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Abstract

In this paper we present the use of a novel spatio-temporal model-checker to detect problems
in the data and operation of an adaptive system. We categorise received data as being plausible,
implausible, possible or problematic. Data correctness is essential to ensure behavioural correctness
in systems which adapt in response to data and our categorisation suggests the degree of caution
which should be used in acting in response to this received data. We illustrate the theory with
several concrete examples, addressing both the detection of errors in vehicle location data for buses
in the city of Edinburgh and the behavioural phenomenon of “clumping”, the undesired reduction
of separation between subsequent buses serving the same route. Vehicle location data is visualised
symbolically on a street map, and categories of problems identified by the spatial part of the
model-checker are rendered by repainting the symbols for vehicles in different colours. Behavioural
correctness makes use of both the spatial and temporal aspects of the model-checker to determine
from a series of observations of vehicle locations whether the system is failing to meet the expected
quality of service demanded by system regulators.

1 Introduction

Users, operators and regulators of managed services want to have systems which behave correctly
across a wide range of conditions. Behavioural correctness is monitored by regulators and it is the
responsibility of system operators to try to ensure that system operation lies within allowable bounds
as often as possible in practice. A typical example of behavioural correctness is to guarantee a constant
and sufficient amount of separation between subsequent buses in so-called “frequent” bus services that
do not follow a fixed time table. A necessary precursor for achieving behavioural correctness in
adaptive systems is data correctness. Collective adaptive systems depend crucially on real-time data
collection subsystems which allow them to reflect on their operation, detect problems in their service,
and report these problems back to system operators or to system users. These data collection systems
are often built from physical components such as sensors and receivers which have limits to their
engineering, meaning that they can, and do, sometimes deliver inaccurate measurement data.

In a small-scale supervised system where the measurement data is interpreted by a human before
any action is taken, erroneous data such as this might not be very problematic because it can be
intelligently checked, or even discarded, before any action is taken as a consequence. In a collective
adaptive system however, the demands of scale and responsive adaptivity may mean that there is no
human oversight of the data before action is taken as a consequence of the data received.

Physical components can only deliver accurate information up to their physical limits and size
and weight considerations often severely curtail the amount of processing which can be done on
an embedded device. These practicalities mean that the responsibility for dealing with erroneous
data then lies with the system itself, and that it must make efforts to automate the process of data
checking and cleaning before acting in response to data received. The task of achieving behavioural
correctness comes after the task of achieving data correctness. In this paper we address examples of
both, exploiting novel purely spatial and combined spatio-temporal model-checking techniques.

Spatial considerations and location play an increasing role in systems. Knowing where the system’s
assets are located is often of critical importance for correct functionality. In a modern public transport
system many aspects of well-regulated operation depend on accurate fleet management, supported by
an automatic vehicle location (AVL) system. AVL data drives other systems providing information to
passengers and system operators such as bus arrival prediction systems. AVL data allows operators
to produce quantitative measures of service quality.

A smart transport system is a collective adaptive system because it is a large-scale system which
adapts to unexpected problems in service delivery such as road closures and mechanical failure of
vehicles by re-routing vehicles and automatically adjusting schedules to compensate for the delays
introduced while simultaneously keeping passengers informed in real-time about changes to the service
delivered. Humans are both outside the system (in the role of passengers, they are users of the system),
and also inside the system (in the role of drivers, they are crucial for carrying out the function of a
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transport system). In order that the decisions made and the changes effected to the service delivery
are the appropriate ones the system must have a high-quality supply of accurate and timely data, and
the ability to detect problems in the data received.

In this paper, we consider both purely spatial aspects, namely, data correctness, and spatio-
temporal issues, related to the behaviour of buses in the network. The spatial verification problem
we consider is that of determining whether or not the AVL data received about vehicles in the fleet
indicates an error condition in one of several categories:

• the AVL data received should be classified as being suspect or corrupt, by virtue of being too
far from the expected data—this may indicate a problem with the hardware of the measurement
device;

• the data indicates a problem in that, if it is correct, then one of the vehicles in the fleet is far
from its expected position on its planned route—this may indicate a problem with the delivery
of the service or it may be due to driver error; or

• the data seems plausible, and suggests a valid position for a vehicle but this vehicle seems to
have deviated from its planned route for reasons of operational problems such as road closures
or engineering works—this may indicate a problem with the road network.

We show how to identify such problems in the data by the means of a recently developed spatial
model-checker [9]. Using a formal language (namely, the logic SLCS, featuring boolean and spatial
operators), all requirements on data can be mathematically formalised, and the model-checker can
verify data correctness in a fully automated way. The use of logic formulas makes the approach
declarative, in that subtle aspects of the analysis can be changed by editing the (very short) formulas,
without the need to modify analysis algorithms. Depending on the intended result, the methods
presented here could either be used for on-line or off-line data processing. In on-line data processing
the smart infrastructure within the collective adaptive system would attempt to identify and classify
problems in real-time, alerting operators to problems as they occur. In off-line data processing the
infrastructure would attempt to identify and classify problems with the benefit of hindsight, providing
plausible retrospective explanations for events so that the service operators can review their service
and provide reports for service regulators or other authorities, and use the insights gained to improve
the service at the next offering (for example, the following day).

Taking different sections from the data allows us to address different spatial model-checking prob-
lems. We could choose to project an instantaneous snapshot of the current location of all of the
buses in the fleet (a “satellite view”, allowing us to see all buses at one time). Alternatively we could
choose to project the journey of a particular bus in the fleet as a function of time (a “passenger view”,
allowing us to see one bus at all times).

