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Abstract

We consider stochastic population processes in presence of uncertainty, originating from lack
of knowledge of parameters or by unpredictable effects of the environment. We set up a formal
framework for imprecise population processes, where some parameters are allowed to vary in time
within a given domain, but with no further constraint. We then consider the limit behaviour of these
systems for an infinite population size, proving it is given by a differential inclusion constructed from
the (imprecise) drift. We discuss also the steady state behaviour of such a mean field approximation.
Finally, we discuss different approaches to compute bounds of the so-obtained differential inclusions,
proposing an effective control-theoretic method based on Pontryagin principle for transient bounds.
In the paper, we discuss separately the simpler case of models with a more constrained form of
imprecision, in which lack of knowledge on parameter values allows us to assess that they belong
to a given interval, albeit being constant in time. Such uncertain population models are amenable
of simpler forms of analysis. The theoretical results are accompanied by an in-depth analysis of a
simple epidemic model.
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1 Introduction

The complexity of the world prevents us to describe all its aspects with full precision. Lack of
knowledge and limited computational and intellectual resources force any description of a complex
behaviour to be imprecise and uncertain to a certain degree. This is true also when we try to construct
mathematical models of complex systems, in domains as diverse as telecommunication, molecular
biology, epidemiology. Probabilistic models are one way of representing uncertainties but they depend
on parameters which values are never known precisely, and at most can be estimated from data with
a certain degree of imprecision. Furthermore, mathematical models of systems cannot provide an
explicit description of the environment, which always influences the behaviour in uncontrollable ways.

As a typical example, consider a model of epidemic spreading in a population, for instance a model
of disease spreading in humans [2] or of a malware spreading in a computer network [35]. The infection
rate is a typical parameter of such models which can hardly be known exactly, and is usually estimated
from available data about the initial outbreak of the epidemics [2]. However, statistical estimation can
never provide an exact value, as we have at disposal only a finite, and often incomplete, amount of data.
Moreover, the infection rate itself may depend on environmental factors, which can change arbitrarily
in time. For instance, in cholera spreading [30], the level of rainfall impacts on the diffusion of the
bacterium among nearby water reservoirs, leading to infection rates which can vary unpredictably in
time.

Another example is provided by bike sharing systems. The arrival rate of clients in a bike station
cannot be assumed fixed during the day, but it will depend on the hour. The precise form of such a
variation is unknown, as it will be influenced by several factors like the weather, the status of public
transportation, the presence of events in the city. Even if we restrict to a small time frame, like the
rush hour in the morning, so that we can assume a constant arrival rate, such a rate cannot be reliably
fixed to a precise value, but should rather be assumed to lie in an interval of possible values.

Hence, uncertainty reflects in at least two ways in models of complex systems:

1. Some parameters ϑ can depend on features of the environment external to the model. We may
not know the precise value of ϑ, because we cannot measure these features. Furthermore, if ϑ
depends on quantities like temperature, PH, atmospheric weather, light intensity, and so on, it
may be subject to variations during the time horizon T of interest, so that considering it as a
fixed parameter may be an incorrect assumption that can lead to incorrect results. One way to
capture such a variability, without committing to assumptions on the form of dependency of ϑ
on the external/ environmental factors, is just to fix a set Θ of possible values for ϑ and assume
that ϑ depends on time t and can take any value of Θ at any time instant, i.e. that ϑt ∈ Θ. We
call this the imprecise scenario.

2. In a simpler scenario, a parameter ϑ is assumed fixed, but its precise value not known precisely.
In this case, we just assume that ϑ ∈ Θ, where Θ is the possible set of values of ϑ, as above.
This will be referred to as the uncertain scenario.

We consider models of large populations of interacting agents, formalised in terms of Continuous
Time Markov Chains. Usually, these models are fully specified, meaning that all parameters have
a fixed and constant value. This is however striding with the intrinsic uncertainty of the world. In
this paper, we will overcome this limitation by introducing a novel class of population CTMC models,
which we call Imprecise Population Processes. In these models, we assume that some parameters can
vary in an unconstrained way within a certain range. This non-deterministic variation represents all
possible ways the external environment can influence the evolution of these parameters, and is a model
of the imprecise scenario described above.

We also distinguish a simpler case, in which parameters are assumed to be fixed, i.e. not influenced
by the environment. In this case, the class of population models so obtained is considerably simpler,
resulting in the so called Uncertain Continuous Time Markov Chains, see [11].
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When populations are large, as is often the case in epidemiology, biology, telecommunications,
a direct analysis of the stochastic model is unfeasible, even by simulations and statistics. A viable
alternative is to construct the so-called mean field approximation [10], which provides a deterministic
description of the expected behaviour to which stochastic trajectories converge in the limit of infinite
populations. The complexity of the analysis is exacerbated by the presence of imprecision or uncer-
tainty. The main contribution of this paper is to provide a characterisation of mean-field limits for
imprecise population processes (and a-fortiori for uncertain CTMCs) in terms of differential inclusions
(DI, [3, 23]), both for transient and steady-state behaviour (when this is meaningful) and investigate
the computational gains obtained in this way. With respect to classic mean field, the presence of
imprecision explodes the computational cost of analysis also for the mean-field limits, as we have to
deal with differential inclusions. In the paper, we also present a method to bound the solutions of DI
using control theoretic tools, namely the Pontraygin principle [36, Section 3].

