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Executive Summary

This deliverable reports on the development of a theoretical framework to study the effect of
multiple scales and imprecision in the emergent behaviour of collective adaptive systems (CAS). We
show how to construct suitable mean-field approximations for such systems. It constitutes the main
achievement of Task 1.1 and a first step towards Task 1.3 and the linking of language specification
and mean-field techniques. This document is structured in two main sections, the first one presents
results related to multiple scales, both in terms of time and of population levels. The second part
focuses on mean field results in presence of uncertainty.

As for multiple scales, we discuss the following results in detail. We first present a general frame-
work for mean field limits for systems with heterogeneous population size, following [Borl5|. This
framework considers a very general class of population processes, allowing both immediate and stochas-
tic transitions, guarded by Boolean predicates (to encode for example control actions), and obtaining
limits in terms of stochastic hybrid systems, which are usually faster to simulate. This is discussed
in detail in Section 2.2l Computing the transition rates of some immediate transitions requires the
computation of stochastic hitting times, i.e., the time for a stochastic system to hit a given domain.
We show how to use a fluid approximation to compute this time in Section

Next, in Section we present a general framework to combine mean field limits with reduction
of multiple time scales, with conditions providing guarantees on the correctness of exchanging these
two operations [BP14]. This framework leads to a new simulation algorithm for Markov models with
multiple time scales, leveraging powerful statistical abstraction tools [BMS15|. Finally, an integration
of hybrid conditional moment techniques [Has+14] within the stochastic process algebra PEPA [Poul5)|
is discussed in Section 2.5

The second part of the document is devoted to the analysis of CAS models in the presence of
uncertainty. We distinguish an uncertain model — for which a parameter exists but is not known
— and an #mprecise model — for which some parameters may vary. We show how mean field limits
can greatly simplify the study of uncertain and imprecise population models [BG15]. This setting
encompasses the imprecise and the uncertain scenario, but also more classic models like Markov
Decision Processes. It uses a differential inclusion to represent the limit. We discuss it in Section [3.1

We develop some numerical methods to analyse the class of limit models for uncertain and imprecise
population models. In particular, we discuss in Section a method based on statistical emulation
for the uncertain case [BS14], and two methods, one based on differential hulls [TT15] and one based
on the Pontraygin optimal control principle [BG15|.
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1 Introduction

Collective adaptive systems (CAS) have many complex features that make the construction of math-
ematical models a challenging task. In this report, we focus mainly on a few crucial aspects:

1. Dynamical evolution happening at multiple temporal scales. An example is the different activa-
tion times of different electricity generation mechanisms in smart grids: switching off appliances
to reduce the demand takes a few milliseconds while turning on thermo-generators requires
several minutes.

2. The presence of different populations of interacting agents of heterogeneous sizes. For instance,
in a smart grid scenario in which appliances can be controlled remotely, we have many appliances
but only one or few central controllers.

3. The intrinsic uncertainty in the values of model parameters, due to lack of knowledge or due to
intrinsic imprecision in their statistical estimate from available experimental data. We call this
the uncertain scenario.

4. The necessity to consider open scenarios and interaction with an unpredictable environment,
with the consequent need of under-specification of some model parameters. This will be referred
to as the imprecise scenario.

Imprecision and uncertainty, in particular, are ubiquitous features of all CAS, and in general of all
complex systems, due to our limited intellectual, experimental, and computational capabilities.

In this project, we investigate the use of mean field approximation as a viable tool to analyse large-
scale stochastic models of CAS. The behaviour of mean field approximation in the presence of multiple
scales in time and population size, or in the presence of parametric uncertainty and imprecision, is
poorly understood. This deliverable collects results obtained within the project that aim at filling
this gap. In particular, we present general mean field results for multiple population levels and in
the presence of uncertainty and imprecision, paving the way to novel and efficient algorithms for the
analysis of models of CAS exhibiting these features.

2 Hybrid Limits Arising in Mean-Field Interaction Systems

In this section, we present results on different kinds of hybridness that can emerge in mean field limits.
We start from the results of [Borl5|, a journal version of the technical report [Borl2|, which has been
discussed previously in Deliverable 1.1. As such, we will stress more the novel results on hybrid mean
field limits in the presence of discontinuities, as these are based on similar techniques to those discussed
in Section [3|about mean field under parameter uncertainty, hinting at how hybridness and uncertainty
may be seen from a unified perspective, at least from a formal point of view. We also show how to
compute rates of instantaneous transitions that are fired when the system hits a boundary |[GG15].

In this section we will also report on work connecting mean field and temporal reduction of multi-
scale systems [BP14; BMS15|, on hybrid conditional moment techniques [Poul5|. Our starting point,
however, will be a quick overview of Markov Population Models and standard mean field limits,
following mainly [Bor+13], to fix notation.