The satellite view allows us to ask questions about congestion and adjacency allowing questions
such as “Are there too many buses on Princes Street?”. The passenger view allows us to ask questions
about journeys and routes allowing questions such as “Did this bus deviate from its route and travel
on any side roads today?” and “Which roads did this bus travel on?”. In this paper we will use
single satellite views when we are investigating data correctness (“Is this bus really in a pond?”) and
sequences of successive satellite views when we are investigating behavioural correctness (“Is this bus
catching up with the one in front?”).

Besides the purely spatial aspects, we also experimented with spatio-temporal model-checking,
in the light of detecting behavioural problems of the bus transport network. For the purpose, we
developed a novel model-checker, extending the spatial model checker of [9] with temporal features.
The temporal fragment is developed as a variant of the well-known Computation Tree Logic (CTL). To
exemplify the descriptive capabilities of such spatio-temporal logics, we studied the problem of checking
the requirement of avoiding clumping on a bus route. On bus routes with frequent service, the most
relevant metric may not be adherence to a pre-defined bus time table, but rather maintaining a certain
distance between different buses passing by each stop. This is needed to maintain a good distribution
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of passengers across buses. Such a specification of the headway requirement is rather ambiguous, and
may be interpreted in different ways. We discuss how such different interpretations correspond to
different spatio-temporal logic formulas, that can be machine-checked on spatial-behavioural models
of the bus network.

Besides detecting the presence of clumping in the system log, consisting of the GPS traces of buses,
one can also check for clumping in branching models of execution, that provide non-deterministic choice
points where several different actions may be taken. Such branching models can be, e.g., derived from
execution strategies aimed at reducing a specific problem (such as clumping). Combining the analysis
of traces and branching models, it is possible to check whether a specific strategy would have worked
well in the cases where the problem happened. We exemplify this idea by augmenting an existing GPS
trace, featuring clumping, with choice points implementing a simple correction strategy that permits
a given bus to wait at a bus stop for a short amount of time, in order to avoid clumping. Since the
action of waiting may or may not be done, it generates choice points, giving rise to a branching model.
In the branching model, one of the possible traces is the one that happened (that is, wait actions
are never taken), but there are also other traces, where wait actions have been executed. The model
checker is then used to verify that, indeed, there are correct traces, where clumping does not happen,
in the branching models, proving that the correction strategy would have mitigated the problem in
its known instances.

This paper is organised as follows. In Sect. 2 we address pure spatial model-checking, without
the temporal dimension, providing an informal introduction and examples. Section 3 addresses data
correctness in the context of AVL data for buses. Section 4 presents the various categories of data
issues and how they are visualised on a street map. Section 5 illustrates how these data issues can be
identified exploiting spatial model-checking on a portion of a city map. In Sect. 6 we extend spatial
model checking with a temporal dimension introducing a spatio-temporal logic. Section 7 addresses
some bus operational issues and behavioural correctness concerning the problem of “clumping”, both in
time and in space. Section 8 illustrates the use of spatio-temporal model-checking to detect situations
of clumping, whereas in Sect. 9 we analyse the effect of some simple correction strategies to alleviate
clumping. We conclude the paper by an overview of related work in Sect. 10 and conclusions and
outlook on future work in Sect. 11.

Note for the reviewers The work we present enhances and extends the results of [11]. The spatio-
temporal model-checker and the applications presented in Sects. 6-9 are new in this paper.

2 Spatial model checking

In its original conception, model checking [2] is a technique that was developed for the formal verifi-
cation of properties of the behaviour of distributed and concurrent systems. It takes a formal model
of the system and a property of interest, usually expressed as a temporal logic formula, and then
checks, in an automatic way, whether the model satisfies the property. This way, properties of the
temporal evolution of a system are considered, but properties of (physical) space typically are not.
In recent work [9, 10] by some of the co-authors of this paper, a spatial model-checking approach has
been developed. This technique builds on spatial logics, that is, topological interpretations of modal
logics [21], dating back to Tarski. Of particular interest to us is a spatial until -operator, inspired by
the temporal until-operator, that first appeared in [1]. In [9], the operator has been studied in the
setting of closure spaces (see below), together with a model-checking algorithm. The spatial variant
of the connective can be used to define conditional reachability properties in a spatial setting. The
logical operators have been lifted to a more general setting such that they can also be used on discrete,
graph-based structures, which include geographic maps. In this paper, we consider specific graphs,
namely digital maps, seen as regular grids, where the nodes are the points in the map and where edges
connect each node to the adjacent nodes in the north, south, east and west direction.
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Moreover, in [9], an efficient proof-of-concept model-checker for this Spatial Logic for Closure
Spaces (SLCS) has been implemented. The tool is able to interpret spatial logic formulas on digital
images, providing graphical understanding of the meaning of formulas, and thus an immediate form
of counterexample visualisation. Points that satisfy a particular formula can be visualised by a colour
of choice on the digital map. In this paper, we use the spatial model-checker for some very pragmatic
purposes that are concerned with the automatic identification of potential errors in large scale AVL
data. The approach we follow is to project the AVL data, including the exact position of the vehicles,
on an existing digital map of the relevant geographical area. We then use the spatial model-checker
to identify and highlight regions of interest on this map. Examples of such regions may be buses that
are positioned in an unlikely environment like a meadow or a lake, or not on the route of the bus.

