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Executive Summary

This deliverable reports on the work on Task 1.2. Task 1.2 started in month 13 of the project
and will run for three years. Its goal is to develop centralised and distributed control algorithms that
lead to an efficient use of resources. In this deliverable, we present generic methods that are widely
applicable for a large variety of CAS. We also present some specific applications to smart-grid and
electricity markets.

• We first present adaptivity in terms of solving an optimisation problem by using a decentralised
algorithm. We develop a general framework based on the use of mean-field game theory and
Lagrangian decomposition. We show how, given a centralised optimisation problem, we can
define a mean-field game whose equilibrium is an optimal allocation. We develop a distributed
algorithm that is proven to converge to this equilibrium and therefore to a globally optimal
allocation of resources. This is discussed in Section 2 and collects the results of [GLBT14;
DGG15; CGM14; GM15].

• The previous approach is top-down: starting from an optimisation problem, we derive a dis-
tributed algorithm that solves it. This approach is well-suited to systems where a single organ-
isational entity controls a whole system (for instance in distribution networks) and can modify
the behaviour of each agent. In Section 3, we adopt a bottom-up approach and study how
adaptivity can be obtained by using market mechanisms. We study two directions of how to
modify these markets to incorporate more renewable energy: to incentivize the creation of coali-
tions of micro-producers that exchange energy locally [ST15] and to make people accountable
for short-term variability [Bon+15].

• Finally, in Section 4, we present two new methods based on moment closure to study how
reasonable control policies can improve or deteriorate the performance of a CAS. We obtain
approximate models for two specific features: having many heterogeneous objects [GVH15] and
a space-constrained load balancing policy [Gas15]. These works show that some policies that
were conjectured optimal in practice deteriorate the overall performance.
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1 Introduction

Collective adaptive systems (CASs) are composed of many autonomous entities that interact and
cooperate to reach certain objectives. Typical objectives are the stability of the system, to optimise
the efficiency while performing a certain task or to provide a service to users. In this report, we focus
on the design and the evaluation of distributed algorithms that allow CAS to adapt to their external
environment. We formulate the capacity of a system to adapt in terms of a stochastic optimisation
problem. In this context, an adaptive system is a system that has the ability to change its dynamics
in order to maximise a given objective function, by learning its impact on the environment. We focus
on the following aspects:

• Given a centralised objective, how to automatically build and deploy local control algorithms
to reach this objective. Our idea is that this can be achieved by sending coordination signals
to small task-oriented entities. This idea has been used to schedule the consumption of some
electric appliances, such as fridges or electrical vehicles.

• It is often hard for local entities to measure their influence on the global system. In order to take
good decisions, local entities have to learn their environment in order to decide which decision
to take. This leads to two problems: how to learn when measurements are noisy, and how to
use this knowledge to take a decision.

• Real-time prices and market mechanisms are one way to design decentralised control algorithms.
In such systems, the agents fix the prices at which they exchange goods and each agent tries
to maximise a local utility that depends on the price at which it exchanges goods with the
others. These mechanisms are inherently distributed and often simple to implement but they do
not always lead to an efficient allocation of resources. Characterising their emergent behaviour
allows one to design efficient market mechanisms.

In this deliverable, we model all of these problems as stochastic optimisation problems. The system
is composed of a large number of possibly heterogeneous entities that can take decisions locally. Our
goal is to develop distributed mechanisms such that the individual actions of each agent maximises
a common objective. We achieve this by employing tools from stochastic approximation to develop
mean-field methods applicable to stochastic optimal control.

