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Abstract

Spatial aspects of computation are becoming increasingly relevant in Computer Science, es-
pecially in the field of collective adaptive systems and when dealing with systems distributed in
physical space. Traditional formal verification techniques are well suited to analyse the temporal
evolution of programs; however, properties of space are typically not taken into account explic-
itly. We present a topology-based approach to formal verification of spatial properties depending
upon physical space. We define an appropriate logic, stemming from the tradition of topological
interpretations of modal logics, dating back to earlier logicians such as Tarski, where modalities
describe neighbourhood. We lift the topological definitions to the more general setting of closure
spaces, also encompassing discrete, graph-based structures. We extend the framework with a spa-
tial surrounded operator, a propagation operator and with some collective operators. The latter are
interpreted over arbitrary sets of points instead of individual points in space. We define efficient
model checking procedures, both for the individual and the collective spatial fragments of the logic
and provide a proof-of-concept tool.
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1 Introduction

Much attention has been devoted in Computer Science to formal verification of process behaviour.
Several techniques have been studied and developed that are based on a formal understanding of system
requirements through modal logics. Such logics typically have a temporal flavour, describing the flow
of events, and are interpreted in various kinds of transition structures. Among those techniques model
checking is one of the most successful (for an extensive overview see e.g. [4] and references therein).

In recent times, aspects of computation related to the distribution of systems in physical space have
become increasingly relevant. An example is provided by so called collective adaptive systems'. Such
systems are typically composed of a large number of interacting objects located in space. Their global
behaviour critically depends on interactions which are often local in nature. The aspect of locality
immediately poses issues of spatial distribution of objects. Abstraction from spatial distribution may
sometimes provide insights in the system behaviour, but this is not always the case. For example,
consider a bike (or car) sharing system having several parking stations, and featuring twice as many
parking slots as there are vehicles in the system. Ignoring the spatial dimension, on average, the
probability to find completely full or empty parking stations at an arbitrary station is very low;
however, this kind of analysis may be misleading, as in practice some stations are much more popular
than others, often depending on nearby points of interest. This leads to quite different probabilities
to find stations completely full or empty, depending on the examined location. In other cases, it may
be important to able to specify spatial properties concerning groups of points in space rather than
of individual points. For example, the property that agents associated to points in space are able
to connect to one another and act as a group, or that they are located all together in a protected
environment, or that they can share part of the same route to reach a common exit or goal. In all such
situations, it is important to be able to predicate over spatial aspects, and eventually find methods to
certify that a given collective adaptive system satisfies specific requirements in this respect.

In Logics, there is a considerable amount of literature focused on so called spatial logics, that is,
a spatial interpretation of modal logics [2]. Dating back to early logicians such as Tarski, modalities
may be interpreted using the concept of neighbourhood in a topological space. The field of spatial
logics is well developed in terms of descriptive languages and decidability or complexity aspects.
However, in this field, scant attention has been devoted to date to the development of formal and
automatic verification methods, e.g. model checking. Furthermore, the formal treatment of discrete
models of space is still a relatively unexplored field, with notable exceptions such as the work by
Rosenfeld [33, 43], Galton (e.g.[26, 25, 24]) and by Smyth and Webster [45]. Kovalevsky [36] studied
alternative axioms for topological spaces in order to recover well-behaved notions of neighbourhood.
The outcome is that one may impose closure operators on top of a topology, that do not coincide with
topological closure.

In [14] we proposed the logic SLCS (Spatial Logic for Closure Spaces), extending the topological
semantics of modal logics to closure spaces. The work follows up on the research line of Galton and

1See e.g. the web site of the QUANTICOL project: http://www.quanticol.eu, and that of the FOCAS Coordination
Action: http://www.focas.eu.

QUANTICOL 2 Mar 1, 2016


http://www.quanticol.eu
http://www.focas.eu

Model Checking Spatial Logics for Closure Spaces (Revision: 0.9; Mar 1, 2016) Mar 1, 2016

Smyth and Webster, enhancing it with a modal logic perspective. Closure spaces (also called Cech
closure spaces or preclosure spaces in the literature) are based on a single operator on sets of points,
namely the closure operator, and are a generalisation of standard topological spaces. In addition, finite
spaces and graphs are subclasses of closure spaces and the graph-theoretical notion of neighbourhood
coincides with the notion of neighbourhood defined in the context of closure spaces. Thus, closure
spaces provide a uniform framework for the treatment of all major models of space.

We provided a logical operator corresponding to the closure operator on sets of points in space, and
a spatial interpretation of the temporal until operator, fundamental in the classical temporal setting,
arriving at the definition of a logic which is able to describe unbounded areas of space. Intuitively,
the spatial until operator, which in the present paper we call surrounded, describes a situation in
which it is not possible to “escape” an area of points satisfying a certain property, unless by passing
through at least one point that satisfies another given formula. This operator was inspired by a
similar operator for topological spaces discussed by Aiello and van Benthem in [1, 48]. In [14] we also
presented a model-checking algorithm for SLCS when interpreted on finite models. The combination
of SLCS with temporal operators from the well-known branching time logic CTL (Computation Tree
Logic) [19], has been explored in [15, 17] and provides spatio-temporal reasoning and model checking.

In the present paper we extend SLCS with a further operator, P, capturing the notion of spatial
propagation; intuitively the formula ¢ P ¢ describes a situation in which the points satisfying ¢ can
be reached by paths rooted in points satisfying ¢ and, for the rest, composed only of points satisfying
1. We furthermore extend the logic with operators for collective properties, namely properties which
are satisfied by connected sets of points, rather than points in isolation. The formal semantics of the
extended logic—CSLCS, Collective SLCS—are provided in the form of a satisfiability relation defined
using the notion of infinite path in closure spaces. We finally extend the model-checking algorithm
in order to treat the newly introduced operators, and we present several examples of use of SLCS
and CSLCS from the domain of collective adaptive systems using a prototype implementation of the
spatial model-checker.

Related work.

Variants of spatial logics have also been proposed for the symbolic representation of the contents
of images, and, combined with temporal logics, for sequences of images [5]. The latter approach
is based on a discretisation of the space of the images in rectangular regions and the orthogonal
projection of objects and regions onto Cartesian coordinate axes such that their possible intersections
can be analysed from different perspectives. It involves two spatial until operators defined on such
projections considering spatial shifts of regions along the positive, respectively negative, direction of
the coordinate axes and it is very different from the topological spatial logic approach.

In [29, 30, 27] another variant of spatial logic is proposed in which spatial properties are expressed
using ideas from image processing, namely quad trees. This variant is equipped with practical model
checking algorithms and with machine learning procedures and allows one to capture very complex
spatial structures. However, this comes at the price of a complex formulation of spatial properties,
which need to be learned from some template image. The combination of this spatial logic with linear
time signal temporal logic, defined with respect to continuous-valued signals, has recently led to the
spatio-temporal logic SpaTeL [31].

In the specific setting of complex and collective adaptive systems, techniques for efficient approx-
imation have been developed in the form of mean-field or fluid-flow analysis (see [8] for a tutorial
introduction). Recently (see for example [13]), the importance of spatial aspects has been recognised
and studied in this context. In [40] a first step towards the combination of signal temporal logic with
spatial operators such as ‘somewhere’ and ‘everywhere’ has been performed. These two operators were
also proposed in work by Reif and Sistla [42]. In further joint work along this lines [41] some of the
spatial operators based on closure spaces from SLCS, such as the ‘surrounded’ operator, have been
added to the signal temporal logic fraction. Both boolean semantics and quantitative semantics of
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the spatio-temporal logic have been provided. The quantitative semantics provide a measure of the
robustness with which a spatio-temporal property holds in a given point in space at a particular time.
The approach has been applied to investigate the emergence and persistence of Turing patterns in
animal fur based on reaction diffusion models.

In [10] a geometric process algebra based on affine geometry has been proposed for describing the
concurrent evolution of geometric structures in 3D space. Spatial dynamics of systems have also been
studied in the context of Systems Biology applying suitable modelling and simulation approaches.
In [32] a spatial (and temporal) extension of the m-Calculus is proposed. The notion of space is
expressed by associating each process with its current position in R¢. The formal semantics of the
language are given, based on which simulation tools have been developed. In [6] an attributed, multi-
level, rule-based language, ML-Space, is presented that allows one to integrate different types of spatial
dynamics within one model. The associated simulator combines several stochastic simulation methods.
This allows for the simulation of reaction diffusion systems as well as taking excluded volume effects
into account. Formal verification and analysis, e.g. model checking, is not addressed.

In the Computer Science literature, some spatial logics have been proposed, that typically describe
situations in which modal operators are interpreted syntactically against the structure of agents in a
process calculus. We refer to [12, 9] for some classical examples. In the same line, a recent example
is given by [47], concerning model checking of security aspects in cyber-physical systems, in a spatial
context based on the idea of bigraphical reactive systems introduced by Milner [39]. The objects of
discussion in the latter research lines are operators that for example quantify over the parallel sub-
components of a system, the containment relation between places, or the hidden resources of an agent.
The meaning of the terminology “spatial logics” in that case is different from that used in the present
paper, where the “topological” interpretation of [48] is intended. The influence of space on agents
interaction is also considered in the literature on process calculi using named locations [20].

Logics for graphs have been studied in the context of databases and process calculi (see [11, 23],
and the references therein), even though the relationship with physical space is often only implicit, if
considered at all.

Graph-based spatial logics for collective adaptive systems are also proposed in [3]. In that ap-
proach the logic extends a chemical-based coordination model based on logic inference. Properties
are expressed in the form of combinations of logic programs. The spatial operators distribute such
programs over the nodes of a graph to infer information local to each node. The locally inferred data
is then logically aggregated at a global level and produces information about the spatial properties of
the overall system. The approach relies on a priori defined spatial patterns.

A successful attempt to bring topology and digital imaging together is represented by the field of
digital topology [43, 33]. In spite of its name, this area studies digital images using models inspired
by topological spaces, but neither generalising nor specialising these structures. Rather recently,
closure spaces have been proposed as an alternative foundation of digital imaging by various authors,
especially Smyth and Webster [45] and Galton [25]; we continue that research line in the present paper,
enhancing it with a (modal) logic perspective.

In [26], a sub-class of closure spaces, namely adjacency spaces, is presented. An adjacency space
is characterized by a set of entities together with a reflexive and symmetric relation. In the above
mentioned paper, adjacency spaces are used as the basis for the definition of regions, i.e. sets of
entities, and the construction of a discrete interpretation of logical operators typical of region calculi,
based on the notion of region connectedness derived from the notion of entity adjacency. Region calculi
operators predicate on regions (see [34] for a comprehensive overview), using boolean connectives like
“part of”, “boundary”, “overlap” and so on. An important aspect of adjacency spaces is that they can
be easily turned into topological spaces, without loosing any information on their internal structure,
which makes them rather attractive. Verification issues, e.g. model-checking, are not addressed in [26].

The structure of the present paper is as follows. Section 2 recalls basic concepts and definitions
related to Closure Spaces, their sub-classes of Topological Spaces and Quasi-discrete Closure Spaces
and introduces the notion of Euclidean and quasi-discrete paths in Closure Spaces. Section 3 briefly
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recalls SLCS and presents its extension with the propagation operator P. Section 4 introduces the
collective spatial logic CSLCS while Section 5 shows some examples of use of the proposed logics
when interpreted on Quasi-discrete Closure Spaces. In Section 6 the model-checking algorithms for
SLCS and CSLCS interpreted on finite models are presented. In Section 7 the proof-of-concept model-
checker is shown together with several examples of use. Finally, some conclusions are drawn and lines
for future research are outlined in Section 8. All detailed proofs are provided in the Appendix.

2 Closure spaces

In this work, we resort to some abstract mathematical structures for the definition of space. The
mathematical structure of choice of spatial logics are very often topological spaces, possibly enriched
with metrics, or other spatial features (see [48]). The use of abstract structures has the advantage to
separate logical operators, such as neighbourhood, from the specific nature of space (e.g., the number
of dimensions, or the presence or absence of metric features, etc.). However, using topological spaces,
it may be difficult to deal with discrete structures, such as finite graphs. In [25], closure spaces, which
generalise topological spaces, are proposed as a unifying approach treating both topological spaces
and graphs in a satisfactory way. In this section, we recall several definitions and results on closure
spaces, most of which are taken from [25].

2.1 Basic concepts and definitions

A closure space (also called Cech closure space or preclosure space in the literature), is composed of a
set (of points) and a (closure) operator on subsets (of points), as specified by the following definition:

Definition 2.1. A closure space is a pair (X, C) where X is a set, and the closure operator C : p(X) —
p(X) assigns to each subset of X its closure, obeying to the following laws, for all A, B C X:

1. C(0) =0;
2. A CC(A);
3. C(AUB) = C(A)UC(B).

Below, we consider an example of a closure space, with set of points X in a classical Euclidean
space, but exhibiting a non-standard closure operator.

Example 2.2. Let § € Ry and Cs : p(R?) — p(R?) be such that:

Cs(A) = {(x1,11) € R?*[3(z2,52) € A/ (w2 — 21)? + (y2 — 31)? < 6}

Function Cs maps each subset A of R? to the set of points that lay in a radius 6 from a point in A (see
Figure 1). It is easy to see that Cs satisfies all the three conditions of Definition 2.1 and that (R?,Cs)
is a closure space. o

As a matter of notation, in the following, for (X,C) a closure space, and A C X, welet A = X \ A
be the complement of A in X.