2.1 Markov Population Models and Classic Mean-Field Limits

We recall here for the sake of completeness the definition of Markov population models, defining a
(population) CTMC. We are interested in models in which populations of agents, possibly of different
kinds, interact and evolve by changing state. We assume that the identity of individual agents does not
influence the dynamics, hence we just need to count how many agents are in each state. To this end,
we introduce integer-valued counting variables X = (X1, ..., X,,), with n the number of different agent
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states. These variables take values in a subset S C N", which is the state space of the model. The
dynamics of Markov population models is described, according to [Bor+13}; Borl5|, by a collection T°
of transition classes, each consisting in a tuple n = (a, ¢(X), v, f(X)). Specifically, a is the transition
label, v is the n-dimensional update vector, giving the net change in the number of agents for each
state, f(X) is the population dependent rate of the transition, encoding its average frequency, and
»(X) is a state dependent Boolean predicate such the the transition is active only when it evaluates
to true.

A Markov population model is therefore defined by a vector of counting variables X, a set of
transition classes 7, and an initial state xg € S. From this description, it is straightforward to derive
the underlying CTMC, denoted by X(t), see [Bor+13| for further details. In the context of mean field
limits, we are usually interested in the behaviour of the model when the size of the system N, usually
the (initial) population of agents, tends to infinity. Classic mean field limits show that a Markov
population model, with a proper scaling of rates and with variables divided by N, converges to a
deterministic limit given by the solution of a differential equation. For this reason, the dependency on
the total population N is made explicit in the notation: we write X in place of X, and f¥(N,X")
for the rate function. The rescaling of the model is done by defining normalised variables X = X/N
and by changing variables from X to X in FN(N,XN). For the classic mean field limit, we have
further to require that fN(N,XN)/N converges (uniformly) to a Lipschitz continuous function f(X),
independent of N. This enables us to construct the limit drift F(X) = ZTU T Vi fj(X), defining the
mean field ODE

d
5 X(t) = F(x(?))- (1)

to which the (normalised) sequence of CTMCs X (£) converges (almost surely), when restricting to an
arbitrary finite time interval [0,7"]. This convergence can be extended to steady state, at the price of
assuming ergodicity of the sequence of CTMCs and requiring that the ODE has a unique globally
attracting equilibrium (see [Bor+13] for more details).

2.2 Hybrid System as a Limit

The classic mean field limit works in scenarios in which all populations of agents are large, and can be,
at least formally, taken to infinity. There are situations, however, in which this does not hold, as some
populations are present in small numbers which do not grow with the system size N. This is the case
when modelling genes explicitly in genetic networks [Borlb; BP13|, or when modelling a centralised
controller interacting with a distributed system, for instance, smart meters controlled centrally in a
smart grid model.

In these cases, however, we can still rely on mean field results, at the price of constructing a more
complex limit model, where discrete and continuous variables will coexist and coevolve. Formally, this
can be described as a (stochastic) hybrid system. Here we will roughly sketch the main ideas behind
these results, referring to [Borl)| for a detailed presentation and for the proofs of all the results.

The first step in the construction of a hybrid limit, starting from a Markov population model
(X, T,x0), is to partition variables X into the two classes of discrete Z and continuous variables Y,
and identifying a notion of system or population size for continuous ones, thus writing X = (Z, Y¥).
The idea now is to renormalise only continuous variables, hence changing coordinates from (Z, Y™)
to (Z,YN) = (Z, YN /N). Such a change of variables is then applied to all rate functions of transition
inT.

The second step of the construction is concerned with a partition of transitions into continuous
and discrete, depending on their effect on variables, namely if they modify only fast, only slow, or
both kinds of variables, and on the dependency of the rate function on the system size N. For the
moment, assume all guard predicates are tautologies, i.e. always evaluate to true. Then, in order to
construct a hybrid limit, all transitions must belong to one of the three classes listed below.
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e Continuous transitions modify only fast variables Y¥, and their rate fV (N, Z, YV ) is pro-
portional to N, so that f~(N,Z,Y")/N converges to a N-independent function f(Z,Y).

e Discrete stochastic transitions with no jumps modify only discrete variables, and have a
rate function fV(N,Z,Y™N) which is independent of N: fN(N,Z,YN) = f(Z,Y). They can
also modify continuous variables, but we assume the corresponding entry in the update vector
is independent of NV, so that the change in the normalised continuous variables in the limit is
Zero.

e Discrete stochastic transitions with jumps behave as the other class of discrete transitions
in terms of rates, but the entry in the update vector for continuous variables can be proportional
to N, so that in the limit each of these transitions induces a discontinuous jump in the continuous
variables Y.

The hybrid limit. Once variables and transitions are partitioned into the aforementioned classes,
we can easily construct a stochastic hybrid system, which can be shown to be the limit of the sequence
(Z, YN ) of population CTMCs. Formally, such a stochastic hybrid system can be defined in terms of
a Piecewise Deterministic Markov Process, see [Dav93|, but we refrain from providing formal details
here. A more complete discussion can be found in |[Borl5|, where the convergence (in the weak sense)
is formally stated and proved. Intuitively, the stochastic hybrid limit is defined as follows: its discrete
skeleton is defined by all possible states that the discrete variables Z can take, while continuous
variables Y define its continuous state space. The dynamics of the system are given by a never-ending
alternation of phases of continuous evolution and discrete jumps. In the continuous phase, continuous
variables evolve following the solution of an ODE defined by a mode-specific vector field, obtained as
in Equation by restricting to continuous transitions only. Discrete jumps happen at exponentially
distributed random times, according to the (continuous-state dependent) rate of discrete transitions.
When a discrete transition fires, the discrete state of the automaton can change, as well as possibly
the value of continuous variables, when a transition with jumps happens. After the jump, the system
restarts its continuous dynamics from the new mode.