Mean-field methods in performance evaluation have been originally developed to study adaptive
strategies of large systems, such as wireless access protocols or load balancing techniques, e.g., [BB08;
Bor+13]. These methods are mostly descriptive. Our first contribution, described in Section 2, is to
show how to use mean-field game theory to solve centralised optimisation problems. This technique
is generic and allows one to transform a complex stochastic optimisation problem into local problems
by using a Lagrangian decomposition of the problem. The Lagrangian multipliers of these problems
can be viewed as virtual prices on which agents agree. Following these ideas, we study electricity
markets in Section 3 and propose new mechanisms in order to incorporate the multi-scale features of
renewable energy – which are the fact that (1) they change at a fast-time scales and (2) produce locally.
Finally, in Section 4, we present two examples of distributed control algorithms that are designed to
improve the performance of a system and that exhibit properties for which we had to develop specific
approximation techniques: the presence of many heterogeneous objects and the presence of spatially
constrained interactions.

2 Distributed Optimisation: Mean-Field Games and Learning Tools

In this section, we are interested in the control and optimisation of distributed systems such as smart
grids. We first introduce mean-field games as a general framework to describe systems composed of
a large number of rational agents. We then present how Lagrangian relaxation can be employed to
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transform a centralised optimisation problem into a mean-field game and we present an algorithm to
solve these problems. We present some application examples of the previous techniques. Finally, we
describe online learning algorithms for stochastic optimisation problems.

2.1 Mean-Field Games: General Framework

We consider a population with N objects that evolve in continuous time. Each object is a player of
the game. It has a finite state space and can take actions to influence the evolution of its state. We
denote by xi(t) the state of object i at time t and (xi(t))t is the trajectory of object i. We also say
that x(t) = (x1(t), . . . , xN (t)) is the state of the system at time t. To each object is associated an
instantaneous cost function Ci(xi(t),x−i(t)) that depends on its own state xi(t) and also on the state
of the rest of the objects x−i(t). The total cost for an object i is the integral of this instantaneous
cost over time, i.e.,

∫
tCi(xi(t),x−i(t))dt. We assume that objects are selfish and rational: given the

strategy of the others, an object chooses a strategy that minimises its cost.
In this context, a crucial notion is the Nash equilibrium. A set of strategies x is said to be a Nash

equilibrium if no object benefits from unilateral deviation [Nas51]. The concept of Nash equilibrium
is natural when considering multiple competing players. As such, there is a large literature concerning
the existence, uniqueness, convergence and stability of Nash equilibria, see for example the books
[Nis+07; Mye13; Wei97]. Nevertheless, it is shown in [DGP09] that computing a Nash equilibrium is
PPAD-complete1, which indicates that it does not seem to be tractable when the number of objects
is large. This suggests that for models with a very large number of objects, such as CAS, the notion
of Nash equilibrium might not be appropriate.

As an alternative, the notion of mean-field games has been introduced by Lasry and Lions in
[LL06a; LL06b; LL07]. Mean-field games provide a mathematical model to study the behaviour of
a very large number of rational agents interacting. Letting the number of agents go to infinity, we
obtain a system with continuous objects, which yields a simplification of the games and the equilibria
computations.

The key assumption under mean-field games is to assume that (1) objects are exchangeable — i.e.,
the identity of an object is not important, only its state is – and (2) there are many small objects – i.e.,
alone, the action of a single object does not influence the system dynamics. Under this assumption
the cost of the object i is a function

∫ T
0 C(xi(t),M(t)) dt, where M(t) is the empirical distribution

of objects at time t. Assumptions (1) and (2) imply that the choices of an object i do not affect
the distribution of the mass M(t) (because the number of objects is large). The object i chooses its
trajectory (xi(t))t so as to minimise its cost. A mean-field equilibrium is thus defined as a trajectory
of the distribution of objects (M(t))t such that M(t) minimises

∫
tC(x(t),M(t)) dt over all possible

trajectories x(t). Interestingly, we observe that the calculation of a mean-field equilibrium is reduced
to a single fixed-point problem, which is much simpler to analyse than the N-object equilibrium.