Definition 2.3. Let (X,C) be a closure space; for each A C X:
1. the interior Z(A) of A is the set C(A);
2. A is a neighbourhood of x € X if and only if x € Z(A);

3. Ais closed if A= C(A) while it is open if A =TZ(A).
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Figure 1: A picture of Example 2.2; the union of the blue and red areas is the closure of the red area

Example 2.4. Let us consider the closure space (R?,Cs), introduced in Example 2.2, assuming, for
simplicity, that § < 1. Let A = {(x,y) € R?|\/22 + y? < 1}. We have that:

o Z(A) = {(z,y) € R?[/a? + ¢ <1 -5}

e for any (z1,71) € R?, A is a neighbourhood of (1, %) if and only if:

{(z2,92) € R*|V/ (w2 — 1) + (12 — 1) <6} C A

e the only closed set (of the closure operator Cs) in p(R?) is R?, while () is the only open set. e
The following proposition states a number of general properties of closure spaces.
Proposition 2.5. Let (X,C) be a closure space, the following properties hold:

1. A C X is open if and only if A is closed;

2. closure and interior are monotone operators over the inclusion order, that is: A C B —
C(A) CC(B) and Z(A) C Z(B)

3. Finite intersections and arbitrary unions of open sets are open.

Given a closure space (X,C), and A C X, we can define the boundary of A. The latter is only
given in terms of closure and interior, and coincides with the definition of boundary in a topological
space (see subsection 2.2 below). We also provide two similar notions, namely the interior and closure
boundary (the latter is sometimes called frontier).

Definition 2.6. In a closure space (X,C), the boundary of A C X is defined as B(A) = C(A) \ Z(A).
The interior boundary is B~ (A) = A\ Z(A), and the closure boundary is BT (A) = C(A) \ A.

In [24], a discrete variant of the topological definition of the boundary of a set A is given, for the
case where a closure operator is derived from a reflexive and symmetric relation (see Definition 2.15
in the next section). Therein, in Lemma 5, it is proved that the definition of [24] coincides with the
one we provide above.
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Model Checking Spatial Logics for Closure Spaces (Revision: 0.9; Mar 1, 2016) Mar 1, 2016

Proposition 2.7. The following equations hold in a closure space:

B(A) = B*(A) UB~(A) (1)
BH(A)NB~(A) =0 2)
B(A) = B(4) (3)

B*(A) =B~ (A4) (4)

BY(A) = B(A) N4 (5)

B=(A) = B(A)N A (6)

B(A) = C(A)NC(A) (7)

A closure space can be also obtained by restricting the domain of another space.

Definition 2.8. Given a closure space (X,C) and a subset Y C X, we call subspace closure the
operation C¥ : p(Y) — o(Y) defined as C¥(A) = C(A)NY. We call (Y,CY) the subspace of (X,C)
generated by Y.

Proposition 2.9. The subspace closure is a closure operator.

RQ
Example 2.10. (RQZO,C(S 2%) is a subspace of the closure space (R?,Cs) introduced in Example 2.2,
generated by ]Rzzo. °

2.2 Topological spaces

Closure spaces are a generalisation of topological spaces. The axioms defining a closure space are also
part of the definition of a Kuratowski closure space, which is one of the possible alternative definitions
of a topological space. The link between topological and closure spaces is deep. In this section we
provide a brief introduction to the topic; we refer the reader to, e.g., [25] for more information.

Definition 2.11. A topological space is a pair (X, O) of a set X and a collection O C p(X) of subsets
of X called open sets, such that 0, X € O, and subject to closure under arbitrary unions and finite
intersections.

Definition 2.12. A Kuratowski closure space, or idempotent closure space, is a closure space where
the closure operator is idempotent, that is, for all A C X, C(C(A4)) = C(A).

Definition 2.13. In a topological space (X,0), A C X is closed if its complement is open.

The Kuratowski definition and the open sets definition of a topological space are equivalent. Each
topological space under the open sets definition is also an (idempotent) closure space, and each idempo-
tent closure space is a topological space. The proof can be sketched as follows. To view a topological
space defined in terms of open sets as a closure space, one defines C(A) as the smallest closed set
containing A (this is the standard topological closure). The properties of Definition 2.1 hold, and,
additionally, the obtained closure space is idempotent. For the converse, starting from a closure
space (X, C) whose closure operator is idempotent, the open sets are given by Definition 2.3 (3). The
topological definition of closure in the obtained space coincides with C.

Example 2.14. The closure space of Example 2.2 is not a topological space, as its closure operator
is not idempotent. °
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2.3 Quasi-discrete closure spaces

A closure space may be derived starting from a binary relation, that is, a graph. Such closure spaces
may be characterised as quasi-discrete as briefly presented in this section. For additional details we
refer the interested reader to [25].

Definition 2.15. Consider a set X and a relation R C X x X. A closure operator is obtained from
RasCr(A)=AU{zre X |Ja€ A.(a,x) € R}.

Proposition 2.16. The pair (X,Cr) is a closure space.

Closure operators obtained by Definition 2.15 are not necessarily idempotent. Lemma 11 in [25]
provides a necessary and sufficient condition, that we rephrase below. We let R~ denote the reflexive
closure of R.

Lemma 2.17. Cr is idempotent if and only if R~ is transitive.

Note that when R is transitive, so is R~, thus Cg is idempotent. The vice-versa is not true. For
instance, it may happen that (z,y) € R, and (y,z) € R, but (z,z) ¢ R.

Remark 2.18. In topology, open sets play a fundamental role. However, the situation is different in
closure spaces derived from a relation R. For example, in a closure space derived from a symmetric
relation, whose graph is connected, the only open sets are the whole space, and the empty set.

Proposition 2.19. Given R C X x X, in the space (X,Cr), we have:

I(A) ={zx € A|-3a € A(a,z) € R} (8)
B (A)={rcA|JacA(a,zr)< R} 9)
BT (A)={rc A|3ac A(a,z) € R} (10)

Closure spaces derived from a relation can be characterised as quasi-discrete spaces (see also
Lemma 9 of [25] and the subsequent statements).

Definition 2.20. A closure space is quasi-discrete if and only if one of the following equivalent
conditions holds:

i) each x € X has a minimal neighbourhood? Ny;
ii) for each A C X, C(A) = U,c4C({a}).
The following is proved as Theorem 1 in [25].

Theorem 2.21. A closure space (X,C) is quasi-discrete if and only if there is a relation R C X x X
such that C = Cpg.

Summing up, whenever one starts from an arbitrary relation R C X x X, the obtained closure
space (X, Cr) enjoys minimal neighbourhoods, and the closure of a set A is the union of the closure of
the singletons composing A. Furthermore, such nice properties are only true in a closure space when
there is some R such that the closure operator of the space is derived from R. In the remainder of
this section, we exemplify some aspects of quasi-discreteness.

2A minimal neighbourhood of x is a set that is a neighbourhood of = (Definition 2.3 (2)) and is included in all other
neighbourhoods of x.

QUANTICOL 8 Mar 1, 2016



Model Checking Spatial Logics for Closure Spaces (Revision: 0.9; Mar 1, 2016) Mar 1, 2016

T T T T | %
;o il éz g ﬁ E g i
= HQHOH@OHQHOHO

Figure 2: A graph inducing a quasi-discrete closure space

Example 2.22. Every graph induces a quasi-discrete closure space. For instance, consider the (undi-
rected) graph depicted in Figure 2. Let R be the (symmetric) binary relation induced by the graph
edges, and let Y and G denote the set of yellow and green nodes, respectively. The closure Cr(Y')
consists of all yellow nodes and red nodes, while the closure Cr(G) contains all green nodes and blue
nodes. The interior Z(Y) of Y contains a single node, the one located at the bottom-left in Figure 2.
The interior Z(G) of G is empty. Indeed, we have that B(G) = Cr(G), while B~ (G) = G and B1(G)
consists of the blue nodes. °

Example 2.23. The closure space of Example 2.2 is a quasi discrete closure space. Indeed, define
Rs C R? x R? as:

Rs = {((x1,31), (x2,92))[V/ (w2 — 21)? + (2 — 31)? < 6}

It is easy to prove that Cs = Cg,. Note that Rs is reflexive but not transitive. So, the closure space is
not a topological space. °

Existence of minimal neighbourhoods does not depend on finiteness of the space; moreover, it is
not even required that each point has a finite neighbourhood, as illustrated by the following example:

Example 2.24. Consider the rational numbers Q, with the relation <. Such a relation is reflexive
and transitive, thus the closure space (Q,C<) is topological and quasi-discrete (but not finite). For
any x € Q, we have N, = {y € Q|y < z}, which is not finite. o

Example 2.25. Another example of closure space exhibiting minimal neighbourhoods in absence of
finite neighbourhoods is the one considered in Example 2.2. In Example 2.4 we show that for any
(71,y1) € R?, A is a neighbourhood of (z1,%1) if and only if

{(2,92) € R*[\/ (w2 —21)2 + (y2 —y1)2 < 0} C A.

Hence, Ny, 1) = {(22,92) € R?|\/(w2 — 21)? + (y2 — y1)? < 6} .

Example 2.26. An example of a topological closure space which is not quasi-discrete is the set of real
numbers equipped with the Euclidean topology (the topology induced by arbitrary union and finite
intersection of open intervals). To see that the space is not quasi-discrete, one applies Definition 2.20.
Consider an open interval (z,y). We have C((x,y)) = [z,y], but for each point z, we also have

C(z) = [z,2] = {2} Therefore U,¢(,,) C(2) = U,e@y {2} = (z.y) # [z, 9]. o

We note in passing that any finite space is trivially a quasi-discrete closure space. Quasi discrete
closure spaces can be used to model spatial structures in R", as shown below.

Example 2.27. Let .# C p(R™) be a partition of R™, each element of which is either open or closed,
ie. UA€¢A R*" VA Be ZF:A#B—>ANB=0)VAe ZF: A=TZ(A)vVA=C(A). We let
R7 C.Z x .F be the connectedness relation among elements of .%, formally:

R7 = {(A, B)|A, B open and C(A) NC(B) # 0}
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Figure 3: A quasi-discrete closure space inducing a spatial structure.

Closure spaces

Quasi-discrete
closure spaces

Finite point
spaces

Topological spaces

Figure 4: The hierarchy of closure spaces.

where C is the standard topological closure over R™. It is easy to see that (.#,Cr#) is a quasi discrete
closure space. Figure 3 shows an example in R?, where the open sets are shown in pink, while the
only closed set is shown in black. °

In Figure 4, the hierarchy of closure spaces with respect to quasi-discreteness is shown. All finite
spaces are quasi-discrete, as closure of arbitrary sets is determined by that of the singletons, by the
axiom C(A) UC(B) = C(AU B). Obviously there are quasi-discrete infinite spaces (any infinite graph
interpreted as a closure space is an example). A quasi-discrete space which is also topological is the
space associated to any complete graph. In this case, for any set, C(A) is the whole space, thus closure is
idempotent. More precisely, the topology determined by the closure operator associated to a complete
graph is the indiscrete topology, where the only open sets are the empty set and the whole space. It is
obvious that there are topological spaces that are not quasi-discrete, such as Euclidean spaces. Finally
there are closure spaces that are neither topological nor quasi discrete. The most obvious example is
the coproduct (disjoint union) of a topological and a quasi-discrete, but not topological, closure space,
which is a closure space under Definition 2.28 (we omit the proof as it is an easy exercise).

Definition 2.28. Given two closure spaces (X,CX) and (Y,CY), consider the disjoint union of X and
Y, represented as X WY = X' UY’ with X’ = {(1,z) | z € X} and Y/ = {(2,y) | y € Y}. In order
to equip the set X W'Y with a closure operator, for each A C X WY, let AX = {z | (1,2) € A} and
AY ={y|(2,y) € A}. Define C(4) = {(1,2) |z € C*(A%)} U{(2,y) |y € CT(A")}.

2.4 Paths and connectedness in closure spaces

In this section we define paths and connectedness for interesting classes of closure spaces. A uniform
definition of paths in closure spaces is non-trivial. It is possible, and often done, to borrow the notion of
path from topology. However, as we shall see, the extension is not fully satisfactory. For example, the
topological definition does not yield graph-theoretical paths in the case of quasi-discrete closure spaces.
Our solution is pragmatic. We define paths as it is natural in interesting classes of closure spaces. We
leave open the possibility to change this notion, in chosen classes of closure spaces, practically making
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our theory dependent on such choice. The theoretical question of finding a truly uniform notion of
path (e.g., by some form of category-theoretical universal property characterising a path-connected
class of spaces) is left for future work. First of all we introduce the definition of continuous function,

which restricts to topological continuity in the setting of idempotent closure spaces>.

Definition 2.29. A continuous function f: (X1,C1) — (X2,C2) is a function f : X; — Xo such that,
for all A C X5, we have f(C1(A)) C Ca(f(A4)).

Below, two kinds of paths are introduced: Fuclidean paths and quasi-discrete paths.

Definition 2.30. For each closure space (X,C), assume a chosen closure space J, equipped with a
linear order < with bottom 0, and call path a continuous function p : 3 — (X,C). In particular, call
FEuclidean path any continuous function whose domain is the half-line R>o = {x € R | 0 < z}, equipped
with the Euclidean (topological) closure operator. Call quasi-discrete path any continuous function
whose domain is the quasi-discrete closure space (N,Cgyc) where (n,m) € Succ <= m =n+ 1.
Whenever (X, C) is an Euclidean topological space (resp. a quasi-discrete closure space), call path an
Euclidean (resp. quasi-discrete) path whose codomain is (X, C).