The paper is organised as follows: Section 2 discusses Imprecise Markov Chains and the evolution
of their probability mass in terms of differential inclusions. Section 3 introduces imprecise population
models and proves their mean field behaviour. Section 4 discusses computational methods for the
analysis of the differential inclusion mean field limits. Section 5 works out in detail an example about
epidemic spreading. The final discussion is in Section 6.

Related work

Following the terminology of [4], the models developed in our paper combine two ways for represent-
ing uncertainties: a “stochastic uncertainty”, driven by a Markovian behaviour, and a “contingent
uncertainty”, given by possibly changing parameters. This approach is similarly to the notion on
stochastic differential inclusion studied in [4, 25], where the “stochastic uncertainty” is driven by a
Wiener process while the “contingent uncertainty” is given by a set-valued map. Our work also builds
on [34], that considers Markov chain with interval probabilities. The key contribution of our paper
with respect to [34] is to extend this notions to population process and to develop a rigorous mean-field
approximation of such systems.

Mean field approximation of population processes has a long history, starting from the works of
Kurtz [27, 26]. Mean field based analysis, for the transient and the steady state, have been applied in
performance modelling, systems biology, epidemiology [7]. For a gentle introduction, see [10]. Classic
mean field results require (Lipschitz) continuity of rate functions, but more general theorems can be
proved for piecewise smooth rates [9, 23] or even general discontinuous functions by using differential
inclusions [23].

The proof of most of our convergence results are based on the construction of a proper stochastic
approximation. They are similar to the ones of [23] and can be seen as corollaries of [33].

2 Imprecise Markov Chains

In this section we first discuss imprecise (continuous-time) Markov Chains in general. Population
processes are a subclass of this general model. We will introduce the imprecise model, and the subclass
of uncertain Continuous Time Markov Chains. We will then introduce briefly differential inclusions,
and show how Kolmogorov equations for the probability mass generalise to differential inclusions in
this setting. We also introduce the imprecise drift of an imprecise model, which will play a central
role in the construction of mean field limits.
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2.1 Imprecise and uncertain Markov chains

We consider a stochastic process X = (Xt)t≥0, adapted to a filtration1 F , that takes value in a state
space E ⊂ Rd. The dynamics of the process depends on a parameter (or a vector of parameters) ϑ.
We denote by Θ the set of possible parameter values of ϑ, and we consider a set of transitions kernel
on E, parametrized by ϑ ∈ Θ: for each ϑ ∈ Θ, Qϑ is a transition kernel, i.e. such that Qϑx,y ≥ 0 for

x 6= y ∈ E and
∑

y∈EQ
ϑ
xy = 0.

Definition 1. An imprecise continous time Markov chain is a stochastic process X together with a
Ft-adapted process θ such that for all t ≥ 0:

lim
h→0

1

h
P(Xt+h = y | Ft ∧Xt = x) =

{
Qθtxy if x 6= y

−
∑

y 6=xQ
θt
xy otherwise

The definition of an imprecise Markov chain makes no restriction on the set of processes that the
varying parameter θ can take. In some cases, it can be interesting to focus on subset of processes.
An example is if we assume that θt is deterministic and constant in time. In that case we obtain the
notion of uncertain Markov chain:

Definition 2. An uncertain continuous time Markov chain is a stochastic process X such that there
exists a constant parameter ϑ ∈ Θ such that for all t ≥ 0:

lim
h→0

1

h
P(Xt+h = y | Ft ∧Xt = x) =

{
Qϑxy if x 6= y

−
∑

y 6=xQ
ϑ
xy otherwise

The definitions of imprecise and uncertain CTMC correspond to two extreme cases: in the impre-
cise case, the parameter function θ can be any measurable function while in the uncertain case the
parameter function θ is deterministic and constant in time. It would be possible to consider cases
in between, for example by restricting the set of admissible process θ to be the set of functions that
only depends on the value X(t) – such process θ are called Markovian control policies in the Markov
decision processes community – or the set of time-dependent deterministic functions – which would
lead to time-inhomogeneous CTMC.

Remark. Imprecise CTMC are strongly related to (continuous-time) Markov Decision Processes
(MDPs) [5], the main difference being that in MDPs, the emphasize is on finding a policy that
maximizes some reward criteria. To to this, one usually assumes a finite or countable number of
actions that can be taken non-deterministically. In ICTMC, the variability of the decision variables is
usually not controllable and can be a generic random function adapted to the process. The parameter
space is in general uncountable and our objective is to characterize the set of possible behaviours.