The spatial logic consists of a very small number of basic operators that, in turn, are used to define a
number of useful derived operators. Among the basic operators are the standard boolean connectives
(negation, disjunction and conjunction), the closure operator and the spatial until operator. The
closure operator has its origin in topological spatial logics. More precisely, following [9], models of
the logic are closure spaces. A closure space is a pair (X, C), consisting of a set of points X and
a function C, from 2X to 2X such that, for all sets A,B ⊆ X we have: C(∅) = ∅, A ⊆ C(A) and
C(A ∪B) = C(A) ∪ C(B). Note that it is not required that the closure is idempotent; more precisely,
the class of closure spaces whose closure operator is idempotent coincides with topological spaces (the
Kuratowski definition of topological spaces is based on closure). The latter are a subset of closure
spaces. In the logic, the closure operator is denoted by ♦. The formula ♦φ is satisfied by a point x
in space if x satisfies φ or it is a direct neighbour of a point satisfying φ. The spatial until operator
U is a spatial version of the temporal until operator. A point x in space satisfies the formula φUψ
whenever it is included in an area A consisting of points satisfying formula φ and there is “no way
out” from A unless passing through points in an area B that satisfies ψ, see Fig. 1. Finally, we assume
a set of basic propositions, which in our specific case identify the colour of a pixel in the digital map.

B B

B G G B

B G G B

B B

Figure 1: The green nodes satisfy green until blue (GUB)

We will use a few derived operators in the properties shown in the next section. The first derived
operator is the reachability operator φRψ. It is defined in terms of the spatial until operator as follows
φRψ , ¬((¬ψ)U(¬φ)) and, abstracting from some details, it identifies those points from which ψ can
be reached passing only by points satisfying φ. Essentially it expresses that it is not possible to reach
a point that does not satisfy φ anymore, while passing only by points that do, without having passed
by a point that satisfies ψ, see Fig. 2. The formulation of reachability uses a double negation because
the spatial until-formula is weak in the sense that φUψ also holds when all points in the space satisfy
φ and none of them satisfy ψ. Further examples of derived operators can be found in [10].

Roughly speaking, the SLCS model-checker takes as input a finite discrete model, and a formula φ
and returns all the nodes in the graph that satisfy φ. The algorithm is a spatial variant of the global
model-checking algorithm for CTL (Computation Tree Logic) [12, 2]. The function that computes
the satisfaction set is defined inductively on the structure of φ following a bottom-up approach. The
original part of the algorithm concerns the spatial until operator φUψ. The algorithm performs a
backwards search from the set of nodes that do not satisfy φ or ψ but that can be reached in one step
from such nodes. The algorithm terminates in O(k.(|X| + |R|)), where k is the number of operators
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Y R R
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Figure 2: The green (G) nodes (on the right) satisfy the closure of the blue (B) ones (on the left), and
the orange (O) nodes (on the right) satisfy the reachability formula R∧ ((R∨Y )R Y ) applied on the
left figure, reaching yellow (Y) nodes only from and via red (R) ones

in the formula, |X| the number of nodes and |R| the number of edges in the graph [9].

3 Data correctness

In order to have a sense of when data is incorrect, we should have a sense of when it is correct. At a
broad granularity of view, buses belong to a bus operator who has a specific responsibility for serving
a geographical region of a country and any data which indicates that a bus is geographically very
far from the operator’s area of service (say, in another country) can be relatively easily eliminated.
Surprisingly, examples of such gross incorrectness are not as uncommon as you might at first presume.

In the case of vehicle location data for a bus fleet, we have a natural sense of data correctness.
Buses are not off-road vehicles so they should at all times be positioned on a road or in a small number
of other specific locations, such as a garage.

Our overall goal is to classify bus fleet vehicle location data points as being plausible or suspect,
and this closely aligns with their being on a road (or, allowing for inevitable measurement error, at
least near to a road) and subsequently, on (or at least near to) the correct road. If data is classified as
being plausible, then we have greater reassurance that it is appropriate for the system to take action
based on the data received. If instead the data is classified as being suspect then we would like to
proceed more cautiously and perhaps ask for human intervention at this stage to approve the course
of action.

Some errors in GPS readings are always to be expected. Satellite-based triangulation requires very
precise measurement of extremely fast signals. Environmental factors impact on the accuracy of this
triangulation. Signal bounce off tall buildings can interrupt the GPS signal. Even heavy cloud cover,
humidity and atmospheric pressure can have an impact on measurements.

Cold starts are particularly problematic because the GPS receiver does not have a current almanac,
ephemeris, initial position or time and because of this it will give misleading measurements until its
time-to-first-fix. These cold starts do not always occur at the start of the working day, but happen
when a bus is brought into service at any point in the day, so it is not trivial to exclude them, and
separate out the signal from the noise.

GPS-based AVL systems cannot function accurately without frequent location reports. When GPS
signals are unavailable for an extended period of time Dead Reckoning Navigation (DRN) units come
into play by computing changes in direction by measuring speed and direction, monitoring the speed
and direction of the vehicle through on-board communication sensors. Dead reckoning navigation will
become less accurate over time without a position update from the GPS receiver. This is another
source of data errors.

A human observer can apply human intelligence to detect an erroneous GPS reading by plotting it
on a map and comparing against the position of roads and buildings. However, this type of intelligent
watchfulness cannot scale to tracking an entire fleet of buses (around 700 in the case of the city of
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Edinburgh) so we seek a scalable approach to detecting GPS errors which can be automated. We are
using a novel spatial model-checker to implement this scalable approach.

4 Categories of data issues

In this section we introduce the features of the map representation which we use and see the effect
of the spatial properties which we evaluate. Figure 3 explains our conventions for representing buses,
bus stops and the progress in time through observations on the map.

We use an OpenStreetMap representation for the map from
which the names of streets have been removed for clarity. Main
streets are pink, side streets are white.

Buses are represented by blue squares on the map in a range of
shades of blue. Bus stops are represented by orange squares.

Errors in GPS data show up as bus observations which are not
on any road.

The colour of a bus darkens slightly from one observation to
the next. In this case the observation nearer to the bus stop
has a later timestamp than the observation which is further
away from the bus stop.