Note that in Definition 2.30 we do not require compatibility conditions between the closure oper-
ator and the linear order of J. Depending on the application context, different orders may be chosen,
obtaining different interpretations of logics, or different degrees of compatibility between closure and
paths (see e.g. Theorem 3.7). We consider the study of appropriate compatibility conditions, deter-
mining a universal notion of path for certain classes of closure spaces, out of scope for the current
paper. We can, though, provide a hint about the complexity of such study. One of the major dif-
ficulties in finding a unifying notion is that Euclidean paths are not directed, whereas quasi-discrete
paths are directed. The examples in this section are also aimed at making this problem more clear.
Directed paths in topology are a highly non-trivial topic by themselves, and gave rise to the subject
of directed algebraic topology [28]. Generalizing directed algebraic topology to work in the setting of
closure spaces could be a relevant strategy to face these issues.

As a matter of notation, we call p a path from x, and write p : © ~» oo, when p(0) = z. We write

y € p whenever there is ¢ such that p(i) = y. We also write p : ~;-> oo when p is a path from z and
p(i) =y.

The definition of Euclidean path is intuitively similar to the classical topological definition of a
path, namely a continuous function from the unit interval [0, 1], except that Euclidean paths that we
defined are “open-ended on the right” (note that the open interval [0,1) and RT are continuously
isomorphic). The definition of quasi-discrete path, on the other hand, mimics the classical definition

of infinite path in a graph. Simply adopting Euclidean paths in quasi-discrete spaces yields counter-
intuitive results, as shown below.

Example 2.31. Consider the quasi-discrete closure space obtained from the graph G = ({a, b}, {(b,a)})
having two nodes a, b, and only one edge, from b to a. Note that there is no graph-theoretical path
from a to b. However, consider the function p : R>g — {a, b}, defined by p(0) = a, and p(i) = b for
1 # 0. This function is continuous, thus it is an Euclidean path starting from a and traversing b. To
see this, choose any subset J of the half-line.

e If J = (), the thesis is trivially obtained; otherwise, assuming J # ():

e if J = {0}, then p(C(J)) = p({0}) = p(J) C C(p(J)); otherwise, assuming J # @ and J # {0},
necessarily b € p(J), and:

3Note that in topological spaces one may equivalently use the definition we propose here, based on the Kuratowski
axioms, or the definition of continuity using open sets, namely f is continuous whenever for each open set o, f 71(0) is
open. However, the two definitions do not coincide for arbitrary closure spaces (open sets play a less important role in
closure spaces, see Remark 2.18).
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e if 0¢ Jand 0 ¢ C(J), then p(C(J)) =p(J) = {b} C C(p(J));
e if 0 ¢ J and 0 € C(J), then p(C(J)) = {a,b} =C({b}) =C(p(J));
e if 0 € J, then p(C(J)) C {a,b} = C(p(J)).

We saw that Euclidean paths may not yield the expected results in quasi-discrete closure spaces. On
the other hand, graph-theoretical and quasi-discrete paths coincide.

Lemma 2.32. Given a (quasi-discrete) path p in a quasi-discrete space (X,Cg), for all i € N with
p(i) # p(i + 1), we have (p(i),p(i + 1)) € R, i.e., the image of p is a (graph theoretical, countably
infinite) path in the graph of R. Conversely, each countable path in the graph of R uniquely determines
a quasi-discrete path.

Note that, in particular, in Example 2.31 there is no quasi-discrete path rooted in a and passing by
b, whereas there are quasi-discrete paths rooted in b and passing by a (for example, the path defined
by p(0) = b and p(i > 0) = a). Let us introduce the notion of connectedness that we use in this work.

Definition 2.33. Given a closure space (X,C), set A C X is path-connected if and only if for each
x,y € A there is a path p and an index ¢ such that p(0) = z, p(i) = y and, for all j < i, p(j) € A.

Note that, for quasi-discrete closure spaces, by Lemma 2.32, Definition 2.33 coincides with the
usual notion of strong connectedness in graph theory.

Remark 2.34. It is worth mentioning that connectedness can be also borrowed from topology, re-
sorting to the notion of separation. Formally, let (X,C) be a closure space. Two sets Aj, Ag C X
are separated if and only if C(A1) N Ay = 0 = A1 NC(As2). Note that separated sets are also disjoint,
since for all sets A, we have A C C(A). Thus, there is no explicit requirement that A; and Ay are
disjoint. Set A C X is connected if and only if there are no non-empty, separated sets Ay, Ao C X such
that A = A; U Ay. In the case of topological spaces, the difference between this definition and path
connectedness is widely known. There is a difference also in quasi-discrete closure spaces. A quasi-
discrete closure space which is connected, but not path-connected is the space ({1,2,3},Cr), where
R =1{(1,2),(3,2)}. By Lemma 2.32 there is no path from 1 to 3; however, it is not possible to find
two non-empty, separated sets Ay, Ay with X = A; U As. The only possible choices, recalling that sep-
arated sets must be disjoint, are Ay = {1,2}, Ay = {3}, with C(A2)NA; = {2}, A1 = {1}, A2 = {2,3},
with C(Al) NAy = {2}, and A; = {1,3},A2 = {2} with C(Al) NAy = {2}

3 Spatial logics for closure spaces

In this section we present SLCS: a Spatial Logic for Closure Spaces, that we first proposed in [14].
The logic is meant to assign to formulas a local meaning; for each point, formulas may predicate
both on the possibility of reaching other points satisfying specific properties, or of being reached from
them, along paths of the space. In [14], SLCS is equipped with two spatial operators: a “one step”
modality, called “near” and denoted by A/, turning the closure operator C into a logical operator, and
a binary spatial until operator U, which is a spatial counterpart of the temporal until operator. In the
present paper we extend SLCS with an additional binary operator, P, used to model propagation, and
propose a new interpretation for i, based on the notion of paths that we introduced in subsection 2.4.
In order to avoid confusion, we call the newly defined connective surrounded, and use the symbol
S. Operator S coincides with U in the case of quasi-discrete closure spaces, and enhances it by also
providing an intuitively meaningful interpretation in the case of continuous (e.g. Euclidean) spaces.
The proposed spatial logic combines these new operators with standard boolean operators. Assume a
finite or countable set AP of atomic propositions.
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® = a [ATOMIC PROPOSITION]
T [TRUE]
| -d [NO ]
| ®AP [AND]
| N® [NEAR]
| @®S® [SURROUNDED]
| @®P&P [PROPAGATION]

Figure 5: SLCS syntax

Definition 3.1. The syntax of SLCS is defined by the grammar in Figure 5, where a ranges over AP.

In Figure 5, T denotes the truth value true, — is negation, A is conjunction, N is the closure
operator, S is the surrounded operator, and P is the propagation operator. From now on, with a small
overload of notation, we let ® denote the set of SLCS formulas. We shall now define the interpretation
of formulas.

Definition 3.2. A closure model is a pair M = ((X,C), V) consisting of a closure space (X,C) and a
valuation V : AP — 2% assigning to each atomic proposition the set of points where it holds.

Definition 3.3. Satisfaction M,z = ¢ of formula ¢ € ® at point € X in model M = ((X,C),V) is
defined by induction on the structure of terms, by the equations in Figure 6.

M,z E a€ AP <= z€V(a)

M,z = T <~ true

M,z = —¢ = M,z ¢

M,z E 91 NPy <— M,z ¢ and M,z |= @2

Mz | N¢ — zeC{ye XM,y 9¢})

Mz E 91Spy <= M,z d1 AVp:x~ o NIM,p(l) = —¢p1
— k0 < k < LM, p(k) | o

Mz E 91 Popy — M,J:}:gbg/\ElyElp:y%oo.M,ylqul/\

Vio<i<l = M,p(i) = ¢

Figure 6: SLCS semantics

Atomic propositions and boolean connectives have the expected meaning. For formulas of the form
@1 S @2, the basic idea is that point z satisfies ¢1 S ¢p2 whenever there is “no way out” from ¢, unless
passing by a point that satisfies ¢9. For instance, if we consider the model of Figure 2, yellow nodes
should satisfy yellow S red while green nodes should satisfy green S blue. A point x satisfies ¢1 P ¢o if
it satisfies ¢9 and it is reachable from a point satisfying ¢ via a path such that all of its points, except
possibly the starting point, satisfy ¢o. For instance, if we consider again the model of Figure 2, blue,
green and white nodes satisfy green P —red while the same formula is not satisfied by yellow nodes.

In Figure 7, we present some derived operators. Besides standard logical connectives, the logic can
express the interior (Z¢), the boundary (d¢), the interior boundary (6~ ¢) and the closure boundary
(6T @) of the set of points satisfying formula ¢. Moreover, by appropriately using the surrounded oper-
ator, operators concerning reachability (¢1 R ¢2), global satisfaction (€ ¢, everywhere ¢) and possible
satisfaction (F¢, somewhere ¢) can be derived. Finally we define the A connective, expressing that
@2 keeps x “apart” from ¢,. More explanation is provided below.

Proposition 3.4. We have that:
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1 £ T PLV o £ (=p1 Aga)
¢ £ -(N-9) d¢ = (No) A (-Z¢)
"¢ £ 9N (-T9) ote 2 (No)A(—9)
P1Re2 = —((—¢2) S(—¢1)) Eg £ 9S1

Fo £ —&(—9) prAdy = (1 P(—¢2))

Figure 7: Some SLCS derived operators

1. M,z = ¢1 R ¢2 if and only if there is p : x ~ oo and k such that M, p(k) = ¢2 and for each j
with 0 < j < k, we have M, p(j) = é1;

2. M,x = ¢p1 Ao, if and only if M,z |= ¢ or for any y such that M,y = ¢1, and for any
Dy RS 00, there exists i such that 0 <i <1 and M,p(i) = ¢2.

3. M,x = E ¢y if and only if for each p : x ~ o0 and i € N, M, p(i) E ¢1;
4. M,z |= Fé1 if and only if there is p : x ~ oo and i € N such that M, p(i) = ¢1.

Note that point = satisfies ¢1 R ¢9 if and only if either ¢9 is satisfied by x or there exists a sequence
of points after x, all satisfying ¢1, leading to a point satisfying both ¢ and ¢;. In the second case,
it is not required that x itself satisfies ¢1. For instance, both red and green nodes in Figure 2 satisfy
(white V blue) R blue, as well as the white and blue nodes. The formula is not satisfied by the yellow
nodes. This is so because the first node of a path leading to a blue node is not required to satisfy
white or blue. It is easy to strengthen the notion of reachability when we want to identify all white
nodes from which a blue node can be reached by requiring in addition that the first node of the path
has to be white. We can define this notion as a derived operator as follows:

o1 T 2 = 1 A (1 V ¢2) R ¢2)

Note also that ¢9 is occurring also in the first argument of R. This is because satisfaction of ¢1 R ¢o
requires that the final node on the path satisfies both 7 and ).

A point z satisfies M,z |= ¢1 A @9 if it satisfies ¢ or every path from a point y satisfying ¢1 to =
passes by a point satisfying ¢o laying between y and x. For instance, with reference to Figure 2, let
us consider yellow A red, that is —(yellow P —red). Note that yellow P —red is satisfied by the yellow
points in the figure: for each yellow point z, let y be any yellow point (even x itself) and p a path
starting from y and passing by x staying in the yellow area. Furthermore, points that are not yellow do
not satisfy yellow P —red by definition of P. Therefore, yellow A red is satisfied by all other points in
the figure, including the red ones. Furthermore, all white nodes in the figure satisfy both yellow A red
and green A blue.

It is worth noting that in some situations, operators dealing with paths in opposite directions may
be inter-expressible. However, an appropriate formalisation of such kinds of axioms, and the study of
the associated classes of closure models, is left for future work.

We conclude this section by restricting our attention to quasi discrete closure models, i.e. closure
models that are originated from quasi discrete closure spaces, in order to compare Definition 3.3 with
the interpretation of S studied in [14].

Definition 3.5. A quasi discrete closure model is a pair M = ((X,C), V) consisting of a quasi discrete
closure space (X,C) and a valuation V : AP — 2% assigning to each atomic proposition the set of
points where it holds.

Example 3.6. For k,h € N, let N7 , be the set {(i,j) € NxN |i € [1,k]Aj € [1,h]}. A digital image
of size k x h, on finite set of colours C, is a function f : Ni’h — (', assigning a colour to each point
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Y

Y

Figure 8: Two continuous closure models (boundaries are deliberately represented as very tick, but
the reader should think of them as infinitely thin).

of a finite rectangle in N2. Such an image gives rise to the quasi-discrete closure space (Ng,hs Caadj)
where

((z1, 1), (w2,2)) € dadj <= (21— 32)° + (y1 — 12)° = 1

Furthermore, we also define the closure model ((Ng p,Caqg;), V) with atomic propositions in C, where
Vice 0) = {(i.j) € N2, | £(i,5) = c}.

In words, such closure model is based on a regular grid, where each pixel, except those on the
borders, has four neighbours, corresponding to the directions right, left, up and down. On top of this
space, atomic propositions are interpreted as the colours of pixels. °

In [14], we introduced the spatial until operator ¢1Upy, with a similar intended meaning as S. The
main difference is that the definition of U requires existence of a set of points satisfying ¢, having
closure boundary satisfying ¢2. The definitions of § and U coincide in the case of quasi-discrete
spaces (see Theorem 3.7). As we will see, the definition using paths behaves in a more natural way
for topological spaces. First, we compare the interpretation of S given in [14] with Definition 3.3.

Theorem 3.7. In a quasi-discrete closure model M: M,x |= ¢1 S ¢2 according to Definition 3.3
if and only if M,x = ¢1UPy according to [14], namely, there is A C X such that x € A, and
Vy € AM,y = ¢1, and Vz € BT (A).M, z |E ¢a.

We conclude this section by showing two examples where the definition of [14] behaves in a counter-
intuitive way, whereas the definition using paths works as expected.