Mean-field games are considered as a good approximation to analyse models where the number
of agents is large. Indeed, Lasry and Lions in [LL06a; LL06b; LL07] show that Nash equilibria
converge to a mean-field equilibrium. Furthermore, they also prove that there exists a unique mean-
field equilibrium, if the function

∫
tC(x(t),M(t)) dt is monotone in M(t). In the following section, we

present how to solve centralised stochastic optimisation problem by using mean-field games.

2.2 Solving Stochastic Optimisation Problems by using Lagrangian Relaxation

We consider a stochastic optimisation problem in a system of objects that evolve in continuous time.
The instantaneous cost is a function of the empirical measure of the objects, M(t), and the decision
rule at time t, d(t). We denote by G(M(t), d(t)) the instantaneous cost of the system. In a centralised
version of this control problem, a controller (e.g., the controller of the whole electricity network)

1PPAD stands for “polynomial parity arguments on directed graphs”. It is a complexity class that is a subclass of
NP and is believed to be strictly greater than P.
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establishes the actions that all the objects must take in order to minimise the cost in the system
during a given time interval. When the number of possible values for M(t) is small, this centralised
control problem can be solved by dynamic programming [Put14]. However, this problem becomes
intractable as soon as the number of objects grows.

The difficulty of this problem comes from the fact that the state space grows exponentially with
the number of objects: if there are N objects that each have S possible states, the number of states
is SN (which is roughly 1015 for N = 30 objects and S = 3 states). A way to decompose the problem
consists of decoupling all objects and assigning prices for each possible action that an object might
take. Each object can then selfishly solve a small stochastic optimal control problem of dimension S.
If the prices are properly chosen, the selfish responses of the objects (i.e., the mean-field equilibrium)
lead to decisions that minimise the selfish utility function G.

The construction of this mean-field game can be automated. The main difficulty is in deciding
the prices. This can be done by using a Lagrangian decomposition of the problem, by doubling the
variable M(t) by a “free” variable π and adding the constraints π(t) = M(t). Here, π(t) represents
the local state of an object and M(t) is a variable whose only condition is to be equal to π(t). Given
the multipliers λ, the Lagrangian of the system L0(π(t),M(t), λ(t)) is easier to solve than the original
problem for the following reasons. First, the minimisation over M(t) can be solved separately for
each t (there are no constraints that couple M(t) and M(t + dt)). Second, the minimisation on π
corresponds to solving a Markov decision process of small dimension S. We know that if the multipliers
λ are such that the selfish response π is equal to M , then they form a solution of the centralised control
problem. Computing these multipliers can be solved by an iterative mechanism, for example by using
the alternating direction method of multipliers (ADMM) [Boy+11]. This method works iteratively
and is shown to converge whenever the function G is convex, the stochastic dynamics define a convex
set and the (unaugmented) Lagrangian has a saddle point. This methodology is detailed in [GLBT14,
Section 5] on an example taken from an electrical network.

2.3 Some Applications

In the previous sections, we have presented mean-field games as a general framework to analyse
decentralised control of systems with a large number of objects. We have also explained how a
Lagrangian relaxation can be used to solve a centralised control problem in a decentralised manner.
We now expose two application examples.

2.3.1 Impact of Demand-Response on the Efficiency and Prices in Real-Time Electricity
Markets

A first example is given in [GLBT14], where we study decentralised control of a population of flexible
appliances in an electricity market. The system is composed of many objects (such as fridges or boilers)
whose consumption can be anticipated or delayed. We model an electricity market as a mean-field
game and show that, when users are price-takers, the strategy that selfish users follow coincide with a
policy that maximises the social welfare, i.e., that maximises the sum of the individual benefits. This
means that the market is efficient. We then show how to compute numerically the equilibrium price
by using the ADMM and the method described in Section 2.2. This numerical method extends our
previous results presented in [Gas+13].

