 ‖HL M2, ν, P ) ,

{
Fα(Mi, ν, P )

rα(M1‖HLM2,ν)

rα(Mi,ν)
, if P ∈ B(Mi), α ∈ L,

Fα(Mi, ν, P ), if P ∈ B(Mi), α 6∈ L,

Fα(P, ν, P ′) ,

{
1 if P ′ ∈ B(P ),
0 otherwise,

where rα(M1‖HLM2,ν)

rα(Mi,ν)
is defined as 0 when rα(Mi, ν) = 0.

Model influence captures the effect exerted by the modelM on the rate at which a local state P performs an
action. In other words, the actual α-component rate of P inMwith concentration ν is given by the rate at which
P would evolve on its own, i.e., νP · rα(P ), weighted by the influence of the model on it, i.e., Fα(M, ν, P ).

We are now ready to define the ODE semantics of a FEPA model.

Definition 6 (ODE semantics). Let M be a FEPA model, E ⊆ RB(M) and f : E → RB(M) the vector field
whose components are defined for each P ∈ B(M) as:

fP (ν) ,
∑
α∈A

∑
P ′∈B(M)

νP ′q(P ′, P, α)Fα(M, ν, P ′)−
∑
α∈A

νP rα(P )Fα(M, ν, P )

The ODE system ν̇=f(ν) with initial condition ν0 governs the evolution of ν over time.
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The rate of change in the concentration of a local state P depends on the actual rate at which each local
state P ′ performs transitions towards P , minus the actual rate at which P performs any transition. For instance,
the ODEs ofMF of Example 1 are:

ν̇P1 = sH(νP2 + νP3 , νQ2)− 2r νP1 ν̇Q1 = sH(νP2 + νP3 , νQ2)− 2r νQ1

ν̇P2 = r νP1 − s νP2

H(νP2 + νP3 , νQ2)

νP2 + νP3

ν̇Q2 = 2r νP1 − sH(νP2 + νP3 , νQ2)

ν̇P3 = r νP1 − s νP3

H(νP2 + νP3 , νQ2)

νP2 + νP3

(1)

3 Differential Bisimulation and ODE Lumpability

The second level of the FEPA grammar defines a tree-like structure which strongly affects the ODE semantics.
To take this into account in our differential bisimulation, we introduce the notion of interface actions, which
intuitively captures all actions which affect the dynamics of a local state as a result of an interaction.

Definition 7 (Bound and interface actions). Let M be a FEPA model, and P ∈ B(M). The set of bound
actions of P inM is defined as

D(P,M) ,

{
L ∪ D(P,Mi) , ifM =M1 ‖HLM2 and P ∈ B(Mi),

∅ , otherwise .

Also, the interface actions of P inM are I(P,M) , D(P,M) ∩ A(P ). Lastly, for any B ⊆ B(M), we use
D(B,M) for

⋃
P∈BD(P,M), and I(B,M) for

⋃
P∈BI(P,M).

The following notion of structural interface captures symmetries among the states of a FEPA model with
respect to the rigid tree-like structure of the model.

Definition 8 (Structural interface). LetM be a FEPA model, and P,Q ∈ B(M). Then P and Q have the same
structural interface inM, written P s.i.

=M Q, iff

(i) A(P ) = A(Q), and

(ii) if there exists anM =M1 ‖HL M2 withinM with P ∈ B(M1), and Q ∈ B(M2) (or vice versa), then
I(P,M) = I(Q,M) = ∅.

Proposition 1. ForM a FEPA model, s.i.=M is an equivalence relation. 1

Considering Example 1 we have D(P1,MF) =D(P2,MF) = {α}, I(P1,MF) = ∅, and I(P2,MF) =

{α}. Also, we have P2
s.i.
=MF

P3, P3 6
s.i.
=MF

Q2, and P2 6
s.i.
=MF

Q2 (capturing, for instance, that α is used by P2

and Q2 to interact in a specific fashion).
We can now provide the notion of differential bisimulation for FEPA models.

Definition 9 (Differential bisimulation). LetM be a FEPA model,R an equivalence relation over B(M), and
P = B(M)/R. We say thatR is a differential bisimulation forM (DB) iff for all (P, P ′) ∈ R and α ∈ A we
have:

(i) q[P,B, α] = q[P ′, B, α], for all B ∈ P ,

(ii) P
s.i.
=M P ′.

We define differential bisimilarity for M, denoted by �∼ , as the union of all DBs for M, and we say that
P, P ′ ∈ B(M) are differential bisimilar iff s �∼ s′.

1For the sake of readability all proofs are provided in a separate appendix.
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As usual, we are interested in the largest differential bisimulation. We now show that differential bisimilar-
ity is a DB, and thus it is the largest one. To do this, we prove that the transitive closure of the union of DBs is
a differential bisimulation.

Proposition 2. LetM be a FEPA model, I be a set of indices, andRi a DB forM, for all i ∈ I . The transitive
closure of their unionR=(

⋃
i∈I Ri)∗ is a DB forM.

The next theorem states that DB is preserved under composition of FEPA models.

Theorem 1 (Differential bisimulation is a congruence). Let M1, M2 be two FEPA models, and R1, R2 be
two differential bisimulations for M1 and M2, respectively. Then R1∪R2 is a differential bisimulation for
M1 ‖HLM2, for any L⊆A.

Remark 1. An interesting connection between differential bisimulation and its Markovian analogues, like
Markovian bisimulation [13] and PEPA’s strong equivalence [14] arises: condition (i) of DB corresponds to
the condition required by Markovian bisimulation and by strong equivalence. However, in the Markovian cases
states of the underlying labelled transition system (semantic elements) are related, while DB relates the states of
the fluid atoms (syntactic elements). This requires to explicitly treat the influence exerted by the model on each
local state (condition (ii)). Such information is instead implicitly present in the transition systems considered
in the Markovian cases.

We now show that DB induces an ODE aggregation in the sense of the theory of ODE lumpability (e.g., [22]).
We first exemplify it considering Example 1, for which it can be shown that P2

�∼P3. Using the variable re-
naming νP23 = νP2 + νP3 , by the linearity of the differential operator we can aggregate Equation (1) as

ν̇P1 = sH(νP23 , νQ2)− 2r νP1 ν̇Q1 = sH(νP23 , νQ2)− 2r νQ1

ν̇P23 = 2r νP1 − sH(νP23 , νQ2) ν̇Q2 = 2r νP1 − sH(νP23 , νQ2)

If the initial conditions are such that ν0P23 = ν0P2 + ν0P3 , the solutions satisfy νP23(t) = νP2(t)+νP3(t) for all
t. As discussed, this is analogous to ordinary lumpability in CTMCs, where the probability of being in a state
of the aggregated chain is equal to the sum of the probabilities of being in the states of the related equivalence
class [3].