Example. For illustrative purposes, we consider a simple example of a bike sharing system. We
describe the number of bikes present in a single station, so that the state of the CTMC is given by
Xt ∈ {0, . . . , N}, where N is the capacity of the station, i.e. the maximum number of bikes. We
assume that customers arrive at an unknown rate θa, belonging to the interval [θmina , θmaxa ]. Each
customer arrival brings the system from state k to k − 1 (for k > 0). Similarly, we can model the
return of a bike as a transition with rate θr, belonging to the interval [θminr , θmaxr ], and increasing the
number of available bikes from k to k+ 1, provided k < N . Different choices of how the two imprecise
parameters can vary give rise to different models. In the general case, we can assume that θa(t) and
θr(t) are generic functions of time, encoding complex but unknown dependencies of the environment
of customers requesting a bike and wishing to return it at the station. On the opposite spectrum,

1A filtration is a set of σ-algebra (Ft)t≥0 such that Fs ⊂ Ft ⊂ F for each t ≥ s ≥ 0. X is adapted to F means that
Xt is Ft measurable for every t.
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we could assume these values are unknown but constant in time, for example if we are considering
the dynamics of the station in a restricted time frame. The return rate θr(t) can also be taken as a
function of the number of free slots in the station, N − Xt, taken as an indicator of the amount of
bikes currently circulating in the system.

2.2 Differential inclusions

Differential inclusions (DI) are a generalization of differential equations, and provide the natural
mathematical tool to describe the transient evolution of probability mass of an imprecise CTMC.
Furthermore, as we will see in the next section, under a proper scaling, the behavior of imprecise
Markov chain is closely related to the one of a differential inclusion corresponding to Equation (3).
In this section, we provide a quick introduction to DI, recalling some classical definitions. See [3] for
further details.

Let F be a set-valued function on E ⊂ Rd that assigns to each x ∈ E a set of vector F (x) ⊂ Rd. A
solution to the differential inclusion ẋ ∈ F (x) that starts in x is a function x : [0,∞) → E such that
there exists a measurable function f satisfying for all t ≥ 0 f(t) ∈ F (x(t)) and

x(t) = x0 +

∫ t

0
f(s)ds.

For an initial condition x, we denote by SF,x (or Sx if there is no ambiguity) the set of solutions of
ẋ ∈ F (x) that start in x. Note that the set SF,x can be empty or be composed of multiple solutions,
depending on the function F . When E = Rd, a sufficient condition for the existence of at least one
solution is that (a) for all x ∈ Rd F (x) is non-empty, convex and bounded (i.e., supx∈X,y∈F (x) ‖y‖ <∞)
and (b) F is upper-semi-continuous (i.e., the graph of F , {(x, y), y ∈ F (x)}, is a closed set).

Asymptotic behavior as t goes to infinity. As the time grows, a solution x of a differential
inclusion can have a chaotic behavior and can oscillate around many points. For a given starting point
x, we define the limit set LF (x) as the closure of the set of points that are accumulation points of at
least one solution of the differential inclusion starting in x, i.e.,

LF (x) :=
⋃

x∈SF,x

⋂
t≥0

closure({x(s), s ≥ t})

As in [33], we call the Birkhoff center of the differential inclusion is the closure of the set of recurrent
points of the differential inclusion:

BF = closure({x ∈ E : x ∈ LF (x)}). (1)

Intuitively, the Birkhoff center contains all attractors, equilibria, limit cycles, and in general all points
that can be visited infinitely often by one solution of the differential inclusion. As such, it provides a
characterisation of the localisation in the phase space of the limit behaviour of the system. Note that,
in general, the sets LF (x) and BF are not convex nor necessarily connected, even when F (x) is single
valued and Lipschitz (for example the Birkhoff center of F (x) = {x(1− x)} is {0, 1}). Note that even
if the case of Lipschitz ordinary differential equation, the computation of the Birkhoff center of an
ODE is complicated and even its shape can depend strongly on the parameter of the function (see the
comparison between Figure 1 and Figure 2 of [7]).

2.3 Imprecise Kolmogorov Equations.

The time evolution of the probability mass of an imprecise Markov chain can be obtained by a gener-
alised version of Kolmogorov equations, stated in terms of differential inclusions. For a fixed realisation
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ϑt of the process θt, the evolution of the probability mass P (t | ϑt) is given by the standard (non-
autonomous) Kolmogorov (forward) equations Ṗ (t | ϑt) = Qϑt · P (t | ϑt). However, if we have no
knowledge on the process θt, we can only assume that the process at time t behaves like a Qϑ for some
ϑ, implying that the transient behaviour of the probability mass will be a solution of the differential
inclusion

Ṗ (t) ∈ Q · P (t), (2)

where Q =
⋃
ϑ∈ΘQ

ϑ. Equation (2) is linear, but the dimension of the differential inclusion equals
the size of the state space, which is unpractically large in most interesting scenarios, especially for
population models, see Section 3.

2.4 Generalised Drift

An important notion associated with an Imprecise Markov Chain is that of drift, which extends the
corresponding notion for CTMCs, and describes the average increment in a point of the state space,
as a function of the imprecise parameters.