Diverted buses are seen as being on side streets which are off
the main bus route.

Unexpected changes in position are significant. If a later time-
stamped observation shows the bus less further along its route
then this usually indicates a data error because buses rarely
reverse along a road.

Figure 3: Representations of buses, roads and bus stops on maps

We have several categories of data issues to distinguish and condition action on:

• Plausible: The bus is positioned on a road and it is a road where we would expect to see a
bus. Nothing about this data point seems problematic: adaptive behaviour based on this data
observation would seem to be acting on good data.

• Implausible: This data point seems suspicious: the bus is positioned in an area of the city
where we would not normally expect to see a bus (such as in a field, or a wood, or a pond).
Unsupervised adaptive behaviour based on this data would be inadvisable.

• Possible: This data point has a bus positioned on a road but it is a side street when we were
expecting to see the bus on a main road. The data is not implausible but it indicates that an
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unexpected event has perhaps occurred (a road closure, a traffic accident, or a diversion caused
for another reason). Adaptive behaviour based on this data observation might be appropriate
here.

• Problematic: This data point shows a bus on the expected route but it is less far along the route
than previously reported. It is likely that either this data point is putting the bus behind its
current position, or the previous data point put it ahead of its current position (or, possibly, the
bus is reversing). Adaptive behaviour based on this data should be delayed until the uncertainty
about which point is incorrect is resolved.

5 Identifying data issues using model-checking

The SLCS model-checker has been used to analyse a coloured picture, representing a portion of the
map of the city of Edinburgh, augmented with squares filled in special colours, denoting particular
kinds of entities, as described in Sect. 4. Logic formulas are used in this example to detect problems
in the data. We also show how to detect other features of interest of bus positions, and of roads. We
shall now describe the formulas we use more in detail; these are interpreted on the model depicted in
Fig. 4. The red circles, as well as the yellow balloon with text, have been superimposed on the images
and are not part of input or output of the tool (this is done for readability, also in Sects. 8-9).

Atomic predicates, when working on images, are actually colour ranges. Because of this, it is
possible for us to analyse an image directly, without the need for additional meta-data. For this
example, we selected 14 data points to represent buses1, represented by different blue squares. The
shade of blue depends upon the time at which the bus was in the given position. The shade ranges
from light to dark, where lighter shades precede darker ones in time. Then, using atomic predicates on
colours and colour ranges, we defined various basic formulas, among which: formula bus representing
all the bus positions (using a colour range); formulas pos1, . . . , pos14, representing the separate bus
positions; formulas identifying streets (street) and main streets (mainStreet).

The SLCS spatial model-checker acts as a transformer, accepting an image as input and producing
an updated image as its result. The model presented to the model-checker is the map image with
reported bus positions marked (using blue squares) and the positions of bus stops marked (using orange
squares). The model-checker evaluates spatial logic formulae and represents its results by repainting
the bus positions which satisfy a predicate using a colour chosen for that predicate. (For example,
positions of diverted buses can be repainted in red and positions of off-road buses can be repainted in
violet.)

In the examples of formulae which follow we use the concrete input syntax of the SLCS model-
checker where logical operator symbols such as ¬, ∧, ∨, C, U , are denoted by the characters !, &, |,
C, and U, respectively.

Spatial features of data points in Fig. 5 we show the result of identifying a portion of the main
street for each position (depicted in yellow); this is done using the formula:

Let streetPortion(b) =

mainStreet & (C^3 b)

& ( ! (C^5 (bus & (!b))))

where b is instantiated to pos1, . . . , pos14, and C^n, for n a natural number, is the nested application
of the closure, or dilation operator. The formula dilates b by three pixels, and avoids points too close
to other buses, in order to minimise possible overlaps. In the same figure, in red, we colour positions

1In this paper, the points have been selected artificially, in order to present a clean working example, but use of the
spatial model-checker does not differ when dealing directly with the vehicle location data supplied by Lothian Buses.
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Figure 4: Input model. Blue squares are bus
positions; their order in time is described by
the increasing darkness. Orange squares are
the bus stops.

Figure 5: Positions close to a stop are re-
painted in red, the areas of the road surround-
ing all bus positions are repainted in yellow.

Figure 6: Diverted positions (neither off road,
nor on a main street) are repainted in red, off-
road positions are repainted in violet.

Figure 7: Positions that are found to be out of
order (i.e., not between the previous and next
position) are repainted in red.

that are close to a bus stop. This uses the formula close(bus,stop), where close is defined as
follows:

Let close(a,b) = a & (C^30(b))

Thus, the formula intersects the points where the bus has passed with the points reachable from a
stop by 30 pixels.

Implausible points data points that are not positioned on a street are implausible. This is de-
scribed by the formula:

Let busOutOfStreet =

bus & (! (bus U street))

The formula characterises points that are part of any of the regions denoting bus positions, and are
not surrounded by a street. Points satisfying this formula (thus, not plausible) are repainted in violet
to produce the spatial model-checking result shown in Fig. 6.
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Let consecutivePos(p1,p2) = p1 U

reach((streetPortion(p1) |

mainStreet |

streetPortion(p2))

&

(!(streetPortion(bus &

(!(p1 | p2))))),

streetPortion(p2))

Figure 8: Definition of consecutivePos

Possible points Diverted bus positions are represented by the formula:

Let divertedBus = bus U smallStreet

and are then repainted in red to produce the result shown in Fig. 6.