Guards and discontinuities. We turn now the focus on the effect of guards in the limit behaviour,
distinguishing which kind of transitions are guarded.

Guards in continuous transitions induce discontinuities in the (mode-specific) vector field, as the
corresponding entry in Equation will be active only in a subset of the continuous state space
(assuming guards involve continuous variables and not only discrete ones). This results in a mode-
specific dynamics governed by a set of non-smooth ODEs, for which a mean field limit result similar
to the classic one still holds, provided such discontinuous ODEs have a unique solution. This can be
proved by working directly with non-smooth ODE [Borl1], or rephrasing the problem in the context
of differential inclusions [GG12|, which provides a link with mean field limits under uncertainty as will
be discussed below.

Guards in discrete transitions, instead, result in discrete jumps active only in subsets of the (con-
tinuous) state space, but for the limit to be properly defined, extra conditions are required on the way
the discontinuous surfaces defined by such guards interact with the vector field (essentially, it must be
tangential to these surfaces). The corresponding conditions turn out to be difficult to check automat-
ically, and randomisation of the continuous dynamics, for example in terms of stochastic differential
equations, seems a possibility to circumvent such problems [Borl5|.

Finally, in [Borl5| the author considers two additional classes of transitions: instantaneous ones,
which fire as soon as their guard becomes true, and timed ones, which fire when the simulation time
reaches a certain threshold. Both classes of transitions can be accommodated in the hybrid limit
framework. In both cases they result in forced transitions, i.e. transitions of the stochastic hybrid
system taken as soon as their guard becomes true.
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We finally remark that we can also admit continuous transitions modifying discrete variables but
with a rate growing linearly with N. In this case, however, a different construction applies [BLBOS§|,
as the dynamics of discrete variables induced in this way will happen on an infinitely faster time scale
than the one caused by discrete transitions, leading to the necessity of computing the equilibrium
distribution of discrete variables conditional on continuous ones and averaging away the effect of
discrete variables from the rates of continuous transitions. In this sense, this phenomenon is closer to
the time-scale separation scenario presented in the next subsection.

2.3 Computing the Jump Rate in Hybrid Systems

Some hybrid systems have transitions that fire as soon as the system hits a certain domain. In the
hybrid framework described in Section[2.2]and in [Bor15], this corresponds to instantaneous transitions
that are activated as soon as their guard becomes true. In this section, we propose a method based
on a fluid approximation, to compute the time for a guard to become true, and hence to compute the
jump rate of some hybrid systems.

Computing the time at which these transitions are fired is not always easy. For example, let us
consider a population of individuals that can be either alive or dead and assume that an individual
becomes dead after a random time that is exponentially distributed with mean 1. If NV individuals are
alive at time 0, then by using the mean-field framework of [BLBO0S]|, one can show that the proportion
of living individual at time ¢ is close to exp(—t) when N is large. Then, if an instantaneous transition
is fired as soon as the proportion of living individuals becomes less than 1/2, it is straightforward to
show that this transition occurs after a time that tends to log2 as N becomes large [DNO8|. This
time is the solution of exp(—t) = 1/2. However, if an instantaneous transition is fired only when the
number of living individuals is zero, it can be shown that this instantaneous transition is fired at a
time close to log N. This time is not the solution of exp(—t) = 0 but the solution of exp(—t) = 1/N.

In [GG15], we develop an approach to compute the hitting time of a stochastic process whose fluid
limit m(t) tends to 0 as t goes to infinity. We establish two results. First, we show that the hitting
time of the stochastic system is close to the time ¢y for the fluid limit to reach 1/N, i.e., m(tx) = 1/N.
Then, we also compute an asymptotic development of ¢y for a large class of stochastic systems and
show a logarithmic trend in all cases: ty = clog N +dloglog N+O(1). For now, our method is limited
to mean field models with few interactions between objects. We are now working on an extension of
this method to more general stochastic systems. This will be helpful to understand the relationship
between the extinction time of stochastic models and the time for its fluid approximation to get close
to extinction.

2.4 Multi-Scale and Mean-Field

In this section we discuss a different kind of hybrid behaviour, emerging due to the presence of multiple
time scales in a system. We stick here to the framework of quasi equilibrium (QE), which can be defined
both in the stochastic and in the deterministic regime, following [BP14].

The starting point in this scenario is the separation of transitions of a given Markov population
model into a fast and a slow class (more classes can be accommodated as well). In the QE framework,
these are distinguished by the presence of a small parameter €, defining the fast time scale of the order
of 1/e. Formally, one is interested in observing what happens in the limit ¢ — 0, giving an infinite
separation of time scales. Identification of such a parameter is model specific, and often can be found
among the parameters modulating rates of the model.