Definition 3. When for all x ∈ E, ϑ ∈ Θ we have
∑

y∈E Q
ϑ
x,y ‖y − x‖ <∞, the sum in Equation (3)

is well defined. We call this sum the imprecise drift of the imprecise CTMC. It is a function f :
E ×Θ→ Rd, defined by

f(x, ϑ) =
∑
y∈E

Qϑx,y(y − x). (3)

3 Imprecise Population Processes

In this section we introduce the class of models of interest in this paper, namely imprecise population
processes. Population processes are a very common class of models, and when relaxing the precision
intrinsic in their definition, Imprecise population processes emerge naturally. After providing the
definition, we shift the focus to the behaviour of imprecise population processes in the limit of an
infinite population. We show that such a limit is described by a differential inclusion, which provides
also information about the stationary behaviour of the imprecise process, encoded in the Birkoff center.

3.1 Definition

Let N be a scaling parameter (typically, N is the population size of the considered model). We
consider a sequence of imprecise Markov processes indexed by N , denoted (XN )N on a sequence of
subset EN ⊂ E ⊂ Rd. The stochastic process XN is an imprecise process of kernel QN,θ.

Definition 4. An imprecise (respectively uncertain) population process is a sequence of imprecise
(respectively uncertain) Markov chains that satisfies the following assumptions:

(i) The chains are uniformizable: i.e., for all N : supx∈EN ,ϑ∈ΘQ
N,ϑ
xx <∞

(ii) The transitions become smaller as N grows, i.e., there exists ε > 0 such that

lim
N→∞

sup
x∈EN ,ϑ∈Θ

∑
y∈EN

QN,ϑxy ‖y − x‖
1+ε = 0

(iii) The drifts are well-defined and bounded:

lim sup
N→∞

sup
x∈EN ,ϑ∈Θ

∑
y∈EN

QN,ϑxy ‖y − x‖ <∞
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Transition classes. A direct definition of an imprecise population process by exhibiting its generator
is unfeasible. A simpler definition can be obtained by specifying transition classes, similarly to [10].
The idea is to specify the dynamics by a set of possible transitions or events, providing their rate, as
a function of state vector and of the imprecise parameters, and how they change the state vector of
the system. Specification can be done at the level of the density (normalised population process) or
on the integer-valued counting variables (non-normalised process). Usually, such specifications satisfy
the conditions in the previous definition. See below and Section 5 for examples.

Example. A simple example of a population model is provided by a simple modification of the single
station bike sharing system discussed in the previous section. In this case, we can assume the total
population N is given by the total amount of bike racks in the station, while the only model variable,
XB(t), encodes the number of bikes available at the station in terms of the fraction of occupied bike
racks. There are two transitions classes in the model: a customer arrival, taking one bike, and a biker
arrival, returning one bike. The former transition class has rate Nθa(t), if XB(t) > 0, and changes
the state of the system from XB to XB − 1/N . Similarly, bike arrivals happens at rate Nθr(t), if
XB(t) < 1, and move the system from XB to XB + 1/N . The dependency of the arrival rates on N
is needed to satisfy the conditions of the definition above, and intuitively describes the idea that θa
and θr model the relative traffic volume in terms of bike density, so that the absolute traffic level is
obtained by multiplication with the system size N .

3.2 Mean field limit (finite time-horizon)

Let fN (x, ϑ) =
∑

y∈EN Q
N,ϑ
xy (y − x) be the drift of the system N . We define the limit drift of the

system as the convex closure of the set of the accumulation points of fN (xN , ϑ) as N goes to infinity,
for all sequences xN that converge to x:

F (x) = lim
N→∞

⋃
ϑ∈Θ

{
fN (x, ϑ)

}
,

=

{
y ∈ Rd such that ∃φ(N), lim

N→∞
φ(N) =∞∧ lim

N→∞
fφ(N)(xφ(N), ϑφ(N)) = y

}
(4)

Theorem 1. Let (XN ) be an imprecise population process. Then, if XN (0) converges (in probability)
to a point x, then the stochastic process XN converges (in probability) to SF,x, the set of solutions of
the differential inclusion ẋ ∈ F (x) starting in x.

Proof. It can be shown that there exists a deacreasing function I(N) such that the discrete time
process XN (kI(N)) satisfies the definition of a GASP of [33]. Then, the proof follows from [33,
Theorem 3.1].

Remark. The construction of the imprecise drift generalises the definition given in [23], where the
focus was on discontinuous, but precise, rates. The proof of the theorem follows the ides of [6, 23]. In
fact, when Θ is restricted to a single value, we obtain again the result of [23].

In the case of an uncertain Markov chain, we define the drift by

Fϑ(x) = lim
N→∞

{
fN (x, ϑ)

}
(5)

Corollary 1. Let XN be an uncertain Markov population process, then if XN (0) converges (in prob-
ability) to a point x, then the stochastic process XN converges (in probability) to

⋃
ϑ Sϑ,x, where Sϑ,x

is the set of solutions of the differential inclusion ẋ ∈ Fϑ(x) starting in x.

An illustration of these results at work is postponed to Section 5.
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3.3 Mean field limit (stationary regime)

An uncertain Markov chain does not necessarily have a stationary behavior. In particular, an imprecise
Markov chain is not necessarily time-homogeneous (the parameter ϑt can depend on time) and is also
not necessarily a Markov chain (ϑt can depend on all the past of the stochastic process). Nevertheless,
it is possible to constraint the asymptotic regime of a uncertain Markov population process by using
the asymptotic reachable set of the differential inclusion, AF , defined by:

AF =
⋂
T>0

⋃
x,t≥T,x∈SF,x

{x(t)} (6)

Note that the the Birkhoff center BF is included in the set AF . The inclusion is in general strict.