Noteworthy, condition (i) of DB does not capture ODE aggregation if ignoring structural interface. Assum-
ing β = γ, {{P1, Q1},{P2, P3, Q2}} satisfies condition (i). Yet, P2 6

s.i.
=MF

Q2 and P3 6
s.i.
=MF

Q2. This results in
ODEs with nonlinear terms in νP2 and νQ2 , such as H(νP2 +νP3 , νQ2), which cannot be written in terms of
νP2 + νQ2 .

We formalize such ODE aggregation in terms of ODE lumpability by an aggregation matrix. Given a FEPA
model M and a partition P of B(M), the aggregation matrix of P has |P|×|B(M)| components given as
(MP)i,j =1 if Pj ∈Bi, and (MP)i,j =0 otherwise, where Bi ∈P and Pj ∈B(M), with i∈{1, . . . , |P|} and
j∈{1, . . . , |B(M)|}.

Definition 10 (ODE lumpability). LetM be a FEPA model, f its vector field, and P a partition of B(M). The
ODE system ν̇ = f(ν) is lumpable by MP if and only if

MPf(ν) =MPf(MPMPν) , for all ν , (2)

where MP is any generalized right inverse of MP , i.e., a matrix satisfying MPMP = I.

The vector ν has |B(M)| components, each being the concentration of a local state of M at a certain
time. For P a partition of B(M), MPν has |P| components, each equal to the sum of the components of ν
in the corresponding block. The vector MPMPν has again |B(M)| components, obtained by first summing
the components of ν in each block (MPν) and subsequently redistributing it to the local states of the block.
Equation (2) demands that the sum of the dynamics of local states of a block, i.e., MPf(ν), can be expressed
as a function of the aggregated vector, i.e., MPν, only.
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Theorem 2 (Differential bisimulation and lumpability). LetM be a FEPA model,R a differential bisimulation,
and P=B(M)/R. The ODEs ofM are lumpable by MP .

sketch. We have to show that Equation (2) holds. The proof uses Proposition 4 and Lemma 4 given in [?],
and here discussed. For ν a concentration function for M and P a partition of B(M), we define [ν]P , the
P-redistribution of ν, as

[ν]P =MPMPν . (3)

Thus, we have to show that for any ν it holds MPf(ν) =MPf([ν]
P). Recalling the definition of the aggrega-

tion matrix MP , it is enough to show that for any B ∈ P and ν∑
P∈B

fP (ν) =
∑
P∈B

fP (MPMPν) =
∑
P∈B

fP ([ν]
P) ,

i.e., we verify Equation (2) componentwise. Summing over P ∈ B both sides of f of Definition 6, and using
that

∑
P∈B q(P

′, P, α) = q[P ′, B, α], as well as a decomposition of the sum over states, i.e.,
∑

P ′∈B(M)(·) =∑
B∈P

∑
P ′∈B(·), we obtain

∑
P∈B

fP (ν) =
∑
α∈A

∑
P ′∈B(M)

νP ′ q[P ′, B, α]Fα(M, ν, P ′)

−
∑
P∈B

νP
∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, ν, P )

=
∑
B̃∈P

∑
P ′∈B̃

∑
α∈A

q[P ′, B, α]Fα(M, ν, P ′)νP ′

−
∑
P∈B

∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, ν, P )νP

(4)

We are left with showing that for any ν Equation (4) does not change if we replace ν with [ν]P . This corre-
sponds to saying that it can be expressed as a function of the sums of the concentrations in each block of P only.
For any P and any B ∈ P we can write

∑
α∈A q[P,B, α]Fα(M, ν, P ) =

∑
α∈A(P )q[P,B, α]Fα(M, ν, P ),

which follows from observing that any α 6∈A(P ) brings 0-contribution to the equation (because α /∈A(P ) =⇒
rα(P ) = 0 =⇒ q[P,B, α] = 0, ∀B). We now exploit the fact that P is induced by a DB on B(M), as sketched
below in the following three points.

(i) We have that for all B ∈ P , for all Q,Q′ ∈ B, q[Q, B̃, α] = q[Q′, B̃, α] for all B̃ ∈ P and all α ∈ A,
which, in turn, implies A(Q) = A(Q′).

(ii) We show, in Proposition 4, that for all B ∈ P , and all Q,Q′ ∈ B, Fα(M, ν,Q) = Fα(M, ν,Q′)
for all ν and all α ∈ A(Q) = A(Q′). Thus, it holds that for all B, B̃ ∈ P , all P,P ′ ∈ B, and all ν,∑

α∈A q[P, B̃, α]Fα(M, ν,P ) =
∑

α∈A q[P
′, B̃, α]Fα(M, ν,P ′). That is, the summation is equal for all lo-

cal states of block B. Proposition 4 establishes a relation between structural interface (Definition 8) and model
influence (Definition 5), essentially saying that if two local states have the same structural interface within a
model, then they receive the same influence from the model.

(iii) We show, in Lemma 4, that for any P ∈ B(M), α and ν it holds Fα(M, ν, P ) = Fα(M, [ν]P , P ).
This is used to infer that for any B, B̃∈P , any P ∈B and any ν:∑

α∈A
q[P, B̃, α]Fα(M, ν, P ) =

∑
α∈A

q[P, B̃, α]Fα(M, [ν]P, P ).

That is, the summation can be expressed as a function of the sums of the concentration in each block of P .
In other words, the model influence received by a local state depends on the concentration of the other local
states only through the sum of the concentrations within blocks of P , thus a change in the concentrations which
preserves the total concentrations of each block does not affect the model influence.

QUANTICOL 6 June 8, 2015



Differential Bisimulation (Revision: 0.1; June 8, 2015) June 8, 2015

1 DifferentialBisimilarity(M,P) :=
2 RefineSI(M,P) //Refine P wrt condition (ii)
3 RefineQ(M,P) //Iteratively refines P wrt condition (i)
4 RefineSI(M,P) :=
5 f o r a l l (α ∈ A(M))
6 refineAccordingToComp(α,P) //Refine P wrt comp[α], for all α
7
8 RefineQ(M,P) :=
9 Spls = A(M)× P //All (α,B) are considered as candidate splitters

10 whi le(Spls 6= ∅)
11 (α,Bspl) = pop(Spls) //choose and remove a candidate splitter
12 Split(α,Bspl,P,Spls) //split all blocks of P wrt (α,Bspl)

Algorithm 1: An algorithm for computing differential bisimilarity

Now that all the proof ingredients have been provided, we can rewrite Equation (4) as follows, where we
use that for any B ∈P,

∑
P∈B[ν]

P
P =

∑
P∈B νP , which arises from Equation (3) and the fact that the matrix

MP must satisfy MPMP = I:

∑
P∈B

fP (ν) =
∑
B̃∈P

∑
α∈A

q[P ′, B, α]Fα(M, ν, P ′)
∑
P ′∈B̃

νP ′

−
∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, ν, P )
∑
P∈B

νP

=
∑
B̃∈P

∑
α∈A

q[P ′, B, α]Fα(M, [ν]P , P ′)
∑
P ′∈B̃

[ν]PP ′

−
∑
B̃∈P

∑
α∈A

q[P, B̃, α]Fα(M, [ν]P, P )
∑
P∈B

[ν]PP =
∑
P∈B

fP ([ν]
P)

4 Computing Differential Bisimilarity

We now provide an efficient algorithm for computing differential bisimilarity obtained by extending and reusing
well-known partition refinement algorithms, e.g. [19, 13, 1].