Problematic points Our spatial logic is expressive enough to define properties related to the order
of positions of the same bus at different times on a given road. We analyse the bus positions. For each
position, we detect its immediately neighbouring positions, in order to check that these correspond
to a preceding and following position, respectively. If this is not the case, the position is misplaced,
even though it may still be on the main street. In Fig. 7, such misplaced bus positions are painted
in red. The formal specification of this property is complicated by the fact that the underlying graph
of an image is not directed, thus it is not completely straightforward to specify precedence relations
between points. The most important step is the definition of predicate consecutivePos(p1,p2), given
in Fig. 8. The definition uses the reachability predicate a R b, written as reach(a,b). The definition of
consecutivePos uses the previously defined predicate streetPortion to identify the region of points
in p1, surrounded by the area from which streetPortion(p2) can be reached, passing by the main
street, including the areas surrounding p1 and p2, avoiding the areas of the street surrounding other
buses. Note that streetPortion(p) is an area at least as wide as the main street. So no next bus
positions can be reached following only points belonging to the main street. Using consecutivePos,
predicate wrongOrderPos is defined as follows:

Let wrongOrderPos(p1,p2,p3) =

(p2 U mainStreet) &

(!(consecutivePos(p2,p1) &

consecutivePos(p2,p3)))

Given three positions p1, p2, p3, position p2 is selected only if it is not strictly between p1 and p3.
The three positions are instantiated to all the strictly consecutive triplets between pos1 and pos14 in
order to identify out-of-order positions.

6 Spatio-temporal model checking

Spatio-temporal logics may be defined by permitting mutually recursive nesting of spatial and temporal
operators. Several combinations are possible, depending on the chosen spatial and temporal fragments,
and the permitted combinations of the two. A great deal of possibilities are explored in [17], for spatial
logics based on topological spaces. We investigated one such structure in this work, in the setting
of closure spaces. We implemented2 a prototype spatio-temporal model-checker, that enhances the
spatial variant with temporal operators, in the spirit of the branching temporal logic CTL.

2OCaml source code for the prototype is available at https://github.com/cherosene/ctl_logic.
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In this section we provide a lightweight informal introduction to spatio-temporal model checking;
we refer the interested reader to [8] for further technical details. In particular, the spatio-temporal
logic that we use is a combination of SLCS (see Sect. 2) and the well-known temporal logic CTL [12].
Like SLCS, this spatio-temporal logic is developed in the setting of closure spaces. In addition to the
already discussed spatial operators of SLCS, the augmented logic STLCS (Spatio-Temporal Logic for
Closure Spaces) features the CTL path quantifiers A (“for all paths”), and E (“there exists a path”).
As in CTL, such quantifiers must necessarily be followed by one of the path-specific temporal operators
XΦ (“next”), FΦ (“eventually”), GΦ (“globally”), Φ1UΦ2 (“until”), but unlike CTL, in this case Φ, Φ1

and Φ2 are STLCS formulas. For a further introduction to and more details on CTL and CTL model
checking, the reader may consult [2]. In the sequel we will refer to the spatial until operator by S

(from “surrounded by”), and use U for the temporal until operator.
A modelM of the STLCS logic is composed of a Kripke structure (S, T ), where S is a non-empty

set of states, and T is a non-empty accessibility relation on states, and a closure space (X, C), where
X is a set of points and C the closure operator (see Sect. 2). Every state s has an associated valuation
Vs, making ((X, C),Vs) a closure model according to Definition 6 of [9]. An equivalent interpretation
is that the valuation function has type S ×X → 2P , where P is the set of atomic propositions, thus,
the valuation of atomic propositions depends both on states and points of the space. The evaluation
contexts are of the formM, s, x |= Φ, where Φ is a STLCS formula, s is a state of a Kripke structure,
and x is a point in space X. In both notations, the intuition is that there is a set of possible worlds,
i.e. the states in S, and a spatial structure represented by a closure space. At each possible world
there is a different valuation of atomic propositions, inducing a different “snapshot” of the spatial
situation which “evolves” over time. This is made clear along a temporal path. A path in the Kripke
structure denotes a sequence of digital pictures indexed by instants of time; see Fig. 9 for a pictorial
illustration.

Let us proceed with a few examples. Consider the STLCS formula EG (green S blue). This
formula is satisfied in a point x in the graph, associated to the initial state s0, if there exists a
(possible) evolution of the system, starting from s0, in which point x is always, i.e. in every state
in the path, green and surrounded by blue ( greenUblue in the terminology of Sect. 2). Note that
the model-checker will return (or colour) all the points x that satisfy the formula. A further, nested,
example is the STLCS formula EF (green S (AX blue)). This formula is satisfied in a point x in the
graph associated to the initial state s0, if there is a (possible) evolution of the system, starting from
s0, in which point x is eventually green and surrounded by points y that, for every possible evolution
of the system from then on, will be blue in the next step.

Spatio-temporal model checking is performed using a variant of the classical CTL labelling algo-
rithm [12, 2], augmented with the algorithm in [9] for the spatial fragment. In the implementation,
models are represented by a Kripke structure, that is, a graph, which uses the plain text graph descrip-
tion language dot for graph representation3, and a folder of images, one for each state in the Kripke
structure. Images must have the same size, and the corresponding grid is taken as the reference closure
space (X, C) (grids are instances of closure spaces, see [9] for further details). Colours of the points of
the picture for each state s determine the valuation function Vs.

7 Bus operational issues

Public transport services are managed services, subject to published regulations governing the safety,
punctuality and reliability of the service. Adherence to the published timetable is an important
punctuality metric for timetabled bus services. So-called “frequent” services – those where a timetable
is not published – are susceptible to a phenomenon known as clumping. Clumping occurs where one
bus catches up with – or at least comes too close to – the bus which is in front of it. In the absence

3Further information on the dot notation can, for example, be found at http://www.graphviz.org/Documentation.php.
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Figure 9: In spatio-temporal logics, a temporal path represents a sequence of snapshots that are
induced by the time-dependent valuations of the atomic propositions.

of a published timetable for frequent services the important performance metric to consider is not
timetable adherence but headway, a measure of the separation between subsequent buses.