Theorem 2. Let X be an imprecise population process, then there exists a sequence εN that converges
to 0 in probability and such that the distance between XN (t) and AF becomes stochastic lower than
εN as t goes to infinity. In other word:

lim
N→∞

lim
t→∞

d(XN (t), AF ) = 0 in probability.

When in addition of being an imprecise Markov chain, for all N , the process XN is a Markov chain
and has a stationary measure µN , we can say more.

The following results characterize the stationary behavior of the stationary measures as N grows.
It shows that the sequence of stationary measures µN concentrates on the Birkhoff center of the
differential inclusion. The Birkhoff center, defined in Section 2.2, is essentially the set of recurrent
points of the differential inclusion, i.e., the set of points such that there exists a trajectory that starts
at this point and comes back to this point in the future.

Theorem 3. Let X be an imprecise population process such that XN is a Markov chain that has a
stationary measure µN . Let µ be a limit point of µN (for the weak convergence). Then, the support of
µ is included in the Birkhoff center of F , defined in Equation (1): µ(BF ) = 1.

Proof. As X is a GASP, the proof follows from [33, Corollary 9].

Corollary 2. Let X be an uncertain population process such that XN is a Markov chain that has a
stationary measure µN . Let µ be a limit point of µN (for the weak convergence). Then, the support of
µ is included in the Birkhoff center of Fϑ, defined in Equation (1).

Remark. Theorem 3 only states that the support of µ is included in the Birkhoff center but provides
no intuition on the how the probability mass is spread on this set. This results can be refined by using
the notion of semi-invariant measure [33, Definition 3.3]. However, this notion is very complex and
computing a semi-invariant measure of a differential inclusion seems numerically intractable, as it
requires to compute a probability measure on all the possible trajectories of the differential inclusion.
Hence, it the present document, we limit our exposition to the notion of Birkhoff center, which, even
if less accurate, provides a simpler characterization that can be used numerically.

4 Numerical Methods and Algorithmic Issues

The results of previous section imply that, for large populations, we can study the mean field differ-
ential inclusion to get insights on the transient and on the steady state of the originating population
process. The analysis of this class of mean field models, however, is in general considerably more
challenging than Ordinary Differential Equations. In the differential inclusion case, in fact, we usually
are only able to compute bounds on the solution set of the equations. After discussing some existing
approaches, we present in more detail two fast methods, one based on differential hulls and the other
based on the control-theoretic Pontraygin principle.
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4.1 Related Work

Most recent numerical approaches dealing with imprecise deterministic processes have been developed
for computing reachable sets of hybrid systems, whose continuous dynamics can be specified by (non-
linear) differential equations or differential inclusions.

The proposed methods in literature can be roughly divided in two classes: exact over-approximation
methods and simulation-based methods [29].

The first class of methods manipulates directly sets of states, finitely represented, for instance, as
polytopes [19], ellipsoids [28], or zonotopes [24], or by relying on interval arithmetic [1] combined with
constraint solving [14, 32], exploiting satisfaction modulo solvers over reals [22, 18]. The dynamics of
the system is lifted at the set level, so that one computes the evolution of the reachable set under the
action of the dynamics. These methods usually compute over-approximation of the real reachable set,
which is formally guaranteed to contain all reachable points. Most of the methods in literature are
restricted linear systems, due to their wide diffusion in engineering applications. For this class of sys-
tems, efficient methods exist [24, 13]. Tools like SpaceEx [21] implement routines for linear differential
inclusions capable of solving problems up to several hundred dimensions. Over-approximation meth-
ods for non-linear systems, instead, are much less developed, as the problem is much more difficult.
Here we recall hybridization [16], which is based on a localised linearisation of the dynamics. Another
family of methods, very common for differential inclusions, is based on interval-based methods com-
bined with constrain solving to control the over-approximation introduced by interval computations.
Among them, we recall [14] and [32]. Other methods for integrating differential inclusions rely on
error bounding [38].

An alternative approach is offered by simulation methods, which try to infer the reachable set
from few simulated trajectories of the system. These methods are very effective for the limit dynamics
emerging from uncertain population processes. Here we recall [20], which uses the sensitivity of the
system with respect to initial conditions to (approximatively) compute how a set of initial conditions
propagates in T units of time under the action of the dynamics. The approach of [12], instead,
use statistical methods borrowed from machine learning to perform an inference of the reachable set
with statistical error guarantees. Other methods work for more general imprecise limit models; for
example, the procedure of [8, 15, 17] constructs an under-approximation of the reachable set using a
Monte-Carlo sampling method.