Example 3.8. We define two models based on the Euclidean topology over R?, seen as a closure space
(R%,C). We use propositions b, w, g, depicted in Figure 8 as black, white and grey areas, respectively.
Consider the sets H = {(z,y)|22 +1y? < 1}, H< = {(z,9)|2®> +y? = 1Ax < 0}, HZ = {(z,y)|2® +y® =
1Az > 0}. Let M; = ((R%C),V;), for i € {1,2}. Fix valuations as follows: V;(b) = H U H<,
Vl(w) = R? \ V1(b), Vl(g) = (Z), VQ(b) = V1(b), Vz(w) = H= \ H, Vg(g) =Ry \ (H UH<U HE)_ Let
x € H. Clearly, we have M,z = bSw, and Mo,z ¥ bSw, as there are paths starting at a black
point in My and reaching a grey point, which does not satisfy b, without passing by white points.
The expectation is that bl/w holds at x in My, which is true by the choice A = H U H<, but note
that B (A) = H=Z. For this reason, we also have My, z = bldw by the choice A = H U H<, which is
not what one would expect when thinking of the area H being “surrounded” by white points.
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Collective formulas Individual formulas
U o= T [TRUE] d = a [ATOMIC PROPOSITION]
=4 [NOT] | T [TRUE]
| YAU  [AND] | - [NoT|
| & < ¥ [SHARE] | ®A® [AND]
| Go [GrROUP] | N®  [NEAR]
| ®P3P [PROPAGATION]
| ®S® [SURROUNDED]

Figure 9: CSLCS syntax.

4 The collective spatial logic CSLCS

So far, the properties expressed by our logic refer to points in space, when considered individually.
However, when looking at space, it is also natural to formulate properties of sets of points, considered
as a collective entity. As we shall see, our notion of collectivity is that of a set of points that are
inter-reachable by paths in the whole space. Therefore, not only connected sets are of interest to our
logic, but also sets of isolated points or components, that are subsets of path-connected sets satisfying
given properties. Other logics predicating on sets of points include the family of region calculi (see
[34] for a comprehensive overview), describing properties of regular sets, and using mereotopological
boolean connectives (e.g., “part of”, “boundary”, and so on). Such logics characterise regions of space.
We explicitly divert from this research line, because we aim at characterizing local properties of points,
fitting in the tradition of modal logics, and relating individuals to the collectivity they live in. Our
choice of collective operators is driven by this principle, and is modulated by the requirement of a
computationally feasible model checking procedure.

Getting into detail, given a closure model M = ((X,C), V), one may introduce “collective” formulas
1 (whose syntax and semantics will be clarified in the remainder of the paper) equipped with a collective
interpretation, assigning a boolean valuation to the problem M, A |= 1 for each set of points A C X.
We define the collective spatial logic of closure spaces CSLCS, which is interpreted on closure models.
The logic has a collective fragment and an individual fragment. The collective fragment is evaluated
on subsets of the set of points of the space. The individual fragment, which is evaluated on single
points, is the logic SLCS defined in Section 3.

Definition 4.1. Fix a set AP of atomic propositions. The syntax of formulas is defined by the
grammar in Figure 9, where a ranges over AP. °

We deliberately use the same syntax for boolean connectives both in the individual and the col-
lective fragment, as usage of either fragment is always clear from the context. Boolean operators are
standard. The novel operators we propose are the share connective and the group connective. Let ¢
be an individual formula, and 1) a collective formula. Informally, ¢ —< 1 (read: ¢ share 1)) is satisfied
by set A when the subset of points of A satisfying the individual property ¢ also satisfies the collective
property ¢. Formula G¢ holds on set A when its elements belong to a group, that is, a possibly larger,
path-connected set of points, all satisfying the individual formula ¢.

The satisfaction relation of the logic for each collective formula 1) is given in the form M, A ¢ v,
where M is a closure model (see Definition 3.2), and A C X is a set of points.

Definition 4.2. Given a model M = ((X,C),V)), and A C X, collective satisfaction |=¢ is given by
the inductive definition below, where |= is the individual satisfaction relation of Definition 3.3:
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MA Ec T

MvA ):C' - <~ M,A#C w

M,A Ec 1Ay <= M,Alc ¥ and M, A |=¢ o

MvA ):C ¢{¢ — Ma{xEA‘va):(b}):Cw

M,A Ec Go <= dB C X.A C B A B is path-connected A

AVz € BM,z E ¢

[ ]
The definition of G requires the existence of a set B which is possibly larger than A. The intuition is
that the elements of A are part of a larger “collective”, consisting of elements satisfying ¢. We consider
variants of connectedness as the most basic forms of collective and spatial property. In particular,
we use path-connectedness, in line with the path-based interpretation of SLCS. Connectedness is
“collective” in the sense that it is not merely determined by a property of the singletons composing
a set, and it is not even preserved in subsets of a connected set. On the other hand, even though
one could imagine all sorts of collective predicates on a model, we focus on (path-)connectedness,
as it is completely determined by the structure of a closure space. For this reason, we consider it a
fundamental collective property, deserving special treatment in the field of spatial logics, akin to the
notion of transition in models of modal logics. Due to the restrictions that we introduce (mainly the
strict layering of the collective and individual fragments) the logic CSLCS can be automatically verified
at a computational cost which is comparable to that of SLCS. Using CSLCS one is able to check that
given individuals lay in the same area of space, and they share specific properties. Informally (and
depending on the chosen closure model), this idea can be interpreted, for example, as: the fact that
certain individuals are able to connect and act as a group; that they may follow the same route to
reach a goal; that they are located all together in a protected environment; etc. Below, we develop

this concept by the means of some derived operators. In Section 7 we provide some examples.

Definition 4.3. The following derived operators may be defined, where 11 and vy are collective
formulas, and ¢ is an SLCS formula:

1 £ T [FALSE]

Y1V = (1) A (=) [OR]

Vo £ - <Gl [FORALL, INDIVIDUALLY]
3¢ £ (V-9) [EXISTS]

0 £ VL [EMPTY]

The definition of V uses the fact that the only set A such that M, A = G_L is the empty set, which is
trivially path-connected. This is made formal by the following lemma.

Lemma 4.4. We have:
1. M, A = Vo if and only if Vo € AM,z = ¢;
2. M, A= 36 if and only if 3z € AM,z = ¢;
3. M, A=c 0 if and only if A= 0.

The V and 3 connectives also exist in the classical topological logic S4,, (see [34]); additionally,
CSLCS provides the possibility to classify subsets, instead of whole models. However, global satisfac-
tion, defined on models, is obtained as a side effect.

Definition 4.5. Global satisfaction is defined for each model M = ((X,C),V) and collective formula
Yvas MEgy <= M, X E¢ .

From now on, we will sometimes omit the subscripts C' and G from the satisfaction relation,
when clear from the context. Apart from the usual derived connectives, such as disjunction or logical
implication, CSLCS can express some peculiar derived operators.

QUANTICOL 17 Mar 1, 2016



Model Checking Spatial Logics for Closure Spaces (Revision: 0.9; Mar 1, 2016) Mar 1, 2016

Figure 10: The model on the left satisfies red CP blue; the one on the right does not.

Definition 4.6. Define the following collective derived operators:

$1CS Py = G(—pa A (D1 S $2)) [COLLECTIVELY SURROUNDED|
$1CP P2 = Y((¢1V ¢2) A =(d1 A 2))A [COLLECTIVELY PARTITIONED]
(d1 < (91CS $2)) A (92 —< ($2CS ¢1))

A set A satisfies M, A = ¢1 CS ¢9 if and only if the points in A satisfy ¢1, and are “collectively”
surrounded by a set of points satisfying ¢o. More precisely, using the connective G, it is required that
a path-connected set B including A exists, with all points of B satisfying ¢1 S ¢2, but not ¢s. Not
only there can be no path rooted in B and leaving ¢; without passing by ¢2, but also, noting that
all the elements of B satisfy ¢1 A =2, such set B must be a path-connected component of —¢9, the
elements of which are surrounded in the sense of SLCS by points satisfying ¢o.

For the C’P connective, we look at its global interpretation. The statement M |= ¢1 CP ¢2 expresses
that all the points of the space satisfy either ¢y or ¢, that all the points satisfying ¢1 can be connected
to each other, forming a set of points satisfying ¢; and surrounded by points satisfying ¢o, and vice-
versa. The sets of points satisfying ¢; is path-connected, and so is the set satisfying ¢o. For example,
the model in the left-hand side of Figure 10 satisfies red C'P blue while the model in the right-hand-side
of the figure does not satisfy the same formula.

5 Example: emergency evacuation

In this section we show some examples of interpreting SLCS and CSLCS on quasi-discrete closure
spaces. First, starting from our running example, let us define a closure space to provide a simple
model of short-range communication.

Example 5.1. Let us consider again the closure space presented in Example 2.2. This closure space
can be used to model a network of agents distributed over a two-dimensional physical space, that
communicate via wireless devices having fixed communication radius . In the left hand side of Fig-
ure 11 a graphical representation of such model is provided. There green, purple and blue dots identify
different kinds of agents located in the space. Let us consider the colours as atomic propositions.
The set Cs(green U purple U blue) consists of points in R? that are in the communication range of
at least one agent, represented by the pink area in the right-hand side of Figure 11. Suppose that the
green agent of our example is the source of some relevant information, which is meant to be transmitted
from the green device to the other devices that are reachable after some hops. The set of devices that
can receive the information sent by the green device is characterised, using the propagation operator,
by the formula green P(purple U blue), satisfied by the black points in Figure 12. .

Taking advantage of both Example 3.6 (interpreting digital images as closure models) and Exam-
ple 5.1, we will now set up a more complex closure space, comprising a communication layer, with
closure determined by communication ranges, and a physical layer, with closure determined by the
structure of a regular grid. The two layers are linked by a binary relation. On top of this set-up, we
will discuss the interpretation of some example properties, assuming that a set of agents (modelled by
appropriate atomic propositions) is distributed in the physical layer.
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Figure 11: A graphical representation of Example 5.1.
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Figure 12: In black the devices that can receive data from the green device.

Figure 13: A representation of agents in a building in an emergency condition.
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Example 5.2. Recall from Example 3.6 that digital images can be treated as finite quasi-discrete
closure models. Consider one such model, with underlying space (X,Cyqq;), with X C N2. In this
example, we will use a digital image representing a portion of a two-dimensional physical space;
therefore, each point of the image is also mapped to a position, or coordinate, in the Euclidean space
R?, giving rise to a function map : X — R2. Let Y be the finite image of the function map. Assume
X and Y are disjoint, for simplicity. Let pos be the graph of the function map, that is, the set of pairs
{(z,y) € X xY | map(x) = y}. In a similar way as in Example 5.1, fix a communication range d,
and introduce the relation Rs C R? from Example 2.23. Then, let R = RsN Y? be the restriction of
Rs to the image of the function map. Consider the set Z = X UY. Define the quasi-discrete closure
space (Z,Cg) using the relation
R £ 4adj U pos U R}

The closure space (Z,Cg) can be thought of as “two-layered”. One layer is the digital image, the
other one is a finite subset of R? equipped with the closure Cs restricted to Y, in a similar way to
Example 2.2 . The two layers are linked by the relation pos; note that each position in Y is thus
“close”, in the sense of the operator NV, to a point of the digital image. By this, as we shall see, logic
formulas can simultaneously predicate on proximity in the image, acting as a “physical” layer, where
proximity means being adjacency in space, and in Euclidean coordinates, acting as a “communication”
layer, where proximity is based on distance. We will also consider a set of agents, first-aid facilities,
obstructions, and dangerous areas, formalised as atomic propositions, giving rise to a quasi-discrete
closure model.

Before making this idea formal, we look at a picture of an instance of such construction, in
Figure 13. The digital image in the background, the points of which form the set X, represents the
map of a building at a specific instant in time, where an emergency situation occurs (note that rooms
have been numbered for reader’s convenience, but we are not considering numbers, graphically, as part
of the underlying map). The white points form the areas where agents can walk. Some of the white
points, however, are covered by obstructions, painted in brown, or are in the range of some source of
hazard. Hazardous areas are painted in semi-transparent orange. The green points are a safe area,
accessible via exit doors. Some white points are also part of areas where first aid is available, which
are represented by a red cross. The walls are painted in black. Coloured (blue, cyan, purple, yellow)
dots represent agents, with their communication range (dashed circles). The set Y is the set of actual
coordinates of the points in space denoted by pixels of the digital image.

We define a valuation function V, obtaining the quasi-discrete model ((Z,Cg),V). Atomic propo-
sitions are the colours white, black, green, red, blue, cyan, purple, yellow, brown, agent, danger,
and coord. Function V is such that each point in the image satisfies its own colour. Proposition
danger is true only at points in the image under the orange semi-transparent circles. Each point may
satisfy more than one atomic proposition; in particular, points under the orange circles also satisfy
other atomic propositions. Agents are represented by additionally colouring points of X in blue, cyan,
purple, or yellow. Points that satisfy red or brown also satisfy white, as in principle these are areas
where it is possible to walk, even though there is an obstruction in the current situation. Points of Y
satisfy just one predicate, namely coord, and are not represented in Figure 13. In addition, no other
point in Z satisfies predicate coord. Finally, define the short-hands obstacle £ black V brownV danger,
agent 2 blue V cyan V purple V yellow, and safe = white A —~obstacle.