• If the headway is too large then passengers are forced to wait at the bus stop for longer than
they should, causing levels of passenger satisfaction with the service to fall.

• If the headway is too short then this has the consequence that some buses end up carrying too
many passengers while others are carrying too few. A subsequent bus following closely behind
an earlier one is unlikely to find passengers at a bus stop because a short time ago the passengers
who were waiting boarded the earlier bus, and there has not been an opportunity for a queue to
build up in the brief time since. Unfortunately this tends to further reduce the headway between
buses because the subsequent bus is not delayed by boarding passengers, whereas the earlier bus
was.

An instance of a short headway problem is illustrated in Fig. 10 using a series of successive “satellite
view” images of the bus data.

We are describing the scenario of a richly-instrumented real-time-informed system where data
cleaning has been applied as described above to result in a plausible set of observations of bus positions.
In this scenario, the central authority of our adaptive system could intervene when short headway
problems are detected between one bus and the subsequent one by sending a message to the second
bus saying “WAIT”. The bus waits extra time at the next bus stop (say 30 seconds). This has the
effect of correcting the system behaviour away from the problematic behaviour by lengthening the
headway. This intervention has not necessarily solved the problem, but it has lessened it, and it is
always possible to ask a bus to wait again later in its lifetime if necessary.

Crucially, despite appearances to the contrary, such an arrangement is not a centrally-controlled
system and does not operate as such primarily because the central server which manages the com-
munication to and from buses has only partial information about the local traffic conditions in the
immediate area around each bus. It is necessarily the case that the centre has only partial information
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Figure 10: Because of delays caused by boarding passengers the headway between buses is successively
eroded over time until the buses are essentially working as a conglomerate.
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because the overhead of keeping the centre up-to-date with every aspect of the local traffic conditions
would be completely unworkable. Because it is understood by all that the centre has only partial
information, messages issued from the centre are requests, not commands. The system as a whole is
a collective adaptive system with distributed control because the driver of the bus may choose not to
honour the request because of local specific knowledge about the vehicular conditions of the road at
this point. For example, drivers might not honour a request to wait if they can see that other bus
operators have vehicles immediately behind this bus and are waiting to access this bus stop; or they
might not honour a request because waiting here would delay emergency service vehicles; or many
other reasons. The central communications server of the bus company does not have this information.

Interventions – such as requesting a bus to wait – must be guided by policies. The central authority
has a goal in mind for the system, and will try to direct the system behaviour closer to the desired
goal while respecting the policy which is being followed. Several factors must be considered in shaping
a useful and practically viable policy.

• Policies should be designed to improve the service’s score on a pre-defined metric or service-level
agreement specified by service regulators. Such service-level agreements typically require that
a high percentage of service instances are satisfactory according to some agreed definition of
satisfactory, but a small percentage may be unsatisfactory. Policies decide when and where to
make best use of this flexibility.

• Frequency-dependence is an important issue within a vehicular management policy. A carefully
considered policy would limit the number of “WAIT” requests which can be sent at a particular
time to buses serving a particular route. For example, if all buses serving a route were sent
a “WAIT” instruction and all obeyed this, then this would not impact on the short headway
problem at all. For this reason, “WAIT” requests should be rare: a reasonable policy could be
to send a “WAIT” request to at most one bus on a route at any time.

• Location-dependence is also an important dimension for policies. It may be impractical or
significantly disruptive to traffic flow for buses to wait in some areas of the city such as busy
shopping streets or main arteries for traffic flow. Thus, even though a bus should be requested
to wait because a short headway problem has been detected, the bus will not be requested to
wait in these problematic areas of the city. Such requests could always be ignored by drivers but
it would be better not to issue them in the first place.

• Time-of-day-dependence is also an important factor in transport policies. The policy could
refrain from sending any “WAIT” requests during the rush hour periods.

We have discussed interventions to reduce and eventually eliminate short headway problems in the
absence of a precise metric for measuring headway. Perhaps the most obvious measure of headway is
chainage, the distance by road between two vehicles. However, because buses change speed on different
parts of the route, this is not the best metric to use. We wish to address time-related problems with the
service (passengers waiting for too long a time between buses; and there not being enough time between
buses for passengers to arrive at a bus stop). For this reason, we should rather focus on the temporal
separation between buses. This amounts to considering “How long ago was the previous bus at this
location?” in addition to “How far behind the previous bus are we?” These two different properties
illustrate that spatio-temporal properties may have rather subtle aspects to consider, and may require
careful formalization. In Sect. 8 we shall see how to make such formalisation mathematically precise, so
that it can be machine-checked by model checking. This methodology achieves a declarative approach
to verification of spatio-temporal properties, having the advantage, over the ad-hoc implementation of
analysis algorithms, that such slight changes in the interpretation of given requirements do not impact
the implementation of the verification tools, as only the logical formalisation of requirements needs to
be changed.
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let bus1 = <RED [155,155]> & <GREEN [0,0]> & <BLUE [0,0]>;

let bus2 = <RED [188,188]> & <GREEN [0,0]> & <BLUE [0,0]>;

let bus3 = <RED [221,221]> & <GREEN [0,0]> & <BLUE [0,0]>;

let bus = bus1 | bus2 | bus3;

let busStop = <RED [55,55]> & <GREEN [55,55]> & <BLUE [255,255]>;

let close(x) = C^7 x;

let busAtStop(x) = busStop & close(x);

let busAfterBus1 = busAtStop(bus1) &

EX busAtStop(bus2 | bus3);

let busAfterBus2 = busAtStop(bus2) &

EX busAtStop(bus1 | bus3);

let busAfterBus3 = busAtStop(bus3) &

EX busAtStop(bus1 | bus2);

let closeToOtherBus(x) = (x & close(bus & !x));

let conglomerate = busStop & close(closeToOtherBus(bus1)

| closeToOtherBus(bus2) | closeToOtherBus(bus3));

let timeConglomerate = (busAfterBus1 | busAfterBus2 | busAfterBus3);