4.2 Differential hull of a differential inclusion

Our first method to compute the set of reachable points by the solutions of a differential inclusion is
to construct rectangular bounds for the differential inclusion, i.e., two functions x and x such that
x(t) ≤ x(t) ≤ x(t) for any solution of the differential inclusion x. In this section, we show that we can
construct to differential equations such that x and x are solutions of a simple differential equations and
such that for all t and any solution x of the differential inclusion ẋ ∈ F (x), we have x(t) ≤ x(t) ≤ x(t)
(coordinate-wise). The construction of these equations is simple. This bounds are reasonably tight
when the set of possible parameters θ is small. However, as we will see in Section 5.4, the bounds
provided by this approximation become too large when the possible values of ϑ increase.

Following the definition of [37], we say that a locally Lipschitz-continous function (f, f) is a
differential hull for the differential inclusion F if for each coordinate i and each x such that x ≤ x ≤ x,
we have:

xi = xi ⇒f i(x, x) ≤ inf
f∈F (x)

fi

xi = xi ⇒f i(x, x) ≥ sup
f∈F (x)

fi.
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The tightest functions f and f that are a differential hull for a differential inclusion F are:

f
i
(x, x) = min

x∈[x,x]:xi=xi(t)
minFi(x)

f i(x, x) = max
x∈[x,x]:xi=xi(t)

maxFi(x)

Theorem 4. Let x : [0 : T ] → Rd be a solution of ẋ ∈ F (x) with initial condition x(0) = x0. Let
(x, x) be the solution of the differential equation ẋ = f(x, x) and ẋ = f(x, x) with initial condition
x(0) = x(0) = x0. Then, for all t, we have:

x(t) ≤ x(t) ≤ x(t)

Proof. The result is a direct consequence of Theorem 1 of [31].

4.3 Reachability as an optimal control problem: algorithm based on Pontryagin’s
maximum principle

In general, the bounds x and x are not tight. In this section, we show how to use Pontryagin’s
maximum principle to compute the exact minimal value xmin(t) and maximal value xmax(t) that can
be reached by an imprecise fluid model at time t.

Let T ≥ 0 be some fixed time and i ∈ {1 . . . d} a coordinate. Let xmin
i (T ) = infx∈SF,x

xi(T ) be
the minimal value that the ith coordinate of the solution of a differential inclusion can take at time t.
The quantity xmin

i (T ) is the solution of the minimization problem:

xmin
i (T ) := min

θ
xi(T ) such that for all t ∈ [0;T ]:

{
x(t) = x+

∫ t
0 f(x(s), θ(s))ds

θ(t) ∈ [ϑmin, ϑmax]

Pontryagin’s maximum principle is a set of necessary conditions that the trajectory that attains
the maximum should satisfy. Following the description of [36, Section 3] these conditions are the
following. If x is a trajectory that maximizes xi(T ), then there exists a costate trajectory p such that
pi(T ) = −1, pj(T ) = 0 for j 6= i and:

ẋ(t) = f(x(t), u(t)) (7)

ϑ(t) ∈ arg min
ϑ

f(x, ϑ)T p, (8)

−ṗ(t) =
∂

∂x

(
f(x, ϑ)T p

)
(9)

where f(x, ϑ)T p denotes the scalar product between f(x, ϑ) and p.
This solution leads to iterative numerical methods that start from an initial costate p, then update

p by computing a trajectory x forward in time the x by using (7) and (8) and then computing a new
p backward in time by solving the ODE (9).

Remark. The rectangle delimited by xmin(T ) and xmax
i (T ) provide an approximation of the reach-

able set of x(T ). This set is tighter than the rectangle delimited by x and x] but is not exact. The
algorithm given by the iterations (7-9) can be easily extended to refine the rectangle into any con-
vex template polyhedron by considering the minimization problems mini

∑
i αixi(t) for any tuple of

coefficients αi.

5 Illustrative Example: the SIR model

In this section, we apply our techniques to the well-known susceptible-infected-recovered (SIR) model.
This example will serve us to illustrate the differences between the imprecise and uncertain model and
to compare the accuracy of the numerical solutions. This example is close to the one used in [37] for
heterogeneous systems.
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5.1 The SIR model

We consider a system composed of N nodes. Each agent can have three states: susceptible, infected or
recovered. We denote by XS(t) ∈ [0, 1] the proportion of susceptible nodes (and by XI(t) and XR(t)
the density of infected and recovered nodes). For each t, XS(t) +XI(t) +XR(t) = 1.

We model the dynamics of the stochastic system as follows. A susceptible node can become infected
from an external source (this occurs at rate a). An infected node becomes recovered at rate b and
a recovered node becomes susceptible at rate c. We consider that susceptible and infected node are
moving but we do not know at which speed. Hence, a susceptible encounters an infected node and
becomes infected at rate ϑXI(t).