In order to apply partition refinement to differential bisimilarity, let us first note that condition (ii) of DB can
be dealt with as an initialization step that pre-partitions the local states according to their structural interface.
Instead, condition (i) requires the usual partition-refinement treatment: starting from the partition obtained after
initialization, the blocks are iteratively split until there exists a block and an action (i.e., a candidate splitter)
for which condition (i) does not hold. The algorithm takes in input any initial partition P , useful e.g. to specify
local states that should not be equated, and terminates giving the largest differential bisimilarity which refines
P for the considered model.

Overview. DifferentialBisimilarity, our algorithm, is given in Algorithm 1, whereM is the input

FEPA model and P the initial partition. We use A(M) for the set of actions inM, and T (M), {[P ′ (α,r)−−−→
P ′′ ∈ out(P ′) | P ′ ∈ B(M)]} for its multi-set of transitions. Note that |A(M)| ≤ |T (M)|. Also, we use
tM for |T (M)|, and sM for |B(M)|, and we do not distinguish an equivalence relation from its induced
partition. RefineSI implements the initialization step, yielding the coarsest refinement of P with respect
to condition (ii). RefineQ iteratively computes the coarsest refinement satisfying condition (i). Overall, the
algorithm is correct, as the iterative refinements preserve condition (ii). It is assumed thatM is stored as the
list T (M), requiring O(tM) space. In order to represent partitions P , B(M) is stored as a list, while a block
of P is a list of pointers to its states, requiring in total O(tM + sM) to storeM.
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RefineSI. This procedure is based on a simple rephrasing of Definition 8: given a FEPA model M and
P1, P2 ∈ B(M) with A(P1) = A(P2), we have P1

s.i.
= P2 if and only if for all α ∈ A(P1) and for all

occurrences M = M1 ‖L M2 within M with α ∈ L ∩ A(P1) we have that P1 and P2 either belong to
the same Mi, or do not belong to any of the two (i.e., P1, P2 6∈ B(M)). Also, if two states have the same
innermost compositional operator binding α, then they share all outers too. No further information is required
about compositional operators, and thus we assume that each P ∈B(M) has a list comp containing an entry per
action in A(P ), each being a triple storing the action, the (identifier of the) innermost compositional operator
affecting P and binding the key action, and the side of the operator to which P belongs. Also, each comp is
assumed to be sorted with respect to a total oderdering on A. We use comp[α] for the values associated with
α in comp. For instance, for M=M1 ‖LM2, id∗ the identifier of ‖L, P1 ∈ B(M1) and α ∈ A(P1) ∩ L,
we have P1.comp[α] = (id∗, left) if no further compositional operators binding α appear in the syntax-tree
path leading to P1. All comp require O(tM) space in total: each P.comp has at most one entry per transition
with source P , and thus at most tM entries appear in all comp. By defining a total ordering on comp’s values,
RefineSI reduces to iteratively sorting all P ∈B(M) according to P.comp[α] for all α ∈ A(M) (Line 6). 2

The sorting for each α can be performed in O(sM · logsM), and if we scan A(M) according to the ordering
of A we can access the elements of the lists in constant time, requiring O(tM · sM · logsM) time to perform
the sorting. Overall, this yields O(tM · sM · logsM) time complexity.

Theorem 3. LetM be a FEPA model and P a partition of B(M). RefineSI computes the coarsest refine-
ment of P satisfying condition (ii). It can be implemented with time and space complexitiesO(tM ·sM · logsM)
and O(tM + sM), respectively.

RefineQ. Condition (i) ignores compositional operators. Thus, RefineQ treatsM as a stochastic labeled
transition system (STLS), i.e. a transition system (with a root per fluid atom) where transitions are labeled
by an action and a real. This allows us to use the algorithm for Markovian bisimilarity of SLTSs presented
in [13, 9]. In fact, as discussed, condition (i) corresponds to Markovian bisimulation. Indeed, RefineQ is a
straightforward rephrasing of the algorithm of [13, 9] to FEPA notation. An in-depth discussion of the algorithm
can be found in [13, 9], while we hereby give a high-level description. We start recalling the algorithm’s
complexities.

Theorem 4 (Adapted from [13]). For M a FEPA model and P a partition of B(M), RefineQ gives the
coarsest refinement of P satisfying condition (i) of DB. It can be realized with time and space complexities
O(tM · logsM) and O(tM + sM), respectively.

Refinements are based on splitters (α,Bspl), with α ∈ A(M) and Bspl ∈ P: a block B ∈ P is split with
respect to (α,Bspl) in disjoint sub-blocks, each containing states with same total α-conditional transition rate
towards Bspl. RefineQ starts (Line 9) generating a set Spls of initial potential splitters (α,B) for each
α∈A(M) and B ∈P . Then, Lines 10-12 iterate until there are potential splitters to be considered: a splitter
is selected and removed from Spls, and the procedure Split is invoked to refine each block of P according
to the selected splitter, and to generate new candidate splitters. Due to space constraints we do not detail the
Split procedure.

Summary. Theorems 3, 4 allow us to conclude that DifferentialBisimilarity has time and space
complexities O

(
tM · sM · logsM

)
and O(tM + sM), respectively.

5 Related Work

The label equivalence presented in [25] captures exact fluid lumpability, a different notion of ODE lumpability
than the one captured by DB, where processes are equivalent whenever their ODE solutions are equal at all time
points, provided they have same initial conditions. Label equivalence works at a coarser level of granularity than

2P.comp[α] is nil if α 6∈ A(P ), and free if α ∈ A(P ) and α 6∈ D(P,M), so to tell apart states performing different actions.
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DB, as it relates whole fluid atoms, and not their individual local states, essentially requiring an isomorphism
between them. Further, the conditions for equivalence in [25] include universal quantifiers over the uncountable
set of concentration functions which are difficult to check automatically. Indeed, no algorithm for computing the
coarsest partition was developed for label equivalence. In contrast, DB is given in terms of syntactic elements
only, allowing us to provide an efficient algorithm to compute the largest one of a model. In [24] the same
authors extended the framework of [25] to the notion of ODE lumpability considered in this paper, for which,
however, the same limitations as those of label equivalence apply.