In this situation, we suppose that groups of agents of the same colour are expected to address
an emergency situation together. Agents must be able to reach both first-aid points and exit doors
without passing by dangerous areas. Agents belonging to the same group should reach a first-aid point
and the exit together with other members of the group; in case an agent is isolated from her group,
an agent of another group must be able to reach first aid, and then rescue her. °

We remark that, for simplicity, when dealing with paths concerning agents, we do not consider
the cases in which an agent may exit and re-enter the building through a different access, passing
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by the green area®. In the remainder of this section, we present some example properties, and their
interpretation in the situation of Figure 13. First, recall the definition of the derived operator ¢ T ¢ £
d1 A (91 V ¢2) R ¢2). Point z satisfies ¢y T ¢po whenever it satisfies ¢1 and there is a path p, and an
index ¢, with p(0) = x, such that, for all j € (0,4), point p(j) satisfies ¢1 V ¢2, and point p(i) satisfies
¢o. Informally speaking, we may say that 7 expresses reachability in space from a point satisfying
formula ¢; to a point satisfying ¢, only passing by points satisfying ¢; or ¢s.

Example 5.3. There may be safe points, with no escape route. This is defined as the formula
1 = safe S obstacle

satisfied by the white points in Room 3. °

Example 5.4. The walking areas, from which a first-aid point can be safely reached, are classified
by the derived operator R. Consider the formula:

¢2 £ safe T (red A safe)

Points satisfying formula ¢o are required to be safe, and furthermore, to be at the start of a path of
safe points, leading to a point which is red and safe. In Figure 13, ¢ is satisfied, among other points,
by all the positions of agents, except those in rooms 3 and 7. That is, ¢ is satisfied by those white
points that are the start of a path that avoids obstacles (including dangerous areas), leading to safe
first-aid facilities, while only traversing white points. Similarly, the points from which an exit may be
reached are characterised by the formula

b3 = safe T green

which is satisfied by the blue, yellow, and violet points, but not by any cyan point (note that we are
not considering the possibility of passing by the green area and re-enter the building, as we explained
earlier). The points where first-aid facilities are located, and from where it is possible to safely reach
an exit (all the red points in Figure 13), satisfy the formula

b4 = (red A safe) A (safe T green)

Combining ¢5 and ¢4 one is then able to define the set of points from which one can safely walk to a
first aid point and then to the exit. These points are identified by the formula

¢s5 = safe T ¢a
For instance, the white points in Room 8, but not those in Room 7, satisfy ¢s. °

We shall now introduce some collective formulas, that for simplicity are evaluated under the global
interpretation of Definition 4.5.

Example 5.5. We can define a collective formula, parametrised by a colour, that is true whenever
all agents of the given colour are connected in the communication layer of the model.

dg(colour) = (coord A N colour) —< G(coord A Nagent)

In the definition of ¢g, note that N colour denotes the set of points that are near to a point satisfying
colour. Such set is the union of the points in the digital image where the agents of the given colour
are located, their neighbours in the digital image, and their coordinates in the communication layer.
Therefore, when colour is the colour of an agent, the sub-formula coord A N colour precisely identifies

4Depending on the application domain, one may take into account agents that exit and re-enter the building by using
another set of logical properties (the logic easily distinguishes between these two different kinds of paths).
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the coordinates in Y that are positions of agents in the group identified by colour. Such coordinates
are required to be part of a larger set of points, which are connected in the communication layer, and
also are positions of arbitrary agents, so that the communication flow required by the formula may
also include agents of different colours. In the model of Figure 13, ¢¢(colour) holds for all the colours
of agents, except blue. °

Example 5.6. Agents of the same colour should be able to reach a first aid point, and then an exit,
all together. We leave the colour as a parameter of the formula.

¢7(colour) = colour < Gos

In Figure 13, ¢7(colour) holds for colours yellow and purple, but not cyan and blue.

Example 5.7. We shall now deal with rescuing of agents. An agent of a given colour can be rescued
if there is an agent of a different colour that can reach her, after passing by a first-aid point, and the
two can safely reach an exit. First consider formula ¢g(colour), describing first-aid points that can
be reached by an agent of a different colour than the given one (this is achieved by the sub-formula
agent A (—colour) below), by a safe route:

#s(colour) = (red A —obstacle) A (N ((agent A (—colour)) P safe))

Points satisfying ¢g(colour) are red and not an obstacle, that is, they are safe first-aid locations.
Furthermore, the definition of ¢g(colour) also uses the P operator in order to guarantee that such
points are directly connected (operator N) to points that can be reached® from a point where an agent
of a different colour is located, passing only through safe points. Thus, agents of a specific colour that
can be rescued satisfy the formula

po(colour) £ agent A ¢ A N (—obstacle A (¢s(colour) P safe))

We can also define a collective formula expressing that, for a given colour, either ¢7(colour) holds, or
all agents can be rescued:

b10(colour) = ¢r(colour) V ¥(colour —< ¢g(colour))

In our example model, ¢19(blue) is true, whereas ¢19(cyan) is false. °

6 Spatial model checking

In this section we describe a model checking algorithm for SLCS and CSLCS. The algorithm is com-
posed of two procedures, one for individual formulas, that is, the logic SLCS, and one for collective
formulas, making use of the procedure for individual formulas. As we shall see, the procedure for
individual formulas is a global model checking procedure for SLCS. Given model M = ((X,C),V) and
formula ¢, the procedure returns the set {x € X | M,z |= ¢}. The procedure for collective formulas,
on the other hand, is a local model checking algorithm, that is, given model M, formula ¢ and set
of points A, it returns the boolean satisfaction value of M, A = 1. We choose a local algorithm for
the collective fragment, since enumeration of a set of subsets is a problem of inherent exponential
complexity. Merely returning a result for a global model checking procedure would require some kind
of symbolic description, which is left for future investigation.

Function Sat, computed by Algorithm 1, implements the model checker for SLCS. The function
takes as input a finite, quasi-discrete model M = ((X,Cr),V) and a SLCS formula ¢, and returns

5Since the model of our example is symmetric, reachability in opposite directions may not make an actual difference.
However, models similar to the one we are depicting may feature e.g., one way doors. We are not adding one-way links in
our model, as we do not deem it necessary for illustrating the connectives of the logic, and it makes the formal definition
of the underlying closure space less readable.
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Function Sat(M, ¢)

Input: Finite, quasi-discrete closure
model M = ((X,C),V),
formula ¢

Output: Set of points

{reX | Mo}

Match ¢

case T : return X
case p: return V(p)
case —¢ :
let P = Sat(M, ¢;)
return X \ P
case ¢1 N ¢o :
let P = Sat(M, ¢;)
let Q = Sat(M, ¢s)
return PN Q
case ¢1 P ¢s :
return CheckProp (M,¢1,¢2)
case ¢1 S ¢3 :
return CheckSurr (M, d1,02)

Function CheckSurr (M,¢;,¢p2)

Input: Finite, quasi-discrete closure
model M = ((X,C),V),
formulas ¢1, ¢o

Output: Set of points

{re X | Mzl ¢1Sea}

var V := Sat(M, ¢1)

let Q = Sat(M, ¢)

var T := BH(V UQ)

while T # () do

var T" := ()
for x € T do
let N =pre(x)NV
V:=V\N
T :=TU(N\Q)
T:=1T';
return V

Mar 1, 2016

Algorithm 1: Decision procedure for the
model checking problem of SLCS.

Algorithm 2: Checking surrounded formu-
las in a quasi-discrete closure space.

Function CheckProp (M,d1,¢2)
Input: Finite, quasi-discrete closure
model M = ((X,C),V),
formulas ¢1, ¢
Output: Set of points
{e X | M,z b= 61 P o)
var V := Sat(M, ¢1)
var (Q = Sat(M, ¢2)
var T :=C(V)NQ

var R =T
var Q = Q\T
while T # 0 do
var 77 := ()
for z € T do
T :=T U (QNpost(x))
Q:=Q\T'
R:=RUT'
T:=1T1'
return R

Algorithm 3: Checking propagation formu-
las in a quasi-discrete closure space.
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the set of all points in X satisfying ¢. The function is inductively defined on the structure of ¢ and,
following a bottom-up approach, computes the resulting set via an appropriate combination of the
recursive invocations of Sat on the subformulas of ¢. When ¢ is of the form T, p, =¢1 or ¢1 A ¢, the
definition of Sat(M, ¢) is straightforward. To compute the set of points satisfying N'¢q, the closure
operator C of the space is applied to the set of points satisfying ¢1. When ¢ is of the form ¢ S ¢o,
function Sat relies on the function CheckSurr defined in Algorithm 2. When ¢ is of the form ¢, P ¢2,
function Sat relies on the function CheckProp defined in Algorithm 3.

Function CheckSurr takes as parameters a finite, quasi-discrete closure model M, and two SLCS
formulas ¢; and ¢3. The function computes the set of points in M satisfying ¢ S ¢2. This is performed
iteratively by removing from V' = Sat(M, ¢1) points that we may intuitively call bad. More precisely,
a point is bad if, in the underlying relation of the quasi-discrete closure model, there is a path rooted
in it, reaching a point satisfying —¢, without crossing any point satisfying ¢o. Let @@ = Sat(M, ¢2) be
the set of points in M satisfying ¢o. To identify the bad points in V' the function CheckSurr performs
a backward search from T = B*(V UQ). Note that any path leaving V' U Q must pass through points
in T. Moreover, T only contains points that satisfy neither ¢1 nor ¢o. Until T is empty, function
CheckSurr first picks an element = in 7" and then removes from V' the set of (bad) points N that can
reach z in one step. To compute the set N we use the function pre(z) = {y € X | (y,z) € R}. At the
end of each iteration the variable T is updated by considering the set of newly discovered bad points.
Note that such new bad points do not include “candidate bad points” that also satisfy ¢o. This is
because any such point = satisfies both formulas, thus every path starting from x and reaching —¢;
also passes (trivially) by a point satisfying ¢s.

Function CheckProp takes as parameters a finite, quasi-discrete closure model M, and two SLCS
formulas ¢1 and ¢2. The function computes the set of points in M satisfying ¢1 P ¢s. This is performed
iteratively via a depth-first search that starts from all the points in V' = Sat(M, ¢;) and that considers
only points that are in Q = Sat(M, ¢3).

The local model checking algorithm for CSLCS formulas is given in Algorithm 4. Function Satc
takes as input a finite, quasi-discrete model M = ((X,C), V), a subset A of X and a collective formula
¥, and returns the truth value of M, A |= 1. The definition uses function Sat as defined above.
The implementation of boolean operators is straightforward. The case for ¢ —< 1 uses the global
model checker Sat for individual formulas to compute the set of points satisfying ¢, and recursively
checks if the intersection of such set with A satisfies ©. The case for G¢ first performs some checks
for corner cases of the definition, namely when A is the empty set (then G¢ is true), and when A is
not included in the set of points satisfying ¢ (then G¢ is false). After this, a variant of the classical
Tarjan’s algorithm [46] for computing strongly connected components is executed on the underlying
graph of the space, starting from an arbitrary point of A. The pseudo-code for such procedure is
reported in Algorithm 5.

More specifically, the difference between our algorithm and the classical procedure by Tarjan is
that we only visit nodes in B (that is, the semantics of ¢), and reachable from a chosen element x
of A, whereas the classical procedure visits all the nodes of the graph. This choice is motivated by
the fact that we do not need to collect all the strongly connected components, but only to determine
whether there is a strongly connected component, in the subgraph determined by B, that contains A.
In the algorithm, s is a stack; for simplicity we assume an operation pop Until(s, z) that removes from
a stack the most recently inserted elements including x, and returns the set of all such elements. Note
that such set is only needed to compare it with A; this check can be efficiently implemented with a
while loop that pops elements out of the stack and checks whether such elements belong to A, thus
avoiding to store an additional set of possibly large size. Furthermore, Il is a map (the “low link”
array of Tarjan’s algorithm), indexed by elements of X. We omit the details of its implementation;
clearly, if X is enumerated by a contiguous subset of the natural numbers, a standard array can be
used.

In order to address termination, complexity and correctness of our algorithms, we first define the
notion of size of a formula.
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Definition 6.1. For ¢ a SLCS formula, let size(¢) be inductively defined as follows:
o size(T) = size(p) =1
o size(—¢) = size(N¢) =1+ size(¢)
o size(p1 N ¢a) = size(p1 S ¢pa) = 1 + size(p1) + size(p2)
For ¢ a CSLCS formula, let size(¢)) be inductively defined as follows:
o size(T)=1
o size(—)) = size(Gy) = 1 + size(v))
o size(1 Nha) = 1+ size(p1) + size(p2)
o size(¢p < 1) =1+ size(¢p) + size(v))

Lemma 6.2. For any finite quasi-discrete model M = ((X,Cg),V) and SLCS formula ¢ of size k,
Sat terminates in O(k - (|X| + |R|)) steps.

Theorem 6.3. For any finite quasi-discrete closure model M = ((X,C),V) and SLCS formula ¢,
x € Sat(M, ¢) if and only if M,z = ¢.

Theorem 6.4. For any finite, quasi-discrete closure model M = ((X,Cgr), V), formula v with size(y) =
k, and A C X, we have Satc(M, A,¢) = True if and only if M, A |= v, taking in the worst case
O(k- (|X|+|R|)) steps.

7 A model checker for SLCS and CSLCS

The algorithms described in Section 6 are available as a proof-of-concept tool®. The tool is implemented
in OCaml”, and can be invoked both as a global model checker for SLCS, or as a local model checker
for CSLCS.

In the following we discuss a few examples showing how the tool can be used for identifying and
analysing regions of interest of a digital image (e.g., a map, a medical image, a picture etc.), using
spatial formulas. In this section, digital images are treated as finite, quasi-discrete models in the
plane N x N, equipped with the closure operator 4adj of Example 3.6. Other topologies can be readily
implemented in the tool. In the case of images, the tool accepts as atomic propositions expressions that
denote sets of colours, so that each point (z,y) satisfies precisely those expressions whose semantics
includes the colour of the pixel at coordinates (x,y). The SLCS model checker, which implements a
global algorithm, accepts a formula ¢, a colour ¢ and a digital image, and colours with ¢ the points
of the image satisfying ¢. The CSLCS model checker, which is a local algorithm, implements both
Definition 4.2 and Definition 4.5, accepting a collective formula 1), and optionally®a set of points, and
returning a boolean answer.