This paper is an illustration of the algorithm presented in Section 2.2. This method allows us
to study numerically different scenarios that we parametrised by using historical wind generation
data from the UK. As expected, the social welfare increases with the amount of flexible consump-
tion. This is because our method solves the global optimisation problem. Nevertheless, we observe
two counter-intuitive phenomena. First, when some players lack information, a larger quantity of
flexible consumption can be detrimental to the whole system. Second, if a market based directly on
the above Lagrangian decomposition leads to an efficient allocation of resources, it does not recom-
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pense the players in a fair manner. In the long term, this could discourage the installation of more
flexible appliances. This suggests that the pricing mechanisms directly derived from this Lagrangian
decomposition should probably be used as virtual pricing mechanisms: the virtual prices to compute
a decentralised optimal control algorithm and a different mechanism should be deployed to encourage
players to participate in this game (see for example Section 3.1).

2.3.2 A Mean-Field Game with Interactions for Epidemic Models

A second example is given in [DGG15], where we present a mean-field game where the objects follow
an epidemic behaviour. We consider that the strategy of objects is how to vaccinate, with a cost
associated with vaccination and with each infected object. The strategy of the individual object does
not alter the dynamics of the population.

The objective of the individual object is to minimise its expected cost. We model the behaviour of
the individual object as a continuous time Markov decision process. We show that there is a unique
mean-field equilibrium and it is of threshold type, i.e., it consists of vaccinating at maximal rate from
the beginning until a certain threshold and then not to vaccinate. We also consider a centralised
problem, where a vaccination policy can be chosen so as to minimise the total cost in the system. We
prove that the solution of the centralised problem, i.e., the global optimum, is also of threshold type.

We show that the thresholds at which the vaccination rate of the global optimum and the equi-
librium change is characterised uniquely by the cost of vaccination. We build a pricing mechanism
by which we force the equilibrium to coincide with the global optimum. According to our numerical
experiments, the vaccination price charged to the individual objects should be always less than the
actual vaccination price in order to force the individual to maximise social welfare.

2.4 Distributed Learning Algorithms for Semidefinite Programming

The approach presented in the previous sections assumes that the objects or the controller know,
at least partially, the possible impact of the actions on the objective function. This is an offline
optimisation setting and an agent can compute or estimate locally a best response to the actions of
the others. In [CGM14; GM15], we consider a different approach and study an online approach. In
an online approach, the agent does not have access to the form of the objective function and seeks to
optimise its objective based on indirect (and possibly noisy) performance measurements.

Motivated by an application to wireless networks, we propose an online algorithm for stochastic
multi-agent semidefinite optimisation problems. This algorithm is fully distributed and requires mini-
mal (and possibly imperfect) gradient information and does not require any coordination between the
optimising agents. This algorithm is obtained as a variable step-size stochastic approximation [Ben99]
of a continuous-time matrix exponential learning scheme.

We establish the convergence of the algorithm. For our applications to wireless mobile systems,
this implies the convergence of the network to a stable, optimum state. When applied to throughput
maximisation in wireless multiple-input and multiple-output (MIMO) systems, the proposed algorithm
retains its convergence properties under a wide array of mobility impediments such as user update
asynchronicities, random delays and/or ergodically changing channels. Our theoretical analysis is
complemented by extensive numerical simulations which illustrate the robustness and scalability of
the proposed method in realistic network conditions. They also show that our method outperforms
traditional water-filling techniques.

3 Markets Efficiency in Smart-Grids

While the previous sections were more theoretical, this section is focused only on applications to
electrical grids. The current electrical grid is organised in a top-down approach. The systems are
large and interconnected, e.g., a single synchronous network for the whole of continental Europe.
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The stability of these systems is guaranteed by a constant balance between electricity generation and
consumption. This balance is maintained by a mixture of electrical markets and ancillary services2.
Electrical markets operate at national levels and use forecasts to schedule the quantity of energy that
will be generated by each power plant in advance. Deviations from forecasts are corrected in real-time
by using ancillary services (mainly primary, secondary and tertiary reserve).