The relationship between formal languages and ODEs induced by their semantics has been studied also in
other contexts, with complementary approaches. In [7] it is presented a model-order reduction technique for
κ [8], a rule-based language for chemical systems representing bindings between molecules in an explicit graph-
based way. The aggregation method, called fragmentation, identifies a linear transformation of the state space
yielding a subspace with a closed dynamics, i.e., whose ODEs depend only on the variables of that subspace.
This may give an improper lumping (see [18]), as the same state may appear in more than one aggregate, and
thus it is not necessarily induced by a partition of the state space. More practically, it can be shown thatMF of
Example 1 can be encoded in κ in case H = ·, but it is not reduced by fragmentation. (Dually, there exist κ’s
models which can be encoded in FEPA that are reduced by fragmentation but not by DB). However, clearly,
the two target languages are different; κ is based on the law of mass action, where the rate of interaction is
proportional to the product of the participants’ concentrations, similarly to FEPA’s H = ·. Instead, FEPA
is process-based, with the rule of interaction implicit in the rigid compositional structure, while a chemical
system is an unstructured set of interacting species. Also, FEPA allows for a synchronisation semantics based
on capacity-sharing arguments (in the caseH = min).

More closely related is the bisimulation in [5], which induces both ODE lumpabilities of Definition 10
and [25]. The difference is again in the language-specific definitions of equivalence. While DB is a relation
over process algebra terms, in [5] symmetries are exploited between binding sites of κ agents. Also, [5] requires
stronger symmetries than DB, as the latter considers those specific to the notion of lumpabilty of Definition 10
only. For example, it can be shown that the DB {{P1}, {P2, P3}, {Q1}, {Q2}} ofMF of Example 1 does not
satisfy the notion of lumpability of [25].

The combination of the notion of bisimulation and ODEs has been explored also by the control theory com-
munity, most notably in the work of Pappas and co-authors (e.g., [20, 10]) and van der Schaft [21]. However,
the setting is different. When studied for model reduction, they essentially deal with a state space representation
with an explicit output map, e.g., the matrix C in the linear dynamical system ẋ = Ax + Bu, y = Cx. A
bisimulation is thus related to unobservability subspaces (cf. [20, Section 8.1] and [21, Corollary 6.4]). By
contrast, in this paper we work with a nonlinear system in the form ẋ = A(x) (with A a nonlinear vector field)
where bisimulation is related to aggregation; in the aggregated model only a linear combination of the original
state space variables can be recovered. More in general, the bisimulations in [20, 10, 21] are defined directly at
the level of the dynamical system (either in discrete or continuous time) whereas DB is defined at the language
level, as a relation between process terms.

6 Conclusion

We presented differential bisimulation, a behavioral relation for process calculi with ordinary differential equa-
tion (ODE) semantics. This study follows the line of research on equivalence relations for quantitative models
of computation. In particular, differential bisimulation is defined as a relation over a discrete set of process
terms inducing an aggregation of the ODEs, analogously to Markovian bisimulations for process calculi which
lead to the lumping of the underlying Markov process. Differential bisimulation allows relating local states
of somewhat heterogenous processes instead of essentially isomorphic ones, as required in previous work. In
addition, it is given in terms of syntactic conditions and it does not involve universal quantifiers over the expres-
sions determining the ODE system. This, together with a conceptual similarity with Markovian bisimulations,
allowed for the development of a partition-refinement algorithm for computing differential bisimilarity, largely
reusing available results in the Markovian setting. As with its Markovian counterparts, differential bisimulation
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provides only sufficient conditions for ODE lumping. In this respect, an interesting line of investigation will
be how to relax the current assumptions to obtain coarser aggregations. Another interesting problem is whether
differential bisimulation implies lumpability also of the underlying Markov chain obtained when considering a
Markovian semantics.
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A Technical Results

In Appendix A.1 we prove Propositions 1, 2 and Theorem 1, while Appendix A.2 contains the technical results
used for proving Theorem 2.

A.1 Differential Bisimulation: Structural Interface and Congruence

We begin with remarking a property of structural interface s.i.=M and two properties of interface actions I.

Remark 2. For any FEPA modelM, any sub-modelM′ ofM, and any P, P1, P2 ∈ B(M′), with P1
s.i.
=M P2,

we have:

(1) I(P,M′) ⊆ I(P,M)

(2) P1
s.i.
=M′ P2

(3) I(P1,M) = I(P2,M)

Points (1) and (2) follow directly from Definition 7 and 8, respectively. Point (3) also follows from Defini-
tion 8, as we haveA(P1) = A(P2), and either P1 and P2 belong to the same fluid atom in G(M), and thus are
affected by the same compositional operators, or the compositional operators affecting only one the two do not
affect any action in A(P1) (condition (ii) of Definition 8).

Proposition 1. ForM a FEPA model, s.i.=M is an equivalence relation.

Proof. From Definition 8 we have that s.i.=M is reflexive and symmetric. Hence, we need to show that it is also
transitive, i.e., that if P1

s.i.
=M P2 and P2

s.i.
=M P3, then P1

s.i.
=M P3. To begin with, we have A(P1) = A(P3).

We are left with showing that if there exists an occurrenceM =M1 ‖HL M2 withinM, with P1 ∈ B(M1)
and P3 ∈ B(M2), then I(P1,M) = I(P3,M) = ∅.

For P1, P2, P3, let M̂ = M̂1 ‖HL M̂2 denote the occurrence such that there exists a k ∈ {1, 2, 3} and
Pk ∈ B(M̂1) (resp., Pk ∈ B(M̂2)), while for j 6= k, Pj ∈ B(M̂2) (resp., Pj ∈ B(M̂1)). Two cases might
arise: either P1, P3 ∈ B(M̂i) for an i ∈ {1, 2}, or not. Without loss of generality, for the first case we assume
P1, P3 ∈ B(M̂1) and P2 ∈ B(M̂2) (which implies thatM occurs within M̂1), whilst for the second case we
assume P1, P2 ∈ B(M̂1) and P3 ∈ B(M̂2) (which implies M = M̂). For the first case, P1

s.i.
=M P2 and

P3
s.i.
=M P2 assure that I(Pi,M̂) = ∅ for i ∈ {1, 2, 3}. Therefore, from the fact thatM is a sub-model of M̂

with P1, P3 ∈ B(M), and from point (1) of Remark 2, we conclude that I(P1,M) = I(P3,M) = ∅. For the
second case, instead, from P2

s.i.
=M P3 we have I(P2,M̂) = I(P3,M̂) = ∅. In addition, from P1

s.i.
=M P2

and P1, P2 ∈ B(M̂1), we can apply point (2) of Remark 2 obtaining P1
s.i.
=M̂1

P2, which in turn lets us use

point (3) to obtain I(P1,M̂1) = I(P2,M̂1) = ∅. Given that M̂ =M, the claim follows.

Proposition 2. LetM be a FEPA model, I be a set of indices, andRi a DB forM, for all i ∈ I . The transitive
closure of their unionR=(

⋃
i∈I Ri)∗ is a DB forM.