The second step in the construction of the QE reduction is to consider only the fast transitions
(ignoring or freezing slow ones), and check if this modified model has additional conservation relations.
These correspond to variables (possibly after a linear change of variables, see |BP14] for details),
call them Z, which are not modified by the fast transitions and thus identify, together with slow
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transitions, the slow subsystem. The remaining variables Y, together with fast transitions, define the
fast subsystem.

The main idea behind QE is that by taking the parameter € to zero, the dynamics of the fast
subsystem, relative to the slow one, will be faster and faster, to the point that one can safely assume
the fast subsystem equilibrates instantaneously. The idea is then to compute the equilibrium distri-
bution of the fast subsystem, conditional on a fixed value of the slow variables Z, and remove the
fast subsystem (variables and transitions) from the model, eliminating fast variables from the rates
[i(Z,Y) of slow transitions by taking their expectation Eyz[f;(Z, Y)] with respect to the equilibrium
distribution of Y, conditional on the current value of Z.

This operation reduces the dimensionality of the model, eliminating all fast variables. Moreover,
the description above can be instantiated not only to a Population CTMC, but also to its mean field
limit, with the difference that in this case the equilibrium distribution of Y will usually be given by
an attracting equilibrium of the mean field ODE for the fast subsystem. This generality, however,
poses the problem of understanding what happens in a population model in which we have a growing
population N and an independent fast temporal scale 1/e, when both are taken to the limit. In
particular, in [BP14], we discussed formally when these two limits can be safely interchanged. It turns
out that this is a non-trivial operation, requiring specific conditions on the mean field ODEs of the fast
subsystem. More specifically, these ODEs must have a unique globally attracting equilibrium. These
conditions are similar to those for extending classic mean field convergence to steady state, which is
a consequence of the fact that the separation of times scales requires taking the fast subsystem to its
equilibrium. Therefore, for limits on /N and € to be exchanged, mean field convergence must also hold
at steady state for the fast subsystem. In [BP14], the authors provide also a counterexample violating
such a condition on the fast subsystem, where limits cannot be exchanged. This provides a set of
formal conditions to be checked, allowing time scale reduction at the level of the mean field ODEs to
be safely carried out, which is the typical praxis, preserving mean field convergence.

Efficient simulation of stiff stochastic models. The time scale separation framework of [BP14]
has been exploited in [BMS15] to define a novel simulation algorithm for population CTMCs with
multiple time scales. The problem of simulating these systems in general is that the rate functions of
the reduced models are seldom computable analytically, hence the fast subsystem has to be balanced by
running a number of simulations of the fast subsystem after a slow transition occurs. The approach of
[BMS15] obviates this problem by constructing an analytic approximation of slow rates Ey|z [(Z,Y),
as a function of Z, sampling this function for a few values of the slow variables and then using machine
learning tools to infer a statistical surrogate of the function Evyzf;(Z,Y). In particular, the authors
rely on Gaussian Process regression, which provides also an estimate of the error committed in the
reconstruction. Learning the slow rates is a preliminary step that has to be done just once, resulting
in considerable savings on the simulation time of the reduced system, compared with alternative slow
scale simulation algorithms. Moreover, the authors show how to learn slow rates also as a function
of some model parameters, at a negligible additional preprocessing cost, providing an efficient way to
explore the parameter space and remove stiffness at the same time.

2.5 Hybrid Conditional Moments

In [Poulb|, Pourranjbar (under the supervision of Hillston) has considered CAS which are multi-scale
in the sense that they are comprised of some classes of agents with large populations interacting with
other classes of agents which occur only in low copy numbers. Such models are readily identified when
the model is developed in a formal modelling language, in this case PEPA [Hil95]|. Direct application
of fluid approximation [Hil05] or moment closure techniques to such models may lead to coarse approx-
imation of the behaviour of the small population [PHB13|. Thus in [Poul)|, the conditional moment
closure technique of [Has+14], originally developed for modelling biological systems, has been adapted
to the context described above. The small populations are represented explicitly and discretely, whilst
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the large populations are treated as continuous, thus a hybrid representation is generated. Using this
approach, key characteristics of the probability distribution that represents the behaviour of the large
populations, conditioned on the current state of the small populations, are approximated through con-
ditional moments. The first-order moments are the expectations or averages related to the stochastic
behaviour of the large populations given the stochastic evolution of the small populations. In contrast
with fluid flow approximation, where the evolution of large populations is studied by a single expec-
tation, here we calculate many expectations corresponding to the different configurations of the small
populations. Working directly from the PEPA description, a set of differential algebraic equations
(DAEs) are generated whose solution is the transient evolution of conditional expectations. A mode
of operation is defined as a subset of states within the discrete state space which satisfy a property
of interest (for instance, number of resources in failure mode). It is shown that the DAE solution can
be used to derive coarse-grained conditional expectations for any mode of operation. In [Poul)| it is
demonstrated that the analysis of conditional expectations can capture where significant probability
masses are clustered.