The transitions of the system are the following: a state XS , XI , XR becomes: XS− 1
N , I+ 1

N , XR at
rate N(aXS+ϑXSXI), it becomes XS , XI− 1

N , XR+ 1
N at rate NbXI and becomes XS+ 1

N , XI , XR− 1
N

at rate NcXR.
The drift of the system is the triple (fS(XS , XI , XR;ϑ), fI(XS , XI , XR;ϑ), fR(XS , XI , XR;ϑ)),

where:

fS(XS , XI , XR;ϑ) = −aXS − ϑXSXI + cXR

fI(XS , XI , XR;ϑ) = aXS + ϑXSXI − bXI

fR(XS , XI , XR;ϑ) = bXI − cXR (10)

As XS +XI +XR = 1, we can substitute for XR and express the drift as

fS(XS , XI ;ϑ) = c− (a+ c)XS − cXI − ϑXSXI

fI(XS , XI ;ϑ) = aXS + ϑXSXI − bXI (11)

By Theorem 1 and Corollary 1, as the number of object goes to infinity, the behavior of the
uncertain model (an unknown but constant ϑ) converges to the ODE

ẋ = f(x, ϑ)

while the imprecise model (a unknown θ that can vary in time) is included in the solution of the
differential inclusion

ẋ ∈
⋃

ϑ∈[ϑmin,ϑmax]

{f(x, ϑ)}

In what follows, we will compare numerically the behavior of the two models. In particular, we
show that despite the fact that the infection rate minus the recovery rate fI(XS , XI ;ϑ) = aXS +
ϑXSXI − bXI is an increasing function of ϑ, the quantity xI(t) is not a monotone function of ϑ. In
particular, when ϑ(t) ∈ [ϑmin, ϑmax], the proportion of infected nodes can be higher for an imprecise
population process than for any uncertain population process.

In what follows, we set the parameters equal to a = 0.1, b = 5, c = 1, ϑmin = 1, ϑmax = 10 and the
initial conditions are XS(0) = 0.7, XI(0) = 0.3.

5.2 Reachable sets in finite time

For a fixed parameter ϑ, the drift f(XS , XI , ϑ) is Lipschitz-continous in XS and XI . Hence, the drift
of the uncertain model, defined in Equation (5), is a single-valued function and the ODE (Ṡ, İ) =
f(XS , XI , ϑ) has a unique solution, which we denote by Xϑ

S , X
ϑ
I . Although we believe that this ODE

does not have a close-form solution, numerical integration is easy.
The case of the imprecise model is more complicated. By Theorem 1, whatever are the variation of

the parameter θ (even if it θt depends on the whole history of the process XN
S , X

N
I ), the quantities XN

S

and XN
I converges to a solution of the differential inclusion (ẋS , ẋI) ∈ {f(xS , xI , ϑ) : ϑ ∈ [ϑmin, ϑmax]}.
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In particular, if SF is the set of solutions of the differential inclusions and RF (t) is the set of reachable
points at some time t by the differential inclusion starting in (XS(0), XI(0)), we have:

lim
N→∞

(XN
S (t), XN

I (t)) ∈ RF (t) :=
⋃

(s,i)∈SF

{(s(t), i(t))}

It should be clear that the set of the possible values for (XS , XI) of an uncertain models is included
in the set of reachable points by the imprecise model:⋃

ϑ∈[ϑmin,ϑmax]

{
(xϑS(t), xϑI (t))

}
⊂ RF (t). (12)

As we show numerically in our example (see Figure 1), the inclusion is, in general, strict.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
time

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

p
ro

p
o
rt

io
n
 o

f 
in

fe
ct

e
d

I^min_{uncertain}

I^max_{uncertain}

I^min_imprecise

I^max_imprecise

Figure 1: Upper and lower bounds on the number of infected nodes for an imprecise model (dashed
lines) and an uncertain model (solid lines)

For both models (uncertain and imprecise), we define the maximum proportion of infected nodes
by

xuncertainI (t) = max
ϑ

Iϑ(t) and ximpreciseI = max
(XS ,XI)∈SF

XI(t).

The definition of the minimum proportion of infected node is similar.
The computation of xuncertainI (t) can be done by a numerical exploration of all the parameters ϑ.

For the computation xuncertainI (t), we formulate the problem has the optimal control problem which is
to find a function θ(t) that maximizes XI(t), where XI(t) satisfies ẋS , ẋI = f(xS(t), xI(t), θ(t)). We
use a numerical method based on Pontryagin’s maximum principle (see Section 4.3). The results are
reported in Figure 1. We observe that ximpreciseI (t) can be much larger than xuncertainI (t), especially
for large value of t.
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Figure 2: Trajectory that reaches the maximum (top) or minimum (bottom) number of infected node
at time T = 3. On the left, we plot the number of infected as a function of time. On the right, we
plot the number of infected as a function of the number of susceptible.

On Figure 2, we add to Figure 1 two examples of trajectories that attain the maximum (top) or
minimum (bottom) number of infected nodes at time T = 3.

For the maximum, the optimal θ(t) is to set θ(t) = ϑmin for t < 2.25 and θ(t) = ϑmax for t > 2.25.
For the minimum, the optimal θ(t) is start with θ(t) = ϑmin for t < 0.7, then use θ(t) = ϑmax until
2.2 and then use again θ(t) = ϑmin.

Also, it should be noted that by using Pontryagin’s ideas, we can also compute trajectories that
maximizes any utility functions.

5.3 Steady-state regime

Computing the Birkhoff center BF of a differential inclusion is in general not easy. A first possibility
is to use Pontryagin’s principle to compute the convex hull of the set of reachable points at time t. By
letting t goes to infinity, this allows one to compute the convex hull of the asymptotic set AF (defined
in Equation (6)), which is a super-set of the Birkhoff center BF .