Proof. We first note that R is an equivalence relation over B(M). For i ∈ I , let Pi denote the partition
induced over B(M) by Ri, and P the one induced by R. For any i ∈ I , any block Bi ∈ Pi is contained
in a block B ∈ P , implying that any B ∈ P is the union of blocks of Pi. For (P1, P2) ∈ R, we have that
(P1, P2) ∈ (

⋃
i∈I Ri)n, for some n > 0. We now show that R is a differential bisimulation by induction over

n. Henceforth, let Rn be (
⋃
i∈I Ri)n. Base case (n = 1): (P1, P2) ∈ R1 implies that (P1, P2) ∈ Ri, for

some i ∈ I . Thus, condition (ii) of Definition 9 is simple. To prove condition (i) we use that for any B ∈ P
and any i ∈ I there exists some set of indices J i such that B =

⋃
j∈Ji B

i
j , with Bi

j a block of Pi; hence,

QUANTICOL 12 June 8, 2015



Differential Bisimulation (Revision: 0.1; June 8, 2015) June 8, 2015

q[P1, B, α] =
∑

j∈Ji q[P1, B
i
j , α]. Inductive step: we assume that for all Rm, with m < n, if (P1, P2) ∈ Rm

then, conditions (i) and (ii) hold. If (P1, P2) ∈ Rn, then there exists a P̂ such that (P1, P̂ ) ∈ Ri for some
i ∈ I , and (P̂ , P2) ∈ Rn−1. Then the claim for point (i) follows from a similar argument as in the base case
and the induction hypothesis. The claim for point (ii), instead, follows from the fact that s.i.=M is an equivalence
relation, and thus it is transitive.

Theorem 1 (Differential bisimulation is a congruence). LetM1,M2 be two FEPA models, and R1, R2 be
two differential bisimulations for M1 and M2, respectively. Then R1∪R2 is a differential bisimulation for
M1 ‖HLM2, for any L⊆A.

Proof. The theorem follows from the fact that the equivalence classes of R1 and R2 are disjoint (asM1,M2

are two distinct FEPA models, and thus B(M1) ∩ B(M2) = ∅), and from the fact that the total conditional
transition rates (Definitions 2) are unaffected by the composition, implying that R1 ∪ R2 satisfies conditions
(i) of differential bisimulation forM1 ‖HL M2. Moreover, for i ∈ {1, 2}, given that for any two local states

(P, P ′) ∈ Ri we have P s.i.
=Mi P

′, we also have P s.i.
=M1‖HLM2

P ′, as A(P ) = A(P ′) and P, P ′ belong to the
sameMi.

A.2 Technical Results for Theorem 2

We provide Proposition 4 and Lemma 4 used, and discussed, in the proof sketch of Theorem 2, preceded by all
the technical tools necessary to prove them.

Proposition 3. LetM be a FEPA model. Let P ∈ B(M) and α ∈ A. Then we have that α 6∈ D(P,M) ⇐⇒
Fα(M, ν, P ) = 1, for any ν.

Proof. The direction =⇒ follows directly from Definitions 7 and 5. To prove the implication Fα(M, ν, P ) =
1 ,∀ν =⇒ α /∈ D(P,M) we proceed, instead, by contradiction. Let us assume towards a contradiction that
there exists an α ∈ D(P,M) such that Fα(M, ν, P ) = 1 for all ν. The assumption α ∈ D(P,M) implies
that there exists at least an occurrence M1 ‖HL M2 within M, with α ∈ L, and P is either in B(M1) or
B(M2). We assume, without loss of generality, that P ∈ B(M1). Therefore, from Definition 5, we can infer

that Fα(M, ν, P ) will be proportional to rα(M1‖HLM2,ν)

rα(M1,ν)
. Choosing ν such that rα(M2, ν) = 0 (it always

exists) assures that rα(M1 ‖HL M2, ν) = 0, for both H = min and H = · (product); hence, we have found a
population function ν such thatFα(M, ν, P ) 6= 1, which leads us to contradiction and concludes the proof.

The following lemma allows us to identify the contribution that local states yield to the rate of the whole
model for those actions for which the local states behave independently, i.e., actions not appearing in their
interface.

Lemma 1. LetM be a FEPA model. Let K ⊆ B(M), and α an action such that α 6∈ I(K,M). Then, for any
ν,

rα(M, ν) =
∑
P∈K

rα(P )νP + rα(M, νK) ,

where νK is defined as νKP = νP if P 6∈ K and νKP = 0 if P ∈ K.

Proof. The proof proceeds by structural induction onM.

• M = P : By Definition 4, for any α we have that rα(P, ν) =
∑

P ′∈B(P ) rα(P
′)νP ′ . For any K ⊆ B(P ),

the above summation can be rewritten as∑
P ′∈B(P )∩K

rα(P
′)νP ′ +

∑
P ′∈B(P )\K

rα(P
′)νP ′ +

∑
P ′∈K

rα(P
′) · 0 ,

which is equal to
∑

P ′∈K rα(P
′)νP ′ + rα(P, ν

K).
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• M = M1 ‖HL M2: Let K ⊆ B(M), and α 6∈ I(K,M). We have to distinguish among two cases:
α ∈ L and α 6∈ L.

- α ∈ L: By Definition 4 we have rα(M1 ‖HL M2, ν) = H(rα(M1, ν), rα(M2, ν)). Note that the α-
apparent rate inM1 does not depend on the population of the local states of B(M2) (and vice versa),
which can thus be freely modified without affecting the α-apparent rate inM1.

Given that α ∈ L, for all P ∈ B(M) we have that α ∈ D(P,M). From the assumption we know that
for all P ∈ K, α 6∈ I(P,M), i.e., α 6∈ D(P,M) ∩ A(P ), implying that α 6∈ A(P ). Therefore, we
have rα(P ) = 0 for all P ∈ K, as well as

∑
P∈K rα(P )νP = 0. Let us define Ki = K ∩ B(Mi)

for i ∈ {1, 2}. We focus on M1, but similar arguments hold for M2. Given that K = K1 ∪ K2

and α 6∈ I(K1 ∪ K2,M), we have α 6∈ I(K1,M). Using point (1) of Remark 2 for any P ∈
K1, we have I(K1,M1) ⊆ I(K1,M), which in turn implies α 6∈ I(K1,M1). This allows us to
apply the I.H. to M1, obtaining rα(M1, ν) =

∑
P∈K1

rα(P )νP + rα(M1, ν
K1), which, given that

rα(P ) = 0 for any P ∈ K, and K1 ⊆ K, is equal to rα(M1, ν
K1). Moreover, given that the α-

apparent rate of M1 does not depend on the population of the local states in B(M2), we can write
rα(M1, ν) = rα(M1, ν

K). Applying similar arguments toM2 we obtain rα(M2, ν2) = rα(M2, ν
K
2 ).