Example 7.1. Finite, quasi-discrete models can be encoded as graphs. By this, the CSLCS model
checker is able to load also examples with a complex specification. In Figure 15 we show a picture
coming from the analysis of the model of Section 5 (above), and the output of the tool (below),
colouring in red the nodes that satisfy ¢5 from Example 5.4. In particular, the model is based on
a discrete version of a vectorial illustration. Execution times for checking the formulas presented
in Section 5 depend, indeed, on the resolution of the discrete image. Even though we do not aim at
providing benchmarks in this work, just as a hint on execution times, we remark that when the number
of points in the image is around one million, verification of formula ¢5 takes around two seconds on a
standard (at the time of writing) laptop with 8 gigabytes of main memory.
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Function Satc (M, A,v)

Input: Finite, quasi-discrete closure
model M = ((X,C),V), Set of
points A, collective formula

Output: Truth value of M, A E ¢

Match

case T : return T'rue
case ) :
let R = Satc(M, A,9)
return not R
case Y A g :
let R = Satc(./\/l, A, ’l/)l)
let S = Satc(M, A 1)
return R and S
case ¢ < Yy :
let B=Sat(¢p)N A
return Satc (M, B, 1)
case G¢ :
if (A=0) return True
let B = Sat(¢)
if (A ¢ B) return Fulse
let x € A
let ¢ = newCounter()
let s = newStack()
let 1l = newMap(X, undefined)
return Visit(M,t,s,ll,A,B )

Algorithm 4: Algorithm for the model check-
ing problem of CSLCS

Function Visit (M, t,s,ll,A,B,x)
Input: Finite, quasi-discrete closure
model M = ((X,C),V), counter t,
stack s, vector [l, sets of points A,
B, point x
Output: Truth value or undefined,
depending on the progress of the
algorithm when this auxiliary
function is called.
var isRoot := True
var r := undefined
push(s, x)
ll[x] := increment(t)
for y € post(z) N B do
if (ll[y] = undefined)
r:=Visit (M,t,s,ll,A,B,y)
if (r # undefined) return r
if (ll[z] > U[y])
Ulz] == U[y]
isRoot := Fulse
if (isRoot)
let C' = popUntil(s, x)
if (ANC#0)r:=(ACCO)

return r

Algorithm 5: Checking group formulas in a
quasi-discrete closure space.

Figure 14: A test case for the property of being collectively surrounded (see Example 7.2).
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Figure 15: The model of Section 5 rendered as a graph, and the result of model checking formula ¢5
of Example 5.4.

Example 7.2. In Figure 14 we provide a small, black and white image. For A an arbitrary set of
points, consider the informal statement “A is located in a white area, and it is collectively surrounded by
a black area”. The intuition here is that all the points of A should be immersed in the same white area.
However, the meaning of same is not thoroughly specified. A very liberal interpretation of collectively
surrounded could let the formula be true at any set A such that all points in A individually satisfy
white S black. This is expressed by the CSLCS formula V(white S black). Here “the same area” means
“the same subset”. This notion can be refined. For example, in Figure 14, let A = {(4,4), (6,4)} and
B = {(4,6),(6,6)} (the first coordinate is the horizontal one). It is also sensible to let “collectively
surrounded” tell A and B apart, as B lays in a connected white area surrounded by black points,
whereas A does not enjoy such property. In this case, “the same area” is defined as “the same
connected white area”. The derived connective CS from Definition 4.6 is designed to do this.

The CSLCS model checker can be used to verify these two properties on some subsets of the
space. First, we verify whether points at coordinates (4,4),(4,6),(6,4),(6,6) individually satisfy
white S black. This is checked by expanding the definition of the V connective, from Definition 4.3.
Indeed, the model checker answers true to this query. The next step is to tell apart different sets of
points using the definition of the CS connective. The definition of black CS white is checked on three
different sets. The answer is true on sets {(4,4)} and {(4,6), (6,6)} and false on the sets {(4,4), (6,4)}
and {(4,4),(4,6)}. °

Example 7.3. Using CSLCS it is possible to check whether a given space is partitioned, that is, each
atomic property lies in a separate area of the image without mixing. We provided a formal definition
of such property in Definition 4.6, by the means of the CP connective. For example, we consider
two digital images having only black and white pixels. The CSLCS model checker returns false on
Figure 16, and true on Figure 17, when requested to verify that white C'P black is globally satisfied
according to Definition 4.5. °

5Web site: http://www.github.com/vincenzoml/topochecker.
"See http://ocaml.org.
81f no points are specified, the whole space is considered for global satisfaction.
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Figure 16: This image is not partitioned by Figure 17: This image is partitioned by prop-
properties black and white. erties black and white.
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Figure 18: A maze. Figure 19: Model checker output.
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Figure 20: Blue circles are not able to reach Figure 21: Blue circles are able to reach the
the same exit. same exit.

Example 7.4. In Figure 18 we present another example of how SLCS can be used for classifying
points in a digital image. We use a digital image representing a maze. The green area is the exit. The
blue areas are starting points. Three formulas are used to identify interesting areas. Such formulas
implicitly make use of the surrounded operator, by the means of the derived operators R and T (see
Section 3).

toEzit = white T green
fromStartToExit = toExit A\ (white T blue)
startCanFEzit = blue T fromStartToFExit

The output of the tool is in Figure 19. The red colour denotes points satisfying startCanFxit, that
is, starting points from which the exit can be reached (for the sake of readability, we have depicted
these areas in a rectangular shape, but the tool is obviously not aware of the difference in shape).
Orange and yellow indicate the two regions through which the exit can be reached (formula toEzit).
The orange region includes moreover a start point (formula fromStartToExit). °

Example 7.5. We continue from Example 7.4 to show how collective formulas can easily distinguish
models having similar individual properties. In Figure 20, the three blue circles in the maze can all
reach the exit; however, they cannot “collectively” do so, as they cannot join and get out through
the same exit. In Figure 21, on the other hand, the blue circles can get out through the same exit.
Importing definitions from Example 7.4, the model checker is able to tell the difference between these
two models. When invoked on the formula blue —< (G((blue V white) T green)), the tool returns false
in the first model, and true in the second one. The given formula, which is interpreted globally (in the
sense of Definition 4.5), asserts that all the blue points are part of a strongly connected component of
points that can reach the (green) exit passing by points that are either blue or white. .

Example 7.6. In Figure 22 we show a digital image” depicting a portion of the map of Pisa, featuring
a red circle which denotes a train station. Streets of different importance are painted with different
colours in the map. The CSLCS model checker is used to identify and colour the area surrounding the

9© OpenStreetMap contributors — http://www.openstreetmap.org/copyright.

QUANTICOL 29 Mar 1, 2016


http://www.openstreetmap.org/copyright

Model Checking Spatial Logics for Closure Spaces (Revision: 0.9; Mar 1, 2016) Mar 1, 2016

M e
o v
\

b P
(TP P 2

Figure 22: Input: the map of a town. Figure 23: Output of the tool.

station which is delimited by main streets, and the delimiting main streets. The output of the tool
is shown in Figure 23, where the station area is coloured in orange, the surrounding main streets are
red, and other main streets are in green. .

8 Conclusions and Future Work

Spatial logics have been studied extensively in the past as a spatial interpretation of modal logics [2],
with particular emphasis on descriptive languages and aspects such as completeness, decidability,
complexity, that are very relevant for mathematical logics. In this paper we have developed this
approach in a different direction, namely that of formal and automatic verification and in particular
that of spatial model-checking. This focus required us to take several constraints into consideration.
On one hand, our aim was to remain as general as possible, in such a way that the developed spatial
model checking algorithms can be applied on a wide variety of spatial representations, including forms
of continuous space, discrete space, directed and undirected graphs, possibly extended with metric
spaces. On the other hand, efficient and effective model checking procedures require finite structures.
To this purpose the theoretical framework of Closure Spaces (a generalisation of Topological Spaces)
has been explored. This framework provides a set of useful basic abstract spatial operators (closure,
interior, boundary and many derived ones) that provide a structured way to define higher level spatial
logic operators. Moreover, we have shown that they are also suitable for the development of efficient
spatial model checking algorithms in which these same closure space based operators play a role as
well.

In particular, in [14] we have defined the spatial logic SLCS, stemming from the tradition of
topological interpretations of modal logics, dating back to earlier logicians such as Tarski, where
modalities describe neighbourhood. The topological definitions have been lifted to a more general
setting, also encompassing discrete, graph-based structures. In the present paper an alternative, path-
based, definition of the logic has been provided which is more general than that presented in [14] and
is shown to coincide with the latter in the case of Quasi-discrete Closure Spaces. In addition, the
framework has been extended with the propagation operator. This operator captures the notion of
spatial propagation; intuitively the formula ¢ P 1) describes a situation in which the points satisfying
1 can be reached by paths rooted in points satisfying ¢ and, for the rest, composed only of points
satisfying .

Furthermore, we have introduced a collective logic, which borrows from the spatial logics tradition,
but introduces properties that characterise “collective”, spatial features of sets, rather than individuals.
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For both logics, an efficient model-checking algorithm has been defined and implemented, operating
on finite, quasi-discrete closure models.

Future work aims at considering temporal reasoning in addition to spatial verification. Both
the theoretical nature of this problem, and the efficiency of model checking algorithms, should be
investigated. In [34], “snapshot” models are considered, consisting of a temporal model (e.g., a Kripke
frame) where each state is in turn a spatial model, and atomic formulas of the temporal fragment are
replaced by spatial formulas. The various possible combinations of temporal and spatial operators, in
linear and branching time, are examined therein, for the case of topological models, and basic modal
formulas. First results on the extension of snapshot models based on closure spaces, and the study of
spatio-temporal surrounded operators, has led to an extension of SLCS with the branching time logic
CTL (Computation Tree Logic [19]) and is presented in [15, 17]. It provides spatio-temporal reasoning
and model checking. However, the automated verification of snapshot models is susceptible to state-
space explosion problems as spatial formulas need to be recomputed at every state. We will therefore
also study how to exploit the fact that changes of space over time are typically incremental and
local in nature. Metrics and distance functions can be added in an orthogonal way providing further
spatial richness. The theoretical approach pursued in the present paper is starting to find its way to
applications such as the detection and analysis of emergent spatial patterns [41] in behaviour modelled
as reaction-diffusion equations, such as those involved in the emergence of patterns in animal fur first
studied by Turing. In [41] the closure space based model checking algorithms have been extended
with metric spaces and signal temporal logic leading to monitoring algorithms for a linear time spatio-
temporal logic. The logic has qualitative and quantitative semantics, and monitoring algorithms have
been designed and implemented. It can be used to verify interesting spatial-temporal properties such
as the robustness of patterns to perturbations. Other ongoing applications of spatio-temporal model
checking are the analysis of emergent spatio-temporal phenomena, such as the formation of spatial
clusters of full stations in bike sharing systems [17] and the phenomenon of clumping (that is, buses
with too short headway) in public urban bus transportation systems [15].

Further promising ideas are presented both in [25], where principles of “continuous change” are
proposed in the setting of closure spaces, and in [37] where spatio-temporal models are generated by
locally-scoped update functions, in order to describe dynamic systems. Another interesting alternative
approach to describe spatial properties is based on so-called quad trees. Such trees are constructed
by recursively partitioning images into quadrants. The spatio-temporal logic SpaTeL [31] is based on
such a spatial superposition logic.

In the setting of collective adaptive systems, it would be relevant to extend the basic framework
we presented here with aspects related to distances or metrics (e.g., distance-bounded variants of the
surrounded and propagation operators) and probabilistic aspects, using, e.g., atomic propositions that
are probability distributions. In this work we have considered connectedness and related properties as
the most basic forms of collective properties. Indeed, such properties give the logic a “global” flavour,
witnessed by our Definition 4.5. In this respect, CSLCS is similar to &4, even though connectedness
can not be represented in the latter. Connectedness may be added as a predicate to spatial logics (see
[35]). An in-depth comparison between S4,, spatial logics with connectedness, and CSLCS will be
considered in future work, possibly taking into account the work of [44] on connectedness in closure
spaces. Other logics that consider sets of points rather than properties of individual points are those
based on adjacency spaces such as the region calculus studied in discrete mereotopology [24, 26]. In the
context of collective properties, one could also consider arbitrary nesting of collective and individual
formulas; however, such enhancements translate to inefficient algorithms in the classical exhaustive
model checking procedures, as one should enumerate all subsets of the considered set of points. In
order to overcome such issues, a symbolic model checking approach could be used to represent solution
sets without explicit enumeration.

A further challenge in spatial and spatio-temporal reasoning is posed by recursive spatial formulas,
a la p-calculus, especially on infinite structures with relatively straightforward generating functions
(think of fractals, or fluid flow analysis of continuous structures). Such infinite structures could be
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described by topologically enhanced variants of w-automata; more generally speaking, the automata-
theoretic approach to logics and verification is certainly of interest also in the field of spatial logics.
Classes of automata exist living in specific topological structures; an example is given by nominal
automata (see e.g., [7, 22, 38]), that can be defined using presheaf toposes [21], although retaining
finite, computationally efficient representations [18]. This standpoint could be enhanced with notions
of neighbourhood coming from closure spaces, with the aim of developing a unifying theory of languages
and automata describing physical spaces, graphs, and process calculi with resources. Finally, a more
profound study of the generalisation of the notion of paths in Closure Spaces could lead to further
interesting theoretical results.
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A  Proofs

The proofs of Proposition 2.5, Proposition 2.7, and Proposition 2.9 are straightforward, and have been
omitted from this paper. Full proofs are available in [16].