For the SIR model, we use a more direct approach, that is faster and more accurate for a two
dimensional system. By integrating the ODE ẋ = F (x, ϑmax), we first compute a point x0 that is
the fixed point of the uncertain model with fixed parameter ϑmax. We then compute a trajectory x1

by integrating the ODE ẋ = F (x, ϑmin) starting in x0 and a trajectory x2 by integrating the ODE
ẋ = F (x, ϑmax) starting in x1(∞). The two curves delimit a convex region that is included in the
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Figure 3: Steady-state regime for the imprecise and uncertain SIR models. The steady-state of the
imprecise model is the convex set delimited by the blue region. The steady-state of the uncertain
model is on the red line. We set ϑmax = 10ϑmin.

Birkhoff center. We then start from any points on the surface of this region and we look for a value ϑ
such that the drift is directed outside this region. If such a value exists, we then enlarge our region by
computing a new trajectory. We repeat these iterations until no such point exists. When this region
cannot be enlarged, we then obtain a tight over approximation of the Birkhoff center of the differential
inclusion. This is so because in no points of the obtained boundary, the drift vector points outwards
the region, meaning that no trajectory can escape from it.

In Figure 3, we compare the Birkhoff center of the imprecise fluid model with the one of the
uncertain fluid model. The steady-state of the uncertain fluid model is shown in red while the steady-
state of the imprecise model corresponds to the whole convex region surrounded by the blue curve.
We observe that the steady-state of the uncertain model is strictly included in the one of the imprecise
model. Moreover, there are some points of the Birkhoff center of the uncertain model for which XS is
smaller and XI is larger that any stationary point of the imprecise model.

5.4 Differential-hull approximation

It should be noted that the algorithms based on the Pontryagin’s maximum principle provide an
exact numerical method to compute the transient and steady-state behavior of these systems. On the
contrary, the differential-hull approximation, introduced in Section 4.2 provides a reasonably accurate
results when the range of the parameter θ is small but its accuracy is very poor when the range of
parameters increases.

These facts are illustrated in Figure 5 and Figure 4. In Figure 4, we plot the solutions as a function
of time. We observe that when the range of possible ϑ is small (θmax = 2), then the differential hull
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(a) θmax = 2 (b) θmax = 5 (c) θmax = 6

Figure 4: Evolution of the proportion of susceptible (top) or infected (bottom) as a function of time
for three values of θmax. We compare the differential hull approximation (in dashed line) with the
uncertain and imprecise model.

approximation is quite accurate. When θmax grows, the approximation is less and less accurate.
For example, for θmax = 5, the approximation is that XI(t) ∈ [.02, 1.17]. When θmax = 6, the
approximation is trivial for t ≥ 4, for which we have XI(t) = 0 ≤ XI(t) ≤ XI(t) = 1.

In Figure 5, we compare the possible steady-states for the imprecise model and the uncertain
model with the bounds obtained by the differential-hull approach. The differential-hull approach
provides a rectangular approximation for the steady-state distribution. As for the transient regime,
the differential-hull approximation deteriorates non linearly in θmax: it is very accurate for θmax = 2
or 3 but very loose for θmax = 5 (and trivial for θmax ≥ 6 – not shown on the figure).

5.5 Accuracy of mean field approximation

In this section, we compare a stochastic simulation of an imprecise Markov population process of the
SIR model for a finite N with the limiting regime. For the simulation, we compare two functions θ(t)
that are piece-wise constant:

(a) A function θ2 that jumps to a new value with a rate 5XI(t). The new value is picked uniformly
on [ϑmin, ϑmax].

(b) A function θ1 that oscillates between ϑmin and ϑmax according to the following rule: if θ2(t) =
ϑmax and XS(t) < .5, then θ2(t) switches to ϑmin. Conversely, if θ2(t) = ϑmin and XS(t) > 0.85,
then θ2(t) switches to ϑmax.

These functions are chosen as they induce a pretty large variation of ϑ, forcing large oscillations in
the stochastic regime.

A sample path in the steady state regime of the stochastic system for N = 100, N = 1000 and
N = 10000 is depicted on Figure 6, along with the Birkhoff center. We observe that for N ≥ 1000,
the stationary behavior of the stochastic system essentially remains inside of the Birkhoff center for
both policies. Such inclusion tends to be strict as N goes to infinity.
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Figure 5: Comparison of the possible steady-state of the imprecise model, the uncertain and the
differential hulls approximation.

6 Conclusions

We presented imprecise population processes, which naturally capture the unavoidable uncertainty
and imprecision inherent in any (stochastic) model of complex phenomena. In order to analyse ef-
ficiently these models in the large population regime, we proved mean field theorems in terms of
differential inclusions. We then discussed how to numerically analyse such limit systems, and show
the approximation at work in a model of epidemic spreading.

Future work include a deeper investigation of the Pontraygin method also for steady state compu-
tation and in combination with (non-linear) templates, to provide tight bounds to the solutions of a
differential inclusion. We will also release an implementation and test the approach on larger models,
to properly understand its scalability.
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