The stochastic behaviour of large populations potentially makes deviations from the conditional
expectations. Pourranjbar’s work goes on to expand the analysis of conditional moments by including
higher-order conditional moments. These include the conditional variances, conditional skewness, etc.
given the different configurations of small populations. The higher-order moments enable us to obtain
a richer representation of the conditional distributions. As for the conditional moments, a set of DAEs
related to higher-order moments can be automatically derived from the model. This set of DAEs is
larger than that constructed for conditional expectations; as the order increases, the set of equations
is augmented with more equations and finding the solution becomes computationally more expensive.
An analytical expression for the size of this set of equations is given and it is shown that, given the
capabilities of current DAE solvers, the analysis for up to the third-order (conditional skewness) is
practically possible for most models.

The usefulness of the technique of conditional moments has been demonstrated in the context of
a simple scenario of a client-server system, and also for a more complex model of a two-tier wireless
network, based on the femto-cell macro-cell architecture |[CCU10].

3 Parameter Uncertainties: Estimation and Approximation

In this section, we briefly introduce a novel theoretical framework to describe population models in
the presence of different kinds of uncertainty, and their mean field limits. We discus algorithmic issues
to analyze the parameters of such models.

3.1 Uncertain Systems and Mean Field Limits as Differential Inclusions: Theory

As discussed in the introduction, uncertainty is a ubiquitous feature of models of complex systems, and
collective adaptive systems are no exception to this rule. In the kind of models we are considering,
uncertainty is mainly present in the values of model parameters. More specifically, we consider a
population model according to the definition of Section and assume one or more parameters ¢ are
subject to some form of uncertainty. We mainly focus on two kinds of uncertainty:

1. Some parameters 9; can depend on features of the environment external to the model. We
may not know the precise value of 9;, because we cannot measure these features. Furthermore,
some environmental features like temperature, PH, atmospheric weather, light intensity, may
be subject to variations during the time horizon 1" of interest, so that considering v; as having
a fixed value may be an incorrect assumption that can lead to incorrect results. One way to
capture such variability, without committing to assumptions on the form of dependency of ¥,
on the external/environmental factors, is just to fix a set © of possible values for 1, and assume
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that 1%; depends on time ¢ and can take any value of © at any time instant, i.e. that ¥ € ©. We
call this the imprecise scenario.

2. In a simpler scenario, some parameters ¥ may be assumed fixed, but their values not known
precisely. This may be the case, for instance, if ¢ has been estimated from experimental data.
In this case, we just assume that ¢ € ©, where O is the possible set of values of ¥, as above.
This will be referred to as the uncertain scenario.

It is easy to see that the second case is a simpler subcase of the first, assuming the dependency of
¥ on time is constant. Hence, in the following we will deal mostly with imprecise models, though a
dedicated discussion of the uncertain scenario is useful as analysing these models is simpler.

3.1.1 Imprecise Markov Population Models

We will start by the definition of imprecise CTMCs, introducing in the following the conditions to be
satisfied by an uncertain population process. Consider a stochastic process X = (X;):>0, adapted to
a ﬁltratio F, that takes values in a state space E C R?. The dynamics of the process depends on a
parameter (or a vector of parameters) 1. We denote by © the set of possible parameter values of ¥,
and we consider a set of infinitesimal generators on E, parametrised by ¥ € ©: for each ¢ € ©, QV is
a transition kernel, i.e. such that Q}zy >0 for x #y € E and ZyeE Q;Zy =0.

Definition 3.1. An imprecise continuous time Markov chain is a stochastic process X together with
a Fi-adapted process ¥ such that for all t > 0:

QY ifz#y

1
}111_% EP(Xt-HL =y | Ft and Xy =) = { =t Qﬁ; otherwise

The definition of an imprecise Markov chain makes no restriction on the set of processes to which
the varying parameter 9 belong to. In some cases, it can be interesting to focus on a subset of
processes. In particular, if we assume that ¥; is deterministic and constant in time, we obtain the
notion of uncertain continuous-time Markov Chain. The evolution in time of the probability mass of
an imprecise CTMC is described by a generalised form of Kolmogorov equations, expressed in terms
of a differential inclusion (see [BG15] and the next section for further details).

Imprecise population models are imprecise CTMC satisfying additional constraints. In particular,
we consider sequences of population models depending on a scaling parameter N (typically, N is the
population size of the considered model). Such a sequence is denoted (X% )y, and takes values on a
sequence of subsets EN C E C R%. The stochastic process X" is an imprecise process of kernel Q7.

Definition 3.2. An imprecise (respectively uncertain) population process is a sequence of imprecise
(respectively uncertain) Markov chains that satisfies the following assumptions:

(i) The chains are uniformizable: i.e., for all N: sup,cg~y gco Qf}f < 00

(ii) The transitions become smaller as N grows, i.e., there exists € > 0 such that

. 1
lim sup Z Q%ﬁ ly — 2| =0
N—=00 1 cEN 9eo JeBN

(iii) The drifts are well-defined and bounded:

limsup  sup Z Q" lly — =l < o0
N—oo erN,z?e@yeEN

LA filtration is a set of o-algebra (F:)¢>0 such that Fs C Fy C F for each ¢t > s > 0. X is adapted to F means that
X, is Fi measurable for every t.
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Typically, these models are derived from a description in terms of transition classes, as that
presented in Section 2.1 The conditions for mean field described in that section, together with
rate functions bounded uniformly on z and 9, guarantee the satisfaction of the previous definition. In
particular, boundedness of update vectors with respect to N and the scaling condition of rate functions
implies condition (iii) above.