Finally, we conclude that rα(M, ν) = H(rα(M1, ν
K), rα(M2, ν

K)) = rα(M, νK) =
∑

P∈K 0 ·νP +
rα(M, νK) =

∑
P∈K rα(P )νP + rα(M, νK).

- α 6∈ L: By Definition 4 we know that rα(M1 ‖HL M2, ν) = rα(M1, ν)+ rα(M2, ν). We focus onM1,
but similar arguments hold forM2. Similarly to the α ∈ L case, we have α 6∈ I(K1,M1). This allows
us to apply the I.H. to M1, obtaining rα(M1, ν) =

∑
P∈K1

rα(P )νP + rα(M1, ν
K1). Moreover,

given that the α-apparent rate ofM1 does not depend on the population of the local states in B(M2), we
can write rα(M1, ν) =

∑
P∈K1

rα(P )νP + rα(M1, ν
K). Similar arguments can be applied toM2,

allowing to rewrite rα(M, ν) for the case α 6∈ L as:∑
i∈{1,2}

∑
P∈Ki

rα(P )νP + rα(Mi, ν
K) =

∑
P∈K

rα(P )νP + rα(M, νK)

The lemma below is similar in nature to Lemma 1 but, instead of the apparent rate, it pertains the model
influence. It says that local states which does not have an action in their interface, have no effect whatsoever on
the influence that the model exerts through that action on its local states.

Lemma 2. LetM be a FEPA model. Let K ⊆ B(M), and α an action such that α 6∈ I(K,M). Then, for any
P ∈ B(M), and for any ν,

Fα(M, ν, P ) = Fα(M, νK , P ) ,

where νK is defined as νKP = νP if P 6∈ K and νKP = 0 if P ∈ K.

Proof. We proceed by structural induction onM.

• M = P : Firstly, we remark that for all K ⊆ B(P ) we have that I(K,P ) = ∅. Thus, the claim has to be
proved for any α. The claim holds by noticing that for any α, for any P ′ ∈ B(P ), Fα(P, ν, P ′) = 1 for
any ν, and thus also for νK .

• M =M1 ‖HL M2: Let K ⊆ B(M), α 6∈ I(K,M) and, without loss of generality, P ∈ B(M1). We
distinguish amongst two cases: α ∈ L, α 6∈ L.

- α ∈ L: By Definition 5, we have

Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.
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Given that α ∈ L, we know that for any P ∈ B(M), α ∈ D(P,M). The assumption α 6∈ I(K,M),
implies that α 6∈ A(P ) ∩ D(P,M) for any P ∈ K, and thus rα(P ) = 0 for any P ∈ K. Let us
denote Ki = K ∩ B(Mi), i ∈ {1, 2}. Given that K = K1 ∪K2, the assumption α /∈ I(K1 ∪K2,M)
implies that α /∈ I(Ki,M), i ∈ {1, 2}. Using point (1) of Remark 2 for any P ∈ Ki, obtaining
I(Ki,Mi) ⊆ I(Ki,M), assuring that α /∈ I(Ki,Mi). We can thus apply Lemma 1, together with
the above-remarked fact that rα(P ) = 0 for any P ∈ K, to obtain rα(Mi, ν) = rα(Mi, ν

Ki), for
i ∈ {1, 2}. We also point out that rα(M1, ν) (resp. rα(M2, ν)) does not depend on the population
assigned to local states in B(M2) (resp. B(M1)); thence,

rα(M1 ‖HL M2, ν)

rα(M1, ν)
=
rα(M1 ‖HL M2, ν

K)

rα(M1, νK)
.

As regards Fα(M1, ν, P ), given that K1 ⊆ B(M1), α /∈ I(K1,M1) and P ∈ B(M1), we can apply
the I.H., obtaining Fα(M1, ν, P ) = Fα(M1, ν

K1 , P ).

The function Fα(M1, ν, P ) does not depend on the population function assigned to local states in
B(M2), and thus Fα(M1, ν

K1 , P ) = Fα(M1, ν
K , P ).

- α 6∈ L: We recall that we are assuming K ⊆ B(M), α 6∈ I(K,M) and P ∈ B(M1). By Definition 5,
we have Fα(M, ν, P ) = Fα(M1, ν, P ). As done in the α ∈ L case, we denote Ki = K ∩ B(Mi),
i ∈ {1, 2}. Given that K = K1 ∪K2, the assumption α /∈ I(K1 ∪K2,M) implies that α /∈ I(Ki,M),
i ∈ {1, 2}, and thus α /∈ I(Ki,Mi). Given that K1 ⊆B(M1), α /∈ I(K1,M1) and P ∈ B(M1), we
can apply the I.H. obtaining Fα(M1,ν,P ) = Fα(M1,ν

K1,P ). The independence of Fα(M1, ν
K1 , P )

from the population function assigned to local states in B(M2) allows us to write Fα(M1, ν
K1 , P ) =

Fα(M1, ν
K , P ), concluding the proof.

Before proving the next two lemmas, we recall the definition of P-redistributed population function. For
M a FEPA model, P a partition of B(M), let MP be the aggregation matrix of P , and MP a generalised right
inverse of MP , i.e., a matrix satisfying MPMP = I. For any population function ν forM, the P-redistributed
population function [ν]P is defined as [ν]P = MPMPν. The condition MPMP = IP implies that MP is
not unique and can be parametrized by |B(M)| values, denoted aP , with P ∈ B(M), satisfying aP ≥ 0 and∑

P∈B aP = 1, for all B ∈ P . Each component of [ν]P is given by [ν]PP = aP
∑

P ′∈B νP ′ , where B ∈ P
and such that P ∈ B. Thus, for any B ∈ P , it holds

∑
P∈B [ν]PP =

∑
P∈B νP .

Lemma 3. LetM be a FEPA model, and P be a partition of B(M) such that for anyB ∈ P and any P,Q ∈ B
it holds:

(1) P
s.i.
=M Q,

(2) rβ(P ) = rβ(Q), for any β.

Then, for any sub-modelM′ ofM, we have that for all α, for any ν,

rα(M′, ν) = rα(M′, [ν]P|M′ ) ,

where, P|M′ denotes the partition of B(M′) obtained by restricting P toM′, i.e., P|M′ , {B∩B(M′) | B ∈
P}.

Proof. The proof proceeds by structural induction onM.