The increasing penetration of renewable energy sources in existing power systems leads to a number
of changes in electricity market mechanisms. The wind and solar generators constitute local sources
of electricity that are hard to predict, highly volatile and work at local scale. Their production can
change unexpectedly at a much faster time-scale that consumption or conventional generation. There
are currently no mechanisms to support the additional costs induced by power fluctuations. These
costs are socialised and eventually charged to electricity customers. In this section, we present two
pieces of work that aim at integrating more renewable energy sources in the markets. We first show
how to use a coalition game approach to encourage consumers to exchange their energy locally. We
then propose a market mechanism on how to make producers accountable for the costs induced by
short-term power-variability. This section is based on [ST15; Bon+15].

3.1 Coalitions in Smart Grids

In [ST15], we investigate the problem of power trading coordination among “micro-grids” (MGs)
(e.g., solar panels, wind turbines, plugged in hybrid electric vehicles, etc.) in smart power grids.
With the purpose of minimising the amount of dissipated power during generation and transfer, we
introduce an algorithm based on dynamic learning and coalitional game theory which allows the MGs
to autonomously cooperate and self-organise into a set of coalitions. Hence, whenever some MGs
have an excess of power while others have a need for power, it might be beneficial for these MGs to
exchange energy with one another instead of requesting it from the main grid. The advantage of such
a local exchange is twofold: 1) the energy exchange between nearby MGs can significantly reduce the
amount of power that is wasted during the transmission over the distribution lines and 2) performing
a local exchange of energy contributes further to the autonomy of the MG system while reducing the
demand and reliance on the main electric grid. Thus, it is of interest to devise a scheme that enables
such a local energy trade between MG elements that are in need of energy, i.e., “demanders”, and
MGs that have an excess of energy to transfer, i.e., “suppliers”.

We formulate the problem using coalitional game theory in which MGs form a set of not necessarily
disjoint and possibly singleton coalitions. The coordination among MGs determines the amount of
power to transfer over each transmission line. We solve two problems, namely, how to motivate the
MGs to form coalitions, and how to appropriately distribute the extra profits (e.g., payoff) produced
through forming the coalitions. We achieve this by computing the Shapley value, which is the weight
of the contribution of the MGs to their coalition. Figure 1 shows an example where two cooperative
coalitions and one non-cooperative singleton coalition are formed. For instance, MG1 can decide to
transfer 10% of its (surplus) quantity to MG2 and 30% to MG3 and the rest to the grid. MG4 can
decide to transfer 50% of its quantity to MG3 and the rest to the grid. The rest of deficit quantities
of MG3 and MG4 will be provided by the grid. MG5 will be completely served by the grid.

For achieving the best power distribution over transmission lines, we propose two dynamic learning
algorithms: 1) coalition formation dynamic learning, and 2) power loss minimisation dynamic learning.
Coalition formation dynamic learning achieves a coalition formation structure and then the comple-
mentary power loss minimisation dynamic learning leads the MGs to the maximum performance in
terms of power saving. We show the stability (the convergence to a fixed-point) of both dynamic
processes using the Kakutani fixed point theorem. As we show in [ST15], our approach enables MGs
to come to a power trading coordination among themselves such that dissipated power in the proposed
cooperative smart grid is only 10% of that in traditional power distribution networks.

2The ancillary services are services that maintain grid stability and security, such as frequency regulation. They can
be provided by specific generator that can be activated quickly.
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Fig. 1. A sample of formed coalitions for cooperative power distribution.

function of each coalition as a inverse function of the total power dissipated over transmission lines in the coalition.
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For achieving the best power distribution over transmission lines, we propose two dynamic learning algorithms:

1) coalition formation dynamic learning, and 2) power loss minimization dynamic learning. The dynamic learning

process 1) is nested in 2) one. In other words, the dynamic learning process 2) iteratively executes learning process 1)
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to a fixed-point) of both dynamic processes using the Kakutani fixed point theorem. As our evaluation shows, our

approach enables MGs to come to a power trading coordination among themselves that dissipated power in the

proposed cooperative smart grid is only 10% of that in traditional power distribution networks.
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Figure 1: A sample of formed coalitions for cooperative power distribution.