Given an imprecise population model, we define its imprecise drift as

N9 =) QN (y — =),

yeE

which makes sense provided for all z € E,J € © we have > g ng |ly — x| < co. This quantity will
play a central role in the definition of the mean field limits.

3.1.2 Differential Inclusions

Before stating the mean field theorem, we provide a very short introduction to differential inclusions
(see |[AC84] for further details).

Let F be a set-valued function on E C R that assigns to each z € E a set of vectors F(z) C RY.
A solution to the differential inclusion & € F'(z) that starts in zp is a function x : [0,00) — E such
that there exists a measurable function f satisfying for all t > 0 f(¢) € F(z(t)) and

x(t) = xo —i—/o f(s)ds.

For an initial condition z, we denote by Sg, the set of solutions of & € F(z) that start in
xo. Note that the set Sr,, can be empty or be composed of multiple solutions, depending on the
function . When E = R?, a sufficient condition for the existence of at least one solution is that (a)
for all 2 € R? F(zx) is non-empty, convex and bounded (i.e., SUPgex yer(z) 1Yl < o0) and (b) F is
upper-semi-continuous (i.e., the graph of F, {(x,y),y € F(z)}, is a closed set).

As time goes to infinity, solutions of a differential inclusion can show a variety of different be-
haviours, for instance, they can have a chaotic behaviour or they can oscillate around many points.
What can be said in the generic case is that the set of points containing solutions of the differential
inclusion in the limit of an infinite time are contained in the so-called Birkhoff centre, formally defined
as the closure of the set of recurrent points of the differential inclusion. Intuitively, the Birkhoff centre
contains all attractors, equilibria, limit cycles, and in general all points of the differential inclusion
that are visited infinitely often.

3.1.3 Mean Field Limits as Differential Inclusions

The mean field limit of a sequence X" of imprecise population processes is a differential inclusion,
specified by the set-valued function constructed from the imprecise drift. More specifically, let fV(z, )
be the drift of the system for size N. We define the limit drift of the system as the convex closure
of the set of the accumulation points of f(zV,9) as N goes to infinity, for all sequences x¥ that
converge to x:

F(z) = lim N :
() = Iim | J {0} (2)
Y€O
Then the mean field differential inclusion is given by & € F'(x), and asymptotic convergence is proved

in the following theorem (cf. [BG15] for a proof).

Theorem 3.1. Let (XV) be an imprecise population process. Then, if XV (0) converges (in probability)
to a point x, then for any finite time horizon T, the stochastic process XN converges (in probability)
to Sk, the set of solutions of the differential inclusion & € F(x) starting in x.
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What happens as time tends to infinity? As usual in the mean field setting, only weaker results
hold. What can be said in this case is that, despite the fact that an imprecise Markov population
process does not necessarily have a stationary behaviour, it is possible to constrain its asymptotic
regime, showing that with probability one it will be contained in the asymptotic reachable set of the
differential inclusion Ar [BG15], defined by:

= U & 3)

T>0z,t>T xESF ;-

Note that the set A is included in the Birkhoff centre Br and such an inclusion is in general strict.

3.2 Uncertain Systems and Mean Field Limits as Differential Inclusions: Numer-
ical Methods

Mean field limits of imprecise population models are given by differential inclusions (of dimension
much smaller than Kolmogorov differential inclusions). However, differential inclusions are much
more complicated to analyse numerically than differential equations. Hence, to provide a practical
value to the theoretical results of the previous section, we need to provide efficient numerical routines
to compute the flow of a differential inclusion, or at least to over-approximate it.

In literature there has been much research, especially in the context of reachability computation
for hybrid systems. Here we will discuss two methods for generic differential inclusions, one based on
differential hulls [TT15] and one based on the Pontraygin principle [BG15]. We also discuss a more
efficient method tailored on the simpler class of limit models for uncertain CTMC.

3.2.1 Differential Hull of a Differential Inclusion

The idea of this method is to construct rectangular bounds for the differential inclusion, i.e., two
functions z and T such that z(t) < x(t) < Z(t) for any solution x(t) of the differential inclusion
& € F(x). The method presented in [TT15] is based on the idea of defining a simple set of differential
equations that provide such upper and lower bounds, called the differential hull. These bounds are
reasonably tight when the set of possible values that the parameters 6 can take is small. However, the
bounds provided by this approximation become too large when the possible values of ¥ increase (see
also [BG15]).

It can be shown [TT15] that the tightest functions f and f that are a differential hull for a
differential inclusion F' are: B

(z,7) = min Fi(x
Len = i, o5
Tem= e R,

z€[z, 7]z =2, (t)

3.2.2 Reachability of a Differential Inclusion as an Optimal Control Problem

An alternative method discussed in [BG15| is based on Pontryagin’s maximum principle to compute
the exact minimal value ™ (¢) and maximal value x™#*(¢) that can be reached by an imprecise fluid
model at time t.