Proof. (of Proposition 2.16)
Axiom 1:
Cr@)=0U{z e X |3ach.(a,z) ER} =0
Axiom 2:

A
C [ACAUB]

Cr(A)

Axiom 3:

Cr(AUB)
= AUBU{ze€e X |3Jece€ AUB.(c,x) € R}
= [c€eAUB < ce AVce B]

AUBU{z € X |3ce€ A.(c,x) e R} U{x € X | Jc € B.(¢,z) € R}
= Cr(A)UCR(B) -
Proof. (of Proposition 2.19)

Equation 8:

Z(A)
= Cgr(4)
= Au{r€eX|JacAfa,z)€R}
= An{ze€X|-Jac A(a,z)€ R}

= {zx€A|-JacA(a,z)€ R}
Equation 9:

B~ (A)
= A\I(4)
= A\{re€A|-JacA(a,z)€ R}
= An{z€A|Jac A(a,r)€ R}

= {rcA|JacA(a,zr)€R}
Equation 10:

B (A)
= CA)\A
= (AU{re X |Jda€A(a,x) e R})\A
= (AUu{ze€eX|3ae€A(a,z) € R})NA
= (AnA)U({re X |Jac A(a,z) € R}NA)
= {rcA|JacA(a,zr) <R} O
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Proof. (of Lemma 2.32) For one direction of the proof, assume p is a continuous function. Importing
definitions from Definition 2.30 and the statement of Lemma 2.32, we have

(i, + 1) € Succ
= i+ 1€ Coucc({i})
—> [p continuous]
p(i+1) € Cr(p({i}))
p(i+1) € CrR({p(1)})
p(i+1) € {p(i)} U{z | (p(i), =) € R}
p(i+1) =p(i) vV (p(i),p(i + 1)) € R

For the other direction, given a path z;c; R, define p(i) = x;. Continuity of p is straightforward. [
Proof. (of Proposition 3.4)

1. M,z =1 R oo

<= |[Definition of R |

M,z |= (=2 8§ =)
<= [Definition of S]

—(M, z = —¢2 and

Vp:xz~ ooVl e N: M p(l) = ——p2 = Fk € {1,...,1} : M,p(k) = —¢1)
< (M, z | —¢2 and

Vp e ooVl € N1 ~(M,p(1) | é) V (3K € (L., 1} - M, p(k) = =)
< M,z = ¢2 or

p:x~oodleN: Mp(l) Epa ATk e {1,...,1}: M,p(k) E —¢1)
< Jp:x~oodleN: Mp(l) Epa AVE € {1,...,1} : M, p(k) = ¢1

2. M,z = ¢1 Apo

<= [Definition of A]

M,z = —(¢1 P —¢2)
<= [Definition of P |

(M, z = —¢9 and

Jy: M,y = é1 andﬂp:y«ieoozwe{l,...,l—l}:./\/l,p(i)|:—|qb2)
< M,z = ¢2 or '

—(Jy: M,y = ¢ andEIp:wa:oo:We{l,...,l—l}:./\/l,p(i)|:—|¢2)
< M,z = ¢y or

Yy : ~(M,y E ¢ andEIp:y«i»oo:Vie{1,...,1—1}:M,p(i)|:—|¢2)
< M,z = ¢y or

Yy : =M,y = o1 orﬂ(EIp:yvj?oo:WG{1,...,l—1}:M,p(i)):ﬂqbg)
< M,z = ¢ or
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Vy: M,y = ¢ Oer:y«i»oo:—'(ViE{1,...,l—1}:M,p(z’)):ﬁqbg)
— M,z |E ¢ or

Yy oMoy g ot Vp iy moo:Fi€ {1, 1= 1} =M, p(i) b —62)
< M,z = ¢2 or

Yy M,y = by or ¥p iy oo i€ {1,..., 01— 1} : M, p(i) = ¢n)
< M,z = ¢y or :

Vy: My =Vpiy~oo0:3i€{1,...,01—1}: M,p(i) E éo)
< M,z = ¢ or '

V?J5M7y):¢1ZVp:ngl;oo:EliE{1,...,[—1}:M,p(i)):gbg)

3 MaxEEP
<= [Definition of £
Mz E¢S L
<= [Definition of S|
Vp:x~ooVleN: M p(l) E—-¢p=3Tke{l,....I1} : M,plk) =L
<~ Vp:z~ooVleN: M p(l) E ¢

4. M,x = F¢
<= [Definition of F |
M x| —E—¢
<= [Proposition 3.4 (3)]
—(Vp:x~ ooVl € N: M, p(l) = —¢)
<~ dp:zx~oodleN: M;p() E ¢

O]

Proof. (of Theorem 3.7) Consider a quasi-discrete closure model M = ((X,C),V) and suppose M,z =
$1Upo as defined in [14], that is, suppose there is a set A with x € A, Vy € AM,y E ¢1, and
Vz € Bt (A).M, z = ¢2. Let p be a M-path, with p : x ~ oo, and let [ be such that M, p(l) = —¢1.

Consider the set K~ = {k |Vh € {0,...,k}.p(h) € A}. Since 0 € K~, we have K~ # (). Consider the
complement of K~ namely K™ = N\ K. Since all points in A satisfy ¢1, and p(l) = —¢1, we have
I € KT, thus KT # (). By existence of [, K~ is finite, thus, being non-empty, it has a greatest element.
Being a non-empty subset of the natural numbers, K* has a least element. Let k= = max K~ and
kT = min K. By definition of K~, if kK € K~ and h € [0,k), then h € K~. In particular, for all
h < k=, we have h € K~. By definition of ¥, we have k= +1 ¢ K, that is, k= +1 € K. Therefore,
we have k= +1 = k™, thus (k—, k") € Succ. Let S = {p(k)|k € K~} C A. By monotonicity of closure,
we have C(S) C C(A). By definition of Cgyee, we have kT € Cguee(K ™), thus by closure-continuity
p(k*) € C(S) and therefore p(k™) € C(A). But it is also true that p(k™) ¢ A; if p(k™) € A, then we
would have k™ € K, by definition of K. Thus, p(k™) € BT (A), therefore p(k™) = ¢2. Note that in
particular k™ # 0 as p(0) =z € A, and k™ <lasl€ K and kt = min K.

For the other direction, assume M = ((X,Cr),V) where Cg is the closure operator derived by a
relation R. Consider point x with M,z |= ¢1, and assume that for each p :  ~ oo and [ such that
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M, p(l) = —¢q there is k € {1,...,1} such that M, p(k) = ¢2. Define the following set:

Ay ={z}U{ye X |TIp:x~ 00 >0p(l)=yAVke{l,..., I} M,p(k) E ¢1 N g2}

We will use A, as a witness of the existence of a set A, in order to prove that M,z = ¢1Ups
according to [14]. Note that by definition of A,, x € A, and Yy € A,.M,p(y) E ¢1. We need to
show that Vz € BT (A;).M,z | ¢o. Consider z € BT(A,). Since M is based on a quasi-discrete
closure space, by Equation 10 in Proposition 2.19, we have z € A, and there is y € A, such that
(y,z) € R. Suppose y = z. Let p be the path defined by p(0) = x, p(i # 0) = 2. If M,z | ¢1,
suppose M, z ¥ ¢9; then z € A,, witnessed by the path p, with [ = 1; therefore, since z € A, we
have M,z = ¢9. If M,z ¥ ¢1, then noting p(1) = z, by hypothesis, there is k € {1,...,1} with
M, p(k) = ¢9, that is M,z = ¢2. Suppose y # x. Then there are p :  ~» oo and [ > 0 such that
p(l) = yAVk € {1,...,1}. M,p(k) &= é1 A =¢3. Define p’ by p/(I') = p(I') it I’ < I, and p'(l') = 2
otherwise. The rest of the proof mimics the case y = z. If M, z |= ¢1, then M, z ¥ ¢ implies z € A,
witnessed by p’ and I’ = [+ 1, therefore M, z = ¢2. If M, z = —¢1, then by hypothesis there must be
ke {1,...,1+ 1} such that M,p/(k) = ¢2. By definition of p/, it is not possible that k € {1,...,1},
thus k =1+ 1 and M, z |= ¢. By this argument, we have M,z = ¢1 S ¢2 using the set A, to verify
the definition of satisfaction. O

Proof. (of Lemma 4.4) The results in item 3 and item 2 easily follow from item 1. For item 1, we
have:

M, A =c Vo
<= [Def. V]
M, AlEc ¢ <Gl
< [Def. <]
MA{ze A Mz E-9tEGL
<= [Def. G]
ABC X{x € A| M,z = —-¢} C BA B is path connected AVz € BM,z | L
< [Vze€BM,zE L < B=10]
{re Al M,z |E—¢} C0
— Vre AM,x = ¢ O O

Proof. (of Lemma 6.2) We prove by induction on the syntax of SLCS formulae that for any quasi-
discrete closure model M = ((X,Cr),V), and for any formula ¢ function Sat terminates in at most
O(size(¢) - (|X|+ |R]|)) steps.

Base of Induction. If ¢ = T or ¢ = p the statement follows directly from the definition of Sat. Indeed,
in both these cases function Sat computes the final result in just 1 step.

Inductive Hypothesis. Let ¢1 and ¢ be such that for any quasi-discrete closure model M = ((X,Cg), V),
function Sat(M, ¢;), i = 1,2, terminate in at most O(size(¢;) - (| X|+ |R|)) steps.

Inductive Step.
¢ = —¢1 In this case function Sat first recursively computes the set P = Sat(M, ¢1), then returns

X — P. By inductive hypothesis, the calculation of P terminates in at most O(size(¢1) - (| X|+
|R|)) steps, while to compute X — P we need O(|X|) steps. Hence, Sat(M, —¢;) terminates in
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at most O(size(¢1) - (| X]| + |R|)) + O(|X|). However:

O(size(¢n) - (IX]+ [R])) + O(|X])

(size(en) - (IX]+ [R])) + O(|X] + |R])
((1+ size(dn)) - (IX] +[R]))
(size(=¢1) - (|X] +|R]))

A

(@)
(@)
(@)

¢ = ¢1 N\ ¢p2 To compute P = Sat(M,p; A ¢3) function Sat first computes P = Sat(M, ¢;) and
@ = Sat(M, ¢2). Then the final result is obtained as PN Q. Like for the previous case, we have
that the statement follows from inductive hypothesis and by using the fact that P N @ can be
computed in at most O(|X]).

¢ = N¢1 In this case function Sat first computes, in at most O(size(¢1) - (| X| 4+ |R|)) steps, the set
P = Sat(M,¢1). Then the final result is obtained as Cr(P). Note that, to compute Cr(P)
one needs O(|X| + |R|) steps. According to Definition 2.15, Cr(P) is obtained as the union,
computable in O(|X|) steps, of P with {z € X|Ja € P.(a,z) € R}. The latter can be computed
in O(|R|) steps. Indeed, we need to consider all the edges exiting from P. Hence, Sat(M, N ¢1)
terminates in a number of steps that is:

O(size(¢1) - (|X|+ [R])) + O(|X]) + O(|R]|)
O(size(é1) - (|X| + |R]) + O(X| + |R])

= O((1+size(d1)) - (| X] +|R]))
O(size(N¢r) - (| X|+ |R]))

¢ =¢1S ¢ When ¢ = ¢1 S ¢o function Sat recursively invokes function CheckSurr that first com-
putes the sets V = Sat(M,¢1), Q = Sat(M,¢s) and T = BT (V U Q). By inductive hy-
pothesis, the computations of V' and @ terminate in at most O(size(¢1) - (|X| + |R|)) and
O(size(¢2) - (| X| + |R]|)) steps, respectively, while T' can be computed in O(|X| + |R|). After
that, the loop at the end of function CheckSurr is executed. We can observe that:

e a point z is added to T only one time (i.e. if an element is removed from 7', it is never
reinserted in 7T');
e all the points in T" are eventually removed from T7;
e cach edge in M is traversed at most one time.
The first two items, together with the fact that M is finite, guarantee that the loop terminates.

The last item guarantees that the loop terminates in at most O(|R|) steps'®. Summing up, the
computation of Sat(M, ¢1 S ¢2) terminates in at most

O(size(¢1) - (|X]+ |R])) + O(size(¢2) - (| X[ + [R]))

+O(IX] +[R]) + O(|R])

O((size(¢r) + size(¢2)) - (| X| + |R[)) + O(|X| + |R])
= O((1 + size(1) + size(¢2)) - (|X] +[R]))
= O(size(¢1 S ¢2) - (| X[+ |R]))

¢ = ¢1 P ¢ Similarly to the previous case, when ¢ = ¢ P ¢ function Sat recursively invokes function
CheckProp that first computes the sets V = Sat(M, ¢1), Q = Sat(M, ¢2) and T = BT (V)N Q.
By inductive hypothesis, the computations of V and @ terminate in at most O(size(¢1) - (| X|+
|R|)) and O(size(¢2) - (|X |+ |R]|)) steps, respectively, while T' can be computed in O(|X |+ |R]).
After that, the loop at the end of function CheckProp is executed. We can observe that:

10Note that this is the complexity for a DFS in a graph
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e a point z is added to T only one time (i.e. if an element is removed from 7', it is never
reinserted in 7T');

e all the points in T are eventually removed from T7;

e cach edge in M is traversed at most one time.