3.2 Integration of Fast Time-Scale Variability in Electricity Markets

Wholesale electricity markets were proposed with the aim of making power system operation more
economic and efficient. One of the key concepts is that of balance responsibility, for which both
power suppliers and consumers are deemed accountable for deviations between their scheduled and
actual production (resp. consumption). Renewable energy generation, with its limited predictability,
is increasingly asked to take full part in such mechanisms and hence to be financially responsible for
the energy regulation needs it induces. Current energy markets implicitly assume that an actor that
plans to produce a certain quantity of energy will deliver this energy at a constant power. Hence,
the deviations from plan are only penalised as a function of the energy mismatch of this actor. In
contrast, when it comes to power-related regulation services, the costs are socialised and supported
by the demand side (see for instance the ENTSO-E overview in [EE14]). However, a generator that
produces power in a variable manner induces a cost, by creating the need to use ancillary services. In
future power systems where the need for increased power-related services may substantially originate
from the production side, power suppliers should be made accountable in a way similar to the case
of energy-related regulation. Such mechanisms would also serve as an incentive for renewable energy
generators to better self-regulate their own power fluctuations (for instance, using storage, coordination
with demand-response, virtual power plant concepts, etc.).

In [Bon+15], we claim that the total cost of secondary reserves should also reflect the short-term
power variability. Specifically, our objective is to find a way to generalise current market mechanisms
to incentivize generators to deliver less fluctuating power profiles, while still respecting their energy-
related commitments. Similar considerations could be made on the consumption side, there looking
at fluctuations in power consumption. We emphasise here renewable energy generation since, if not
coupled with any system allowing for smoothing fluctuations, e.g., using storage or demand-response
in a virtual power plant setup, it is naturally expected that these renewable energy generation sources
will deliver highly fluctuating power production.

In the above mentioned paper, we assess today’s costs of power-related regulation services, based
on the test cases of Germany and Western Denmark. We introduce a new market framework, com-
plementing market participants revenues with a component reflecting the power regulation costs they
induced, defined in various ways. We provide insights that show that our attribution mechanism is
close to optimal and illustrate how revenue is shared among different market participants on real-data.
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4 Moment Closure for the Analysis of Adaptive Strategies

Mean-field methods have been used mostly to study the performance of systems that are composed of a
large number of identical and anonymous individuals that interact randomly with one another. In this
last section, we present two papers that study two application examples that exhibit two properties
that are important in CAS: heterogeneity and spatially constrained dynamics, for which we had to
develop specific approximation techniques

In the first example, based on [GVH15], the difficulty arises from the non-homogeneity of the
objects. In the second example, based on [FG14; Gas15], the difficulty arises from the local-interactions
between objects.

4.1 Transient Analysis of Heterogeneous Systems: Application to Cache Manage-
ment

Caches are used to speed up the access to a data source by adding a small but fast memory between
the data source and the application or users that want to access objects from this source. Caches
are omnipresent in today’s computer architectures (in processors but also in content distribution
networks). In [GVH15], we study the performance of a family of cache replacement algorithms. The
cache is virtually decomposed into lists. When a requested item is not in the cache, it replaces an item
of the first list (picked at random). When a requested item is in the cache, it moves forward one list
and is exchanged with one item of the next list (picked at random). The classical policies RANDOM
(one item is replaced at random) or CLIMB (at each request, an item move forward one place) can
be obtained as special cases.