• M = P : The only sub-model of P is P itself. Hence we have to show that, for any α and any ν it holds
rα(P, ν) = rα(P, [ν]

P), where P is a partition of B(P ) satisfying assumption (1) and (2). We remark
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that for any partition of B(P ), condition (1) reduces to ask that for any B ∈ P and any P ′, Q′ ∈ B,
A(P ′) = A(Q′). By Definition 4, for any α we have (where rα(B) , rα(P ′), for any P ′ ∈ B):

rα(P, ν) =
∑

P ′∈B(P )

rα(P
′)νP ′ =

∑
B∈P

∑
P ′∈B

rα(P
′)νP ′

(2)
=
∑
B∈P

rα(B)
∑
P ′∈B

νP ′ =
∑
B∈P

rα(B)
∑
P ′∈B

[ν]PP ′

(2)
=
∑
B∈P

∑
P ′∈B

rα(P
′)[ν]PP ′ ,

• M = M1 ‖HL M2: We now focus on M1, but the same arguments apply to M2. In order to prove
this case we define P|M1 , the partition of B(M1) obtained by restricting P toM1. This partition sat-
isfies the assumptions of the lemma, as any block of P|M1 is contained in a block of P , and by point
(2) of Remark 2 we know that the elements of each block in P|M1 have the same structural inter-
face in M1. We can thus apply the I.H. to M1, having that for any sub-model M′1 of M1, for all α,

rα(M′1, ν) = rα(M′1, [ν]
P|M1

|M′
1 ), for any ν. Given thatM1 is a sub-model of itself, then for all α,

rα(M1, ν) = rα(M1, [ν]
P|M1

|M1 ), for any ν. Note that [ν]P|M1
|M1 = [ν]P|M1 , for any ν, and thus

rα(M1, [ν]
P|M1

|M1 ) = rα(M1, [ν]
P|M1 ). As above, similar arguments apply toM2 as well, and thus

we have considered any sub-model ofM, exceptM itself.

It remains to prove that for all α, rα(M, ν) = rα(M, [ν]P|M), where, clearly, rα(M, [ν]P|M) =
rα(M, [ν]P). We call spurious the partition blocks of P whose elements divide amongM1 andM2, and
define the set of spurious blocks of P forM =M1 ‖HL M2 as S(P,M) = {B̃ ∈ P | B̃ ∩ B(M1) 6=
∅∧B̃∩B(M2) 6= ∅}. We shall indicate withK the union of all the local states of the blocks in S(P,M).
By Definition 8 we know that I(K,M) = ∅. Thus, for all α, we have that α 6∈ I(K,M), allowing us to
apply Lemma 1 toM for the set of local statesK, obtaining rα(M, ν) = rα(M, νK)+

∑
P∈K νP rα(P ),

where νK is defined as νKP = νP if P 6∈ K and νKP = 0 if P ∈ K.

Given a generic α, two cases have to be considered: α 6∈ L and α ∈ L:

- α 6∈ L: For thoseαwe have rα(M, ν) = rα(M, νK)+
∑

P∈K νP rα(P ) = rα(M1, ν
K)+rα(M2, ν

K)+∑
P∈K νP rα(P ). As far as

∑
P∈K νP rα(P ) is concerned, we can rewrite it as (where rα(B) , rα(P ),

for any P ∈ B): ∑
P∈K

rα(P )νP =
∑

B∈S(P,M)

∑
P ′∈B

rα(P
′)νP ′

(2)
=
∑

B∈S(P,M)

rα(B)
∑
P ′∈B

νP ′

=
∑

B∈S(P,M)

rα(B)
∑
P ′∈B

[ν]PP ′ =
∑
P∈K

[ν]PP rα(P ) ,

For i ∈ {1, 2}, instead, we can exploit the I.H. on Mi obtaining rα(Mi, ν
K) = rα(Mi, [ν

K ]P|Mi ).
Given that νK assigns population 0 to all the elements of the spurious blocks in S(P,M), we have that
rα(Mi, [ν

K ]P|Mi ) depends only on the blocks of P contained in B(Mi), i.e., only on the blocks of
P|Mi also belonging to P . We can thus write rα(Mi, [ν

K ]P|Mi ) = rα(Mi, [ν
K ]P). Given that α 6∈ L,

we have rα(M, νK) = rα(M1, [ν
K ]P) + rα(M2, [ν

K ]P) = rα(M, [νK ]P).

We recall that, in this case, rα(M, ν) = rα(M, νK) +
∑

P∈K νP rα(P ), and this holds for any ν; thus
also for [ν]P , i.e., rα(M, [ν]P) = rα(M, [ν]P

K
) +

∑
P∈K [ν]PP rα(P ). Finally, given that for any ν it

holds that ∑
P∈K

νP rα(P ) =
∑
P∈K

[ν]PP rα(P ) , and rα(M, νK) = rα(M, [νK ]P) ,
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the claim rα(M, ν) = rα(M, [ν]P) follows by the fact that [νK ]P = [ν]P
K , for any ν. In fact, in the

left-hand side of the equality we first set to 0 the population of the local states of the spurious blocks
(i.e., the local states K), and then, for each block, we redistribute the cumulative population of the block
among its local states. Conversely, in the right-hand side we first redistribute the population in each block,
and then we set to 0 the population of the local states of the spurious blocks. Clearly, redistributing a 0
population within a block is equal to redistributing any population within a block, and then set to 0 the
population of all its local states.

- α ∈ L: We have rα(M, ν) = rα(M1 ‖HL M2, ν
K) +

∑
P∈K νP rα(P ), where

rα(M1 ‖HL M2, ν
K) , H(rα(M1, ν

K), rα(M2, ν
K)) .

Let us now focus on M1. By I.H., we have rα(M1, ν
K) = rα(M1, [ν

K ]P|M1 ). Similarly to how
discussed in the α 6∈ L case, we have that rα(M1, [ν

K ]P|M1 ) depends only on the blocks of P fully
contained in B(M1), i.e., only on the blocks of P|M1 that also belong to P . We can thus write
rα(M1, ν

K) = rα(M1, [ν
K ]P). The same holds for M2. As done for the α 6∈ L case, we now re-

call that rα(M, ν) = rα(M, νK) for any ν, yielding rα(M, [ν]P) = rα(M, [ν]P
K
). Finally, given that

rα(M, νK) = rα(M, [νK ]P) for any ν, the original claim rα(M, ν) = rα(M, [ν]P) follows by the fact
that [νK ]P = [ν]P

K , for any ν. The last equivalence can be justified by the same arguments used for the
case α 6∈ L.

Lemma 4. LetM be a FEPA model, and P be a partition of B(M) such that for anyB ∈ P and any P,Q ∈ B
it holds:

(1) P s.i.
=M Q,

(2) rβ(P ) = rβ(Q), for any β.

Then, for any P ∈ B(M), for any α and for any ν it holds that

Fα(M, ν, P ) = Fα(M, [ν]P , P ) .

Proof. We prove the claim using structural induction.

• M = P : For any P ′ ∈ B(P ) we have Fα(M, ν, P ′) = 1, for any α and any ν, thus also for [ν]P .
Therefore, for any α and any ν, Fα(M, [ν]P , P ′) = 1, for any partition P of B(M) and thus the claim.