The first two items, together with the fact that M is finite, guarantee that the loop terminates.
The last item guarantees that the loop terminates in at most O(|X| 4+ |R|) steps. Summing up,
the computation of Sat(M, ¢; P ¢2) terminates in at most

O(size(¢r) - (|1X| + |R[)) + O(size(¢2) - (|X] + [R]))
+O(IX] + |R[) + O(1X] + |R)

= O((size(¢1) + size(d2)) - (|X] + [R])) + O(|X] + [ R])
O((1 + size(¢1) + size(d2)) - (|X| + |R]))

O(size(¢1 P ¢2) - (IX] + |R]))

Proof. (of Theorem 6.3) The proof proceeds by induction on the syntax of SLCS formulae.

Base of Induction. If ¢ = T or ¢ = p the statement follows directly from the definition of function
Sat and from Definition 3.3.

Inductive Hypothesis. Let ¢1 and ¢o be such that for any finite quasi-discrete closure model M =
((X,Cr),V), function x € Sat(M, ¢;) if and only if M,z = ¢;, for i =1, 2.

Inductive Step.

¢ =-¢1 x € Sat(M,—¢y)
<= [Definition of Sat ]

x & Sat(M, ¢1)
<= [Inductive Hypothesis]

M,z = ¢
<= [Definition 3.3 ]

M,z = =g

¢ =¢1 A g2 x € Sat(M, g1 A ¢)
<= [Definition of Sat ]

x € Sat(M, ¢1) N Sat(M, ¢2)
<= x € Sat(M, ¢1) and x € Sat(M, ¢2)
<= [Inductive Hypothesis |

M,z = ¢ and M,z = ¢o
<= [Definition 3.3 ]

M,z = ¢1 A o

¢»=N¢ e Sat(N¢y)
<= [Definition of Sat ]
x € Cr(Sat(M, ¢1))
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<= [Definition of Cr]

JA C sat(M, ¢1) : x € Cr(A)
<= [Inductive Hypothesis |

JAC X.Vy € AM,y,|= ¢ and = € Cr(A)
<= [Definition 3.3]

M,z = Ny

¢ = 1S p2 We prove that x € CheckSurr(M, ¢1,¢s) if and only if M,z = ¢1 S ¢pa. Function
CheckSurr takes as parameters a model M and two SLCS formulas ¢; and ¢2 and computes
the set of points in M satisfying ¢1 S ¢2 by removing from V = Sat(M, ¢1) all the bad points.
A point is bad if it can reach a point satisfying —¢; without passing through a point satisfying
¢2. Let QQ = Sat(M, ¢2) be the set of points in M satisfying ¢2. To identify the bad points in V'
the function CheckSurr performs a backward search from T = BT (V U Q). Note that any path
ezxiting from V U @ has to pass through points in 7. Moreover, the latter only contains points
that satisfy neither ¢; nor ¢, by definition. Until 7" is empty, function CheckSurr first picks all
the elements = in 7" and then removes from V' the set of (bad) points N that are in V' — @ and
that can reach x in one step. At the end of each iteration the set 17" contains the set of bad points
discovered in the last iteration. The proof proceeds in two steps. The first step guarantees that
if  does not satisfy ¢1 S @2, then z is eventually removed from V. The second step shows that
if x is removed from V then z does not satisfy ¢1 S ¢o.

Note that, by Inductive Hypothesis, we have that:

z €V =8at(M,¢1) & M,z |= ¢ (11)

x € Q =S8at(M,p2) & M,z = ¢ (12)
For each z € X we let:
I, ={i e N|Fp: 2~ 0c0.M,p(i) F =¢1 AVj €{1,...,i}.M,p(j) E ~¢2}

Note that, by definition, we have that M,z | ¢1 S ¢9 if and only if M,z |= ¢1 and Z, = 0.

First we prove that if Z, # () and M,z |E= ¢1, then x is removed from V at iteration i = minZ,.
This guarantees that if z does not satisfy ¢1 S ¢o, then x is eventually removed from V. The
proof of this result proceeds by induction on i:

Base of Induction Let 2 € X such that M,z = ¢1, Z, # 0 and minZ, = 1. Since minZ, = 1,
we have that there exists p :  ~» oo such that M,p(1) E —¢1 and M,p(1) E —¢e.

By definition of paths, we also have that z = p(0) and (z,p(1)) € R. This implies that
p(1) € BY(VUQ) and = € pre(p(1)). By definition of function CheckSurr we have that
p(1) is in 7" and z is removed from V' during the first iteration. Note that x will be added
to T only if it does not satisfy ¢o (i.e. if z € Q).

Inductive Hypothesis For each x € X be such that M,z = ¢1, Z, # 0 and minZ, = k, x is
removed from V at iteration k.

Inductive Step Let z € X be such that M,z = ¢1,Z, # § and minZ, = k+1. if minZ, = k+1
then there exists p : © ~» 0o such that M,p(k + 1) E —¢1 and for each j € {1,...,k+ 1}

M, p(j) | —¢2. We have also that M, p(1) = ¢1 (otherwise minZ, = 1) and minZ,;) = k
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(otherwise minZ, # k + 1). By inductive hypothesis we have that p(1) is removed from
V at iteration k. However, since M, p(1) = —¢2 we have that p(1) ¢ @ and p(1) is in the
set 1" at the beginning of iteration k£ + 1. This implies that = = p(0) is removed from V at
iteration k + 1, since x € pre(p(1)).

We now prove that if = is removed from V at iteration 4, then Z, # () and i = minZ,. This
ensures that if x is removed from V then x does not satisfy ¢1 S ¢2. We proceed by induction
on the number of iterations i:

Base of Induction If x € V is removed in the first iteration we have that there exists a point
y € BT(V UQ) such that (z,y) € R. From Equation 11 and Equation 12 we have that
M, x = ¢1 while M,y = —¢1 A —¢o. This implies that there exists a path p : x ~» oo such

that p(1) = y and 1 = minZ,.

Inductive Hypothesis For each point z € V, if x is removed from V at iteration ¢ < k, then
T, # () and i = minZ,.

Inductive Step Let x € V be removed at iteration k£ + 1. This implies that after k iterations,
there exists a point y in T such that (z,y) € R. This implies that y has been removed from
V at iteration k and, by inductive hypothesis, Z, # () and k = minZ,. Hence, there exists
a path p : y ~ oo such that M, p(k) = —¢1 and for each j € {1,... .k} M,p(j) E —¢2.

Moreover, since y € T, we have also that y ¢ @ and, from Equation 12, M,y E —¢2. We
can consider the path p’ : © ~ oo such that, for each j, p/(0) = z and p'(j + 1) = p(j).

We have that M, p'(k+ 1) = —¢1 and for each j € {1,...,k+ 1}, M,p'(j) = —¢2. Hence
Z, # 0 and k+1 = minZ, (otherwise x should be removed from V' in a previous iteration).

¢ =1 Ppa We let R, T, and Qi denote the values of variables R, T and @ at iteration k in
CheckProp, respectively. Our proof proceeds in three steps. First (Step 1) we prove that:

Vk.x € R Apost(z) NQx # 0 =z € Ty,

then (Step 2) we show that:

Vk. T = BT (Ry) N Qg

finally (Step 3) we prove that

Vka € Ry & M,aE® A <k+13p:y~ oMyl b
AVi0 <i<l = M,p(i) E b2

After that the statement directly follows from Def. 3.3. However, before proceeding further, we
can notice that, by Inductive Hypothesis, the following hold:

x €V =8at(M,¢1) & M,z = ¢ (13)
x € Q =S8at(M,p2) & M,z |= ¢ (14)

Moreover, we can also notice that:
VE.RpyNQy =0 (15)
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VE.RNQy = Sat(@) (16)

both the fact above can be derived directly from the definition of CheckProp in Fig. 3. Indeed,
at the beginning Ry = Ty while Q¢ = Sat(¢2) \ Tp. Moreover, at every iteration Ry 1 = R UT”
while Qk-+1 = Qk \ T/.

Step 1: We prove by induction on k that:

Vk.x € R Apost(x) N Qk # 0 = x € Ty

Base of Induction Let £ = 0. The statement follows directly from the fact that Ry = Tp.
Hence:

x € Ry Apost(z) N Qo # 0 =z €T

Inductive Hypothesis For any k < n:

x € Ry ANpost(x) N Qr # 0 = x € Ty,
Inductive Step Let k =n + 1:
T € Ryy1 Apost(z) NQpi1 =0ANx & Thia
= [ Thi1 AN Ryj1 = Ry UT 11 ]
x € Ry Apost(z) N Qpy1 =0
< [Qns1=CQn \ Tni1]
x € Ry A post(x) N Qp =10
<= [Inductive Hypothesis |
zeTl,
<= [Def. of CheckProp in Fig. 3]
post(x) N Qn C Ty
— [Qut1 = Qn \Thy1]
post(z) N Qpi1 =0 (RAA)

Step 2: We prove that:

VT = B+(Rk) N Qp

We first show that Ty 1 C BT (Rg) N Qg. Let x € Ty
<= [Def. of CheckProp in Fig. 3]
Jy € Ty A x € post(y) N Qk
= [T} C Ry and Def. of C|
x € C(Rk) Nz € Qg
= [Eq. 15]
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x€C(Ry) Nz & R N € Qp
= [Def.ofB"]
x € BT (Ry) ANz € Qg
= 1z € Bt (Rg) N Qk
Now we show that BT (Rg) N Qg C Tir1. Let z € BT (Ry) N Qg
= [Def. of B and Def. of C]
Jy € Ry :x € post(y) Nx & R ANz € Qg
— [Step 1]
Jy € Ty, : x € post(y) N x € Qk
= [Def. of CheckProp in Fig. 3]

x € Tk

Step 3: We can now prove by induction on k that:

Vk.x € R, < /\/l,a:):¢2/\E|yEll§k+1.§|p:y~l=>oo./\/l,y|:¢1
AVi0 <i <l = M,p(i) = ¢2

Base of Induction Let K =0 and = € Ry
<= [Definition of CheckProp]
x € Cr(V) N Sat(p2)
<= [Definition of Cr]
x e (VNBY(V))N Sat(gs)
z € (Q@NV)U(QNBF(V))
[ Definition of BT (V)]
x € (Sat(p2) NV)
or € Sat(px) NJyeV :(y,xz) €ER
<= [From 13 and 14
M,x = pa AM,x = do
or M,z kE ¢ NIy M,y é1:(y,z) €R
<= [From Def. 2.30 and Lemma 2.32]
M,z | paA

—
—

I <1Ip:y o coMyEd A0 <i<l+1 = M, p(i) = bo

Inductive Hypothesis For any k < n:

2ERy, & MaEdAIIA<k+13p:y~ o0 Myl b
AVi0 <i <l = M,p(i) = ¢o

Inductive Step Let k=n+1and x € R4
<= [Def. of CheckProp in Fig. 3]
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re R, UT, 11
<— r € R,
or x €Ty
<= [Step 2]
r € R,
or x€BT(R,)NQy,
<= [Def. of B"]
rz € R,
or Jx' € R,.x € post(z’) NQy
— [16 and 14]
r € R,
or 3z’ € Ry.x € post(x’) N M,z = ¢o

<= [Inductive Hypothesis]
M,z = ¢ A Jy.3l §n+1.5|p:y~j:oo./\/l,y = o1
AVi0 <i<l = M,p(i) = ¢2
or Jr'.eR,. M,z'=dpaATyIA<n+1Ip:y «/l/» o.M,y E ¢
AVi0 <i<l = M,p(z’)z)z P2
x € post(z') N M,z |E oo
= M,z | g2 A Jy. Tl Sn—i—l.ﬂp:y«i»oo./\/l,y':%
AYi.0 <i<l = M,p(i) = ¢
or M,z ):¢2/\E|y.5|0<l§n+2.3p:y«i+oo../\/l,y = ¢
AYi.0 <i<l = M,p(i) E ¢
= M,z |= ¢ ATyl §n+2.3p:y~gl;>oo../\/l,y|:¢1
AVi0 <i<l = M,p(i) = ¢

O

Proof. (of Theorem 6.4) We provide a sketch, as the core of the proof is that of Tarjan’s algorithm,
which we assume given. The proof is by induction on the structure of formulas. The only case where
the algorithm is not a direct implementation of its mathematical definition is the one for ¢ = Go. If
A = () the algorithm returns True. This is correct by definition of |=, as the empty set is strongly
connected. Otherwise, the set of points B satisfying ¢ is computed using function Sat, and the
algorithm returns False if A ¢ B. This is correct since all elements of A must satisfy ¢. Under the
hypothesis that 0 # A C B, an element x is chosen from A, and the algorithm executes a depth-first
search according to [46], modified to only follow successors of = that are in B. Note that the start
node x is in B, therefore the algorithm only visits nodes in B. For each strongly connected component
C reachable from z in the subgraph defined by B, the algorithm checks whether A C C. If this is
the case, then M, A = G¢ and the algorithm returns True. Conversely, if there is at least one point
in AN C, but not all points of A are in C, then M, A ¥ G¢. To see this, consider y € AN C and
z€ AN(X\ C). Tt cannot be the case that there are a path from y to z and a path from z to y both
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only crossing nodes in B, otherwise we would have z € C. Therefore, the algorithm returns False.
If a strongly connected component is found, but no node of A belongs to it, the algorithm returns
undefined and the depth-first search continues. One of the first two conditions necessarily happens
along the execution of Algorithm 5, when invoked from Algorithm 4, since there is at least one strongly
connected component reachable from x and containing z itself, with 2 € A. Therefore, Algorithm 5
never returns undefined when x € A. Termination, and the fact that the algorithm effectively finds
strongly connected components, is a consequence of correctness of Tarjan’s procedure. The worst
case time complexity of Tarjan’s algorithm is O(|X| + |R|) steps. This, the fact that the definition of
Algorithm 4 is by induction on the structure of formulas, and Theorem 6.3, cause the algorithm to
have time complexity O(k - (| X| + |R])). O
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