Figure 11: Spatio-temporal formulas for conglomerates

8 Identifying operational issues using model checking

Using spatio-temporal logic, clumping of buses can be detected, both in a system trace (e.g., a GPS
trace obtained at run-time), and in more complex branching models, that are used in Sect. 9. Consider
a single bus route, served by k buses. At each instant of time, the state of the system is completely
described by a tuple of k GPS positions; therefore, a system trace is a finite sequence of such tuples.
As already discussed, there may be several different ways to formalise the notion of clumping. We
describe two possible variants. Figure 11 contains the input code of a model-checking session using
three buses. Formulas bus1, bus2, bus3, and busStop, are colour ranges, that serve the purpose to
identify bus positions on the map. In this example, colours are used to separate the different buses
serving the same route, so that each bus has a specific colour through time, whereas at the same time,
two buses of the same route are coloured differently. Similarly, formula busStop identifies the position
of a bus stop. The formulas that we explain below are true at points of a bus stop whenever clumping
is happening (formation of a conglomerate) at that particular stop.

1. A spatial conglomerate happens when two buses serving the same route, at some point in time,
are spatially close to each other, and also close to a bus stop. This event is described by the
formula conglomerate. Points satisfying this formula are those that are close to a bus, which is
in turn close to another bus. Formula closeToOtherBus, which is parametrised by the chosen
bus, is responsible for checking that a bus is close to another one. The notion of “closeness” is
defined by formula close, using a nested application of the basic closure operator of the logic.

2. A spatio-temporal conglomerate happens when two buses serving the same route pass by the
same stop in a short amount of time. This case is subtler than the previous one, as it does not
necessary imply that the headway between two buses becomes too small. This event is described
by the formula timeConglomerate, which features a combination of spatial operators (used to
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detect that a bus is close to a stop) and temporal operators (used to identify the spatio-temporal
conglomerate). For instance, consider the formula busAfterBus1. This formula is true on points
that are: i) part of a bus stop, and close to bus1, because busAtStop must be true for bus1; ii)
such that, in one4 time step, these will be part of a bus stop, and close to either bus2 or bus3.
Note that the use of spatial and temporal connectives in the same formula permits one to refer
to the colour of points at a specific time, and at subsequent time instants.

Once established what is the kind of clumping one is interested in, one may use temporal operators
to detect points where, e.g., clumping will happen at some point in the future. Figure 12 is obtained
with our tool set, starting from the positions of three buses serving the same route. Figures 12a-12e are
obtained by mapping bus coordinates over a base map. Buses are represented by squares of different
shades of red. The dark blue square is a bus stop. Figure 12f shows the output of the model checker
when checking the formula EF timeConglomerate. Indeed, it is the same as Fig. 12a, except for the
colour of the bus stop, whose points are coloured green, as clumping happens at that stop, at some
point in the future. As the model-checker is a simple prototype, with no optimisations in place, we do
not provide accurate performance information. We just remark that execution time is in the order of
ten seconds on a standard laptop for this example, in which over one million points (approximate size
of the image) are examined several times (proportional to the number of sub-formulas of the formula
to be verified).

9 Analysing the effect of correction strategies for operational issues

In this section, we study a method to analyse the effect of correction strategies for spatio-temporal
issues on the bus network. In particular, we incorporate existing data (e.g., system logs) in estimating
the impact of introducing new policies in a system. First, we note that our model checker can be used
both to detect clumping in a system trace, as we have seen, or to analyse a branching model, that is,
a system where at each state, non-deterministically, there may be several possible steps to different
future states. Such non-deterministic models represent in a concise way a great number of possible
system behaviours, depending on the choices that may be made at each execution step. We use this
fact in conjunction with the idea, discussed in Sect. 7, to send to buses “WAIT” instructions in order
to reduce clumping. In our case, it is relevant that the possibility of issuing “WAIT” instructions to
specific buses, or not doing so, introduces non-deterministic choice points.

In our test, we consider as an input the (linear) traces of AVL data (e.g., provided by the bus
company5), as discussed in Sect. 8. Whenever in some states of the given system trace there is
clumping, the crucial point is then to turn such trace into a more complex, branching model, where
choice points denote the usage of “WAIT” instructions. Then, the branching model is analysed using
the same formulas again, in order to verify that the problem has been mitigated, by the fact that some
traces exist in the model that avoid clumping.

Consider a system trace, that is, a sequence of tuples of k elements, where k is the number of buses
serving a route. The length of the sequence is the number of samples. Element at position i in each
tuple is the position of bus i. At each step, besides the already existing transition to the next step,
more transitions are added, to new states, where one or more buses wait, (therefore, their position
does not change), and the other ones move as they actually did in the system trace.

As a proof-of-concept, in order to demonstrate our approach, we implemented such a transforma-
tion algorithm, and tested it on the example described in Sect. 8. The implementation is parametric
with respect to the maximum number of buses that are allowed to wait simultaneously, and the max-
imum number of wait instructions issued to the same bus. We remark that in normal situations, it

4More than one time step can be required. This can be achieved by repeated nesting of the EX operator. We did not
do so for the sake of clarity in Fig. 12.