Let T > 0 be some fixed time and i € {1...d} a coordinate. Let z™(T) = infxes,,, zi(T) be
the minimal value that the ¢th coordinate of the solution of a differential inclusion can take at time ¢.
The quantity z%"(7) is the solution of the minimisation problem:

(T = m@in x;(T') such that for all ¢t € [0,T]: { ngg :Ef?,—r:rlf,oﬁgi§8)7 6(s))ds
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Pontryagin’s maximum principle provides an algorithmic method to solve this optimisation prob-
lem. Following [Tod06, Section 3], if x is a trajectory that maximises z;(T"), then there exists a costate
trajectory p such that p;(T) = —1, p;(T) = 0 for j # i and:

&(t) = f(x(t), u(t)) (4)

I(t) € arg;nin f(x,9)p, (5)
plt) = o (S 9)"p) (©

where f(x,9)Tp denotes the scalar product of f(z,1) and p. This solution leads to iterative numerical
methods that start from an initial costate p, then updates p by computing a trajectory x forward in
time from x by using and and then computing a new p backward in time by solving the ODE

3.2.3 Statistical-Based Computation of Reachable Sets for Parameter Uncertainty

In [BS14], the authors introduce a novel method to compute over-approximations of reachable sets for
dynamical systems subject to parameter uncertainty, such as those obtained as mean field limits of
uncertain population processes.

The authors assume uncertain models as defined in Section meaning that parameters have
fixed but unknown values, and belong to a certain real interval. The method presented in [BS14]
works for computing the reachable set at time T', or up to time 7', for a model specified by a set
of ODEs, or for any quantity which is a deterministic function of time, like the expectation of a
stochastic model. More specifically, letting x(t, §) be such a function, depending on time and on some
uncertain parameters § € D, the authors propose an approach constructing a polytope bounding the
reachable set R(T) = {x(T,0) | ¢ € D}. The idea is that the polytope Ax < b will be specified by
fixing the matrix A (meaning fixing the direction of hyperplanes delimiting the polytope) and then by
choosing the vector b, of dimension k, as the (coordinate-wise) solution of k optimisation problems:
b = max,cp(7) Ax.

Bayesian optimisation is used to solve these problems. In practice, the function x(7', 6) is sampled
at few values 61, ..., 0y of the parameters, and then a statistical emulation of the function is obtained
by means of Gaussian Process regression. Then an upper quantile of the so-obtained Gaussian Pro-
cess is optimised, getting a candidate maximum at a certain 6*. Next, the true function x(7°,0*) is
computed in 6*. These emulation and optimisation steps are carried out iteratively until no further
improvement is possible. This algorithm is provably convergent (in probability) to the true optimum
[Sri4-12].

The advantage of this method is that it requires only few computations of the function x(t, ),
a particularly convenient feature when such a function is expensive to compute, like the average or
another statistic indicator of a stochastic process, obtained statistically from a number of simulation
runs.

3.3 Representing Heterogeneous Systems with an Unknown Heterogeneity

The previous sections assume that a model of the system has a unique parameter that is unknown
and that may vary in time. Yet many systems are composed of many entities that are structurally
similar, yet behave differently. This can be represented by a mathematical model for which the
equations describing the behaviour of all entities have the same shape but different parameters. In
[TT15], we consider models defined as nonlinear ordinary differential equations (ODEs) and develop
an approximate reduction of such models.

This method combines ideas from the theories of differential inequalities [RMCO09] and lumpability
of ODEs (for example [OM98]) to provide a method that can give bounds on the solution of a het-
erogeneous model by means of an ODE system which preserves the structure but is characterised by
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parameters that represent the extreme values found in the original model. As in Section we use
a differential hull to provide a lower and upper bound for every state of every distinct entity in the
original system.

We then show that this differential hull can be automatically reduced, by employing model-order
reduction techniques. We develop a generalisation of [TT12], called uniform lumpability, to partition
the state space such that variables in the same partition block have equal solutions if they have equal
initial conditions. This method is complementary to exact lumpability, which transforms of the original
state space through a linear mapping [Tom+97]. In [TT15|, we illustrate and compare these methods
with two cases studies: a multiclass model of epidemic spread and a multiclass queuing network.

The differential hull approximation provides guarantees on upper and lower bounds on the be-
haviour of a heterogeneous system and are fast to compute. Hence, in practice they can be readily
used in parameter design, to find values of parameters that provide some required dynamical be-
haviour. As shown in [BG15} |TT15], these bounds are tight when the set of possible parameter values
is small. However, when the set of parameter values is large, they are sometimes too loose to be ex-
ploitable. In such cases, the development of approximation techniques such as the one of Section
might prove to be useful.

4 Discussion

Summary. In this deliverable we report on the progress made on Task 1.1 since the first reporting
period. We address two main questions that are important when modelling CAS. The first one is what
types of models to use to describe a system that exhibits multiple scales. The second is how to deal
with models for which some parameters are not known or are unpredictably varying in time.