• M =M1 ‖HL M2 : We fix a P ∈ B(M) and we assume, without loss of generality, that P ∈ B(M1).
We call spurious the partition blocks of P whose elements divide amongM1 andM2, and define the set
of spurious blocks ofP forM =M1 ‖LM2 as S(P,M) = {B̃ ∈ P | B̃∩B(M1) 6= ∅∧B̃∩B(M2) 6=
∅}. We shall indicate with K the union of all the local states of the blocks in S(P,M). Noteworthy,
from Definition 8 we know that I(K,M) = ∅. This ensures that α 6∈ I(K,M) for any α. Hence, we
know from Lemma 2 that Fα(M, ν, P ) = Fα(M, νK , P ) for any ν, and any α. We thus reduce the
problem to proving that the claim holds for any νK , i.e., we prove that for all α and for any νK it holds
that

Fα(M, νK , P ) = Fα(M, [νK ]P , P ) .

The claim then follows noticing that for any ν it holds that [νK ]P = [ν]P
K . The latter equality is due

to the fact that spurious blocks have zero population. Therefore, redistributing a zero population within
a partition block is equal to redistributing any population function within the same block and then set its
value to zero.

We need to distinguish among two cases, α 6∈ L, α ∈ L.

QUANTICOL 17 June 8, 2015



Differential Bisimulation (Revision: 0.1; June 8, 2015) June 8, 2015

- α 6∈ L : By Definition 5 we have

Fα(M, νK , P ) = Fα(M1, (ν
K)1, P ) .

Let P|M1 = {B ∩ B(M1) | B ∈ P}. We remark that this partition satisfies the assumptions of the
lemma. In fact, by point (2) of Remark 2, we know that P|M1 is a partition of B(M1) such that for any
B′ ∈ P|M1 and any P,Q ∈ B′, we have that P s.i.

=M1 Q. Furthermore, any block of P|M1 is contained
in a block of P , assuring thus the second assumption as well. Applying I.H. onM1 we obtain

Fα(M1, (ν
K)1, P ) = Fα(M1, [(ν

K)1]
P|M1 , P ) .

As a last step to obtain the claim, we notice that for any (νK)1 we have [(νK)1]
P|M1 = ([νK ]P)1. The

above equality deserves a discussion. On the left-hand side we first set to zero the population function of
the spurious blocks, then we project onM1. In other words, we consider only local states in B(M1) and
redistribute the total population of the blocks inP|M1 among its elements. On the right-hand side instead,
we first set to zero the population function in each spurious block, we then redistribute the obtained
population among the elements of the whole blocks, and we finally project onM1. The result of these
two different operations is, however, the same. In fact, as regards the blocks which are not spurious, the
operation is the same, while as regards the spurious blocks, in both cases the corresponding population
is set to zero. Hence, we obtain Fα(M1, (ν

K)1, P ) = Fα(M1, ([ν
K ]P)1, P ) = Fα(M1, [ν

K ]P , P ),
which for any α 6∈ L corresponds to Fα(M, [νK ]P , P ).

- α ∈ L : By Definition 5 we have

Fα(M, νK , P ) = Fα(M1, ν
K , P )

rα(M1 ‖HL M2, ν
K)

rα(M1, νK)
.

As regards the fraction appearing in the above expression, we can apply Lemma 3 to its numerator,
obtaining rα(M1 ‖HL M2, ν

K) = rα(M1 ‖HL M2, [ν
K ]P).

As regards the denominator, applying Lemma 3 we obtain rα(M1, ν
K) = rα(M1, [ν

K ]P|M1 ) =
rα(M1, [ν

K ]P), where the last equality follows from noticing that rα(M1, [ν
K ]P|M1 ) depends only

on the blocks of P contained in B(M1), i.e., only on the blocks of P|M1 also belonging to P . We can
thus write rα(M1, [ν

K ]P|M1 ) = rα(M1, [ν
K ]P). For Fα(M1, ν

K , P ), as for the α 6∈ L case, we can
use the I.H. onM1, obtaining Fα(M1, ν

K , P ) = Fα(M1, [ν
K ]P , P ). Hence,

Fα(M, νK , P ) = Fα(M1, [ν
K ]P , P )

rα(M1 ‖HL M2, [ν
K ]P)

rα(M1, [νK ]P)
α ∈ L
= Fα(M, [νK ]P , P )

The next proposition proves that two local states having the same structural interface always receive the
same influence from the whole model.

Proposition 4. LetM be a FEPA model. Let P,Q ∈ B(M) be such that P s.i.
=M Q. Then, ∀α ∈ A(P ) =

A(Q) and ∀ν, Fα(M, ν, P ) = Fα(M, ν,Q).

Proof. The proof proceeds by structural induction onM.

• M = P : This case is trivial as, for any P ′ ∈ B(P ), for any α ∈ A, Fα(P, ν, P ′) = 1, for any ν.
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• M =M1 ‖HL M2 : We can have that either P and Q belong to the same sub-modelMi, for i ∈ {1, 2},
or not. Without loss of generality, for the former case we assume P,Q ∈ B(M1), while for the latter
P ∈ B(M1), Q ∈ B(M2).

We now consider the case P ∈ B(M1), Q ∈ B(M2). By P
s.i.
=M Q, we know that I(P,M) =

I(Q,M) = ∅, i.e., D(P,M) ∩ A(P ) = D(Q,M) ∩ A(Q) = ∅. We thus have that all actions that we
are considering in this proposition (i.e., those in the set A(P ) = A(Q)) are unbound for both P and Q,
and thus applying Proposition 3 we have Fα(P,M, ν) = 1 = Fα(Q,M, ν) for any α ∈ A(P ) = A(Q)
and ν.

We now focus on the case P,Q ∈ B(M1). Let α ∈ A(P ) = A(Q) and consider the two sub-cases:
α ∈ L, α 6∈ L.

- α ∈ L : By Definition 5 we have

Fα(M, ν, P ) = Fα(M1, ν, P )
rα(M1 ‖HL M2, ν)

rα(M1, ν)
,

Fα(M, ν,Q) = Fα(M1, ν,Q)
rα(M1 ‖HL M2, ν)

rα(M1, ν)
.

We want to prove is that Fα(M, ν, P ) = Fα(M, ν,Q) for any ν. By point (2) of Remark 2 we know
that P s.i.

=M1Q allowing to exploit the I.H. on M1 to infer that Fα(M1, ν, P ) = Fα(M1, ν,Q) for

every ν. Such an equality persists when one multiplies both terms for the same function rα(M1‖HLM2,ν)

rα(M1,ν)
obtaining the claim.

- α 6∈ L : By Definition 5 we have Fα(M, ν, P ) = Fα(M1, ν, P ) and Fα(M, ν,Q) = Fα(M1, ν,Q).
We want to prove that Fα(M, ν, P ) = Fα(M, ν,Q) for any ν. By point (2) of Remark 2 we know that
P

s.i.
=M1 Q allowing us to use the I.H. onM1 to infer that Fα(M1, ν, P ) = Fα(M1, ν,Q) for every ν,

closing the proof.
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