We study the cache content distribution and miss probability under the independent reference
model (IRM model). This model assumes that there is a fixed population of objects and that the
probability that an item is requested does not depend on which items were previously requested. Our
focus in this paper is when objects are heterogeneous. Hence, the state-space of such a system is large
(of the order of

(
N
m

)
for a cache of size m and N possible objects). Despite this large state-space, we

exhibit an algorithm to compute the steady-state probability for an item not to be in the cache.
The main originality of this work is an approximation method to study the transient behaviour of

the system. To do so, we introduce a mean-field model that consists of a system of ordinary differential
equations. We prove in [GVH15, Theorem 6] that this model becomes exact as the cache size and
number of items tend to infinity. This result is illustrated in Figure 2, where we compare a simulation
of the stochastic system with its ODE counterpart. This approximation allows us to provide guidelines
on how to select a replacement algorithm, within the family considered, that achieves a good trade-off
between the cache reactivity and its steady-state hit probability. We verify that these guidelines lead
to a policy that outperforms classical policies such as least recently used (LRU) by using traces of
real data of Youtube videos. This work also allowed us to disprove a natural conjecture from the 70’s
which was that increasing the number of lists always improves the performance of a cache [GVH15,
Section 4.4].

Most of the convergence results that concern mean-field models assume that there is an homoge-
neous population of objects [BB08], or at least that the objects can be clustered in a finite number of
clusters that all contain many similar objects. One of the major contributions of our paper [GVH15]
is to extend these results to a fully heterogeneous mean-field model. Similar ideas can be used to
justify the approximation that we use [Gas+15] to make predictions of available bikes in bike-sharing
systems.

4.2 Incentives in Bike-Sharing Systems and Pair-Approximation

In [FG14], we introduce a model of bike-sharing systems based on a queuing network. One contribution
of this paper was to propose and study an incentive mechanism for bike sharing, in which, when a user
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Figure 2: Comparison of the transient behaviour of the ODE (dashed-line) and a stochastic simulation.
In this simulation, the popularity of objects are reshuffled every 2000 request items. We observe that the
ODEs predict very accurately the sum of the popularities of objects in the cache.

wants to perform a trip, he chooses two destinations at random and goes to the most empty one. This
load-balancing strategy is known as the power of two-choice. When it is used to allocate jobs to server
farms, it is known to dramatically improve the performance [VDK96; Mit96]. One of the contributions
of [FG14] was to show that this is also the case for bike-sharing systems: when a user goes to the
most empty station between two destinations chosen at random, the number of problematic stations
decreases by an exponential factor. Such a system could be easily implemented in practice by offering
a reward to a user that helps the system.

The theoretical analysis of [FG14] suffers from a limitation, which is that it assumes that the
choices are done at random among all stations. This neglects a key aspect of the system: one might
think of encouraging people to return a bike in the least-loaded of two neighbouring rental station but
not to a station too far from their true destination.

In [Gas15], we study the power of two-choice in a setting where the two servers are not picked
independently at random but are connected by an edge in an underlying graph. An exact analytic
solution seems out of reach. Hence, we use pair-approximation, a technique in wide-spread use in
biology [Oht+06]. We derive the equations and show that they describe accurately the steady-state
of the system. Our results show that, even in a graph of degree 2, choosing between two neighbouring
nodes improves dramatically the performance compared to a random allocation. This result has
recently been verified using real-traces of data in [Des15].

5 Discussion

Main achievements In this deliverable, we have presented mathematical methods that allow one
to study and enforce a CAS to be adaptive. We have shown how to deploy small distributed algorithms
to each object in order to reach a global objective. These tools have been developed by considering
mathematical models of CAS in terms of stochastic systems composed of many objects. What we call
an adaptive system is a system that has the ability to change its dynamics in order to maximise a
given objective function, by learning its impact on the environment.