We prove two different results related to multi-scale systems. When there are multiple organisa-
tional scales, we showed that it is reasonable to construct a model as a hybrid system, where part of
the system is described by a fluid approximation while the rest is kept discrete and stochastic. We have
shown convergence results in a general setting, including both instantaneous and guarded transitions.
In addition, we investigated the use of hybrid conditional moment techniques in combination with
models obtained from the stochastic process algebra PEPA. When multiple time scale are present, we
provided conditions guaranteeing the correctness for the combined use of mean field and time-scale
reduction techniques. Exploiting machine learning techniques, we also defined a novel fast simulation
algorithm for stochastic systems with multiple time-scales.

Our approach to deal with the uncertainty inherent in CAS models is to consider some model
parameters as fixed but unknown or time-varying. The complexity of the obtained model depends
on how we allow these parameter to vary. We formulate mean-field convergence results, both for the
transient and the steady state, and develop numerical techniques to compute the reachable states.
We present in particular a method based on statistical evaluation for the uncertain case, and two
methods, one based on differential hulls and one based on Pontraygin optimal control principle for the
imprecise case. These methods are related to parameter estimation and prediction using qualitative
observations of system behaviour, encoded as linear-time temporal logic properties.

Future work. At this stage of the project, we have developed solid theoretical foundations for scal-
able analysis of CAS using mean-field based techniques and proposed several algorithmic approaches
for the analysis, which exploit our novel approximation results. The most important step now is to
bring these methods to a practical stage, mostly in two directions:

e Connect the Carma language with the plethora of mean-field analysis methods, by developing
appropriate primitives and semantics and by investigating ways to detect/ choose the best mean
field approximation for a given system. This is discussed more in internal report 1.1.
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Provide efficient implementations of the algorithms for the project toolchain. In particular,
we will provide implementations of a simulator for the hybrid mean field semantics and of the
algorithms to study uncertainty and imprecision, possibly for models represented as Markov Pop-
ulation Processes, and link them to the Carma language by the appropriate semantic constructs
that are being developed in Task 1.3.

In addition, we also need to extensively test our methods on the project case studies, to better
understand the gains in using them and the margins of their applicability. In this direction, an
important benchmark will be the prediction of availability in bike-sharing systems.

Connection with other work packages. We discuss now connections with other work packages
and deliverables, also in terms of future work.

WP1

WP2

WP3

WP4

The discussion of Section 2 on multi-scale systems is a natural follow-up of Deliverable 1.1. In
particular, here we present a finalised framework about hybrid mean field limits, particularly
in the presence of guards and instantaneous transitions. We also discuss novel work with re-
spect to multiple time-scales, particularly the relationship between mean field and time-scale
reduction techniques. Furthermore, the outcomes of WP1 are collected both in this document
and Deliverable 1.3, which focuses on adaptive policies. Deliverable 1.3 also contains results on
heterogeneous and uncertain systems |[GVHI15| but in the context of the study of a particular
adaptive policy.

Many techniques for the analysis of space developed in WP2 can be naturally combined with
the framework for imprecision considered here. In particular, discrete representations of space
can be dealt with in the classical mean-field framework, hence both the hybrid mean field and
the mean field under imprecision can be applied to them. The way of dealing with uncertainty
presented in this report, in particular, can be appealing to deal with spatial moment closures
techniques (particularly spatial averages and higher order moments and pair approximation)
in the presence of uncertainty in parameters and of spatial heterogeneity. We will pursue this
direction, also from the point of view of tool integration. Theoretically, it would be interesting to
investigate how uncertainty and imprecision can be included in spatial mean field limits resulting
in partial differential equation limits.

The algorithmic techniques presented in this report, and in particular the Pontraygin principle,
may be used as an alternative analysis approach in the framework of ODE aggregation under
parameter variability, which results in a differential inclusion approximation of the original ODE
system. This is a clear link with Task 3.2 in WP3. Furthermore, the algorithmic approach to
deal with imprecision and uncertainty based on the Pontraygin principle can be lifted to compute
the quantitative satisfaction score of spatio-temporal logic formulae, evaluated on the mean field
limits.

An important aspect of the project is to lift the scalable analysis techniques developed in this
work package to CARMA. In this respect, there are two lines of work. One direction consists
of developing a hybrid semantics of CARMA models, approximating part of the system as
continuous and keeping the rest discrete. In this respect, the environment in CARMA is a
natural candidate to be modelled as a discrete component of the system, provided it changes at
a speed independent of the total population. More generally, we need to develop appropriate
static analysis routines to identify those system components to be kept discrete, for instance
exploiting algorithms to detect conservation laws. Furthermore, in order to link CARMA with
the imprecise mean field semantics, we need suitable language constructs to specify uncertainty
in parameters and imprecision at the environment level. This is discussed in internal report 1.1.
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WP5 In [Gas+15], we have used parameter estimation of an uncertain system for prediction of bike-
sharing systems. This parameter estimation should be integrated in a tool-chain that would allow
an automatic answer for queries about the quantitative quality of some predictors. Furthermore,
as discussed above, by linking the hybrid and uncertain semantics with CARMA,, we will integrate
in the project toolchain the algorithms to simulate and analyse the class of mean field models
considered in this report.
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