5As in Sect. 5, we use artificial data for the sake of simplicity, but usage of our model-checker does not differ on real
data.
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(a) Initial state (b) Second state

(c) Bus 1 passes by the stop (d) Bus 2 passes by the stop

(e) Final state (f) Result from the model-checker. Points of the
initial state that will be involved in a conglomerate
are coloured

Figure 12: Spatio-temporal conglomerate.

does not make much sense to let many buses wait simultaneously, as this would result in a general
delay of the whole route. Similarly, it is not advisable to issue too many wait instructions to the same
bus, as this might result in unacceptable delay for the passengers running on that particular bus.
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Figure 13: Branching model obtained by augmenting a linear trace.

The input of the algorithm consists of the system trace as described above, and of a map. The tool
generates a branching model suitable for STLCS model-checking (see Sect. 6). The state space of the
branching model generated from the system presented in Fig. 12 is shown in Figure 13; as typical in
CTL model-checking, self-loops have been added to terminal states, since CTL-path formulas express
properties of infinite paths, i.e. infinite sequences of states. In Fig. 14 we show one of the several
traces of the system, in particular one where the conglomerate does not happen. To see that such a
trace exists, the model checker is run for the formula AF timeConglomerate, which is true only if all
system paths encounter a conglomerate. The result of the model-checker is that no point is coloured,
signalling that there are “good” paths for each point in space. Model-checking over the branching
model has an execution time of around five minutes on the same machine, where the analysis of the
linear trace takes around ten seconds. Even though optimization of the algorithm and performance
evaluation are left for future research, this is already a hint about the feasibility of spatio-temporal
model-checking in realistic use cases.

10 Related work

In [22] the authors present a spatial time-series model for tracking planned journeys although their
main area of concern is vehicle speed forecasting rather than detection of outliers. The detection of
outliers have been addressed by applying stochastic approaches. In [18] the authors present a method
for snapping GPS data onto a road network using a Hidden Markov Model. They identify noisy GPS
data as being the largest problem with snapping GPS readings onto road maps. They report that
GPS signals can be reasonably modelled as a zero-mean Gaussian with a standard deviation of 10
metres. In [14] the authors present an approach to inferring the lane structure of roads from GPS
data by fitting a mixture of Gaussians to GPS traces. This probabilistic approach naturally models
the inherent noise in GPS data. In [19] the authors apply the concept of functional depth to the
identification of outliers in GPS observations. Outliers are identified by detecting curves rather than
central values as in traditional statistical tests for comparing distributions.

The problems of headway computation are considered in [20], where the authors use Monte Carlo
simulation and time series analysis to evaluate a family of interpretations of an ambiguous regulation
governing headway for frequent bus services.

Different forms of spatial logic have also been proposed in computer science to refer to logics
expressing properties of structured objects such as processes or data structures, in particular in the
context of π-calculus (e.g. [5]) and mobile ambients with the related ambient logic (e.g. [7]). For
example a binary logic operator has been introduced, Φ|Ψ, that holds for a process P when this
process is a parallel composition of two processes Q, satisfying Φ, and R, satisfying Ψ. Works such as
[16, 6] introduce notions of physical space in the context of process calculi; it is an interesting future
work to connect this research line to spatio-temporal model checking.. Furthermore, in a stochastic
setting, the Mobile Stochastic Logic (MoSL) [13] has been proposed to predicate on mobile processes
in models specified in StoKLAIM, a stochastic extension of KLAIM based on the tuple-space model
of computations. Also logics for reasoning on signals have been enhanced with spatial aspects [4].
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Figure 14: A trace that does not contain conglomerates, since the second bus waits, when the first
bus arrives at the bus stop.

Other variants of spatial logics concern the symbolic representation of the contents of images, and,
combined with temporal logics, for sequences of images [3]. The latter is based on a discretisation of
the space of the images in rectangular regions and the orthogonal projection of objects and regions
onto Cartesian coordinate axes such that their possible intersections can be analysed from different
perspectives, whereas in [15] a linear spatial superposition logic is defined for the specification of
emergent behaviour. The logic is applied in the context of medical image analysis for the recognition
of patterns.
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The spatial logic SLCS used in the current paper, instead, addresses properties of discrete, graph-
based models that include geographical maps.

11 Conclusions

The use of a spatial model checker provides us with a sophisticated tool for checking complex properties
over systems where location plays an important role, as it does in many collective adaptive systems.
Using this tool we have been able to detect and correct a wide range of location-related errors in
vehicle location data. By enhancing the logic and the model checker with a temporal perspective, the
interplay of space and time has allowed us to define complex spatio-temporal formulas, predicating
over the relation between points of a coloured image that evolves over traces or branching models.

Current work is focused on defining collective variants of spatial and spatio-temporal properties;
that is, the satisfaction value of a formula is defined on a set of points, rather than on a single point,
so that the satisfaction value of a formula with respect to a set of points (a collective property) is
not necessarily determined by the satisfaction values over the points composing the set (an individual
property). Such interpretation of spatio-temporal logics is particularly motivated by the setting of
collective adaptive systems.

High priority in future work will be given to the investigation of various kinds of optimisations
for spatio-temporal model-checking, including partition refinement of models, symbolic methods, and
on-line algorithms taking advantage of differential descriptions of the changes between system states.

An orthogonal, but nevertheless interesting, aspect of computation is the introduction of proba-
bility and of stochastic features. Such features can also be added to our spatio-temporal logic, and
investigating efficient model checking algorithms in this setting is important for practical applications,
which are very often quantitative rather than boolean. The applications in the evaluation of correction
strategies that we presented would be very much enhanced by forms of quantitative analysis. Such
methodologies would be able to address questions like “how likely it is that a given strategy fixes the
problem?” or “how frequently does the problem manifest itself, before and after applying a given
strategy?”.
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