One key contribution of this work is the development of a framework based on the use of mean-field
game theory and Lagrangian decomposition to transform a centralised optimisation problem into a
decentralised control algorithm. This algorithm can be proved to converge to a centralised optimum.
We have shown how to apply these results in the context of smart-grids by using virtual market
mechanisms. We have also studied real electrical markets and in particular, which modifications
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should be made to incorporate more renewable energy production. The markets try to model two
aspects of the renewable energy production: the locality of the production and its high volatility.
Our work shows how simple mechanisms can encourage people to build local coalitions and reduce
their short-term volatility. Finally, we have shown how to use moment closure techniques to study
the emergent behaviour of some adaptive systems that are heterogeneous or that have geographic
constraints. One of the interesting contributions of this work was to disprove some conjectures from
the 70’s and show that some natural adaptive strategies might in fact decrease the performance of a
system.

Future work We are currently expanding these results both by extending the theoretical results
and by working on their application.

• One of our ambitions is to develop a mean-field game theory to solve optimisation problems.
We aim at developing numerical methods that are widely applicable and at finding a minimal
set of assumptions that guarantee the applicability of these results. This theory should be
complemented by language design, in links with work packages 4 and 5.

• As we aim our theory to be applied, we are also investigating the application of these results to
electrical distribution networks. This work is done in a collaboration with Schneider Electric and
a co-supervised PhD student. The first application on which we focus is how to optimally curtail
solar energy production to guarantee voltage constraints in a distribution network, by using
robust distributed optimisation algorithms. Next, our goal is to investigate demand response
and a possible implementation using the Link smart-meter development in France.

• Last, we are currently developing new analytical methods to study adaptive strategies in het-
erogeneous and spatially-constrained systems. We first want to extend the work reported in
Section 4.1 to explore more complex strategies. The methodology developed in [TT15] and
reported in Deliverable 1.2 and Deliverable 3.2 could be useful to speed-up the numerical eval-
uation. We also want to incorporate a spatial component in our bike-sharing prediction tool
[Gas+15].

Relationship with other workpackages

WP1 Section 6 of Deliverable 1.1 contains some preliminary results about mean-field control, focusing
on the application to smart-grid. In the present deliverable, we present a more generic framework
application to CAS. Furthermore, the outcomes of WP1 are collected both in the current
document and in Deliverable 1.2, which focuses on imprecise systems. In Deliverable 1.2, we
show how to view heterogeneity as imprecision and how to use aggregation techniques to simplify
the analysis.

WP2 In this deliverable, we show how the use of pair-approximation is useful to study systems in
which two objects interact locally with their neighbours. WP2 also considers spatial modelling
in terms of spatially heterogeneous environments. A natural extension would be to study the
accuracy of pair-approximation in spatially heterogeneous environments, in particular in the case
of bike-sharing systems.

WP3 The quantitative satisfaction score of spatio-temporal logic formulae is a real valued number
which can be seen as a measure of robustness of the satisfaction of the property. As such, it
can provide a function to be optimised. In that case, the mean-field method that we presented
in this document can help producing decentralised control policies or parameters of policies
that robustly maximise the satisfaction probability of a formula. The lumpability methods
reported in Deliverable 3.2 would also be helpful for solving large mean field game problems, by
automatically reducing the number of dimensions.
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WP4 A mean-field language for optimisation – once the mean-field optimisation framework is sta-
bilised, we aim to develop language primitives in carma that provide a bridge with the op-
timisation routines and the control mechanisms considered in the deliverable. One possibility
would be to extend carma with constructs specifying the local goals of individual agents, with
a semantics that constructs an appropriate optimisation problem from the model description.

WP5 The link with WP5 concerns two aspects. First, we are currently applying our control algorithms
to the smart-grid case studies with a short-term goal of technology transfer. Second, we also want
to pursue the development of numerical methods to be integrated into the tool, in collaboration
with WP4.
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[BB08] M. Benäim and J.-L. Boudec. “A Class of Mean Field Interaction Models for Computer
and Communication Systems”. In: Performance Evaluation (2008).
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