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Abstract. Space plays an important role in the dynamics of collective
adaptive systems (CAS). There are choices between representations to be
made when we model these systems with space included explicitly, rather
than being abstracted away. Since CAS often involve a large number
of agents or components, we focus on scalable modelling and analysis
of these models, which may involve approximation techniques. Discrete
and continuous space are considered, for both models of individuals and
models of populations. The aim of this tutorial is to provide an overview
that supports decisions in modelling systems that involve space.

1 Introduction

Collective adaptive systems (CAS) are systems which consist of a number of
components which interact (directly or indirectly) to achieve goals, by collabo-
ration, and in some instances, by competition. These components may be static
or mobile, as in the case of a robot swarm. Various smart transport systems
provide examples of CAS; for example, bike-sharing schemes and ride sharing.
Because movement is fundamental in these systems, space and spatial aspects
are important characteristics and influence the behaviour that these systems
demonstrate. Therefore, we wish to understand the dynamics of these systems
and how these may vary with changes in the implementation of the system,
and changes in use of the system. In the bike-sharing example, incentives can
be offered to users to influence their behaviour in terms of the station a bike
is returned to, or alternatively a system may suddenly show very poor perfor-
mance when the user base grows beyond a certain size. Alterations to timetables
of other public transport such as trains, could also impact the effectiveness of a
bike-sharing scheme. Furthermore, roadworks or new lane markings can modify
the space that the bike users travel through, affecting performance.

We model these systems to understand their behaviour because it is fre-
quently not possible to experiment with the actual systems, either because of
the disruption this will cause, or because the systems have not yet been con-
structed. In this chapter, we focus here on modelling dynamic systems (which we
also refer to as time-based) that involve some notion of space. These aresystems
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where the behaviour of the system is observed as time passes1. When trying to
understand the behaviour of a collective adaptive system by developing a model
of the system, it can be moderately straightforward to programmatically con-
struct an agent-based model where the agents move in a representation of real
space. But often, for a realistic number of agents, it is not computationally feasi-
ble to simulate this model a sufficient number of times to understand its overall
behaviour through the use of descriptive statistics. Additionally, an agent-based
model is likely to have a very large states space because it considers individuals
separately. The computational costs of many other analysis techniques are often
dependent on the number of distinct states that the system can take on, and
hence cannot be applied to these individual-based models.

Thus, detailed agent-based models may lead to more precision but at the cost
of choices for analysis. Typically in modelling, one wishes to retain the details
that the model is designed to answer, and to abstract from everything else.
Therefore, carefully chosen abstractions are crucial, and this tutorial provides
details about a particular type of abstraction and associated approximation of
results, that of population-based modelling, rather than solely modelling indi-
viduals. These abstractions contribute to scalable analysis. By this, we mean
that when modelling large systems with many components, our analysis can be
computed in a reasonable time (with reasonable memory requirements), and as
the system becomes larger, this analysis remains feasible. Concomitant with the
scalability is a requirement that any analysis technique that involves approxi-
mation remains within reasonable distance from the true value. Obviously, there
will be a system size at which the analysis becomes infeasible. In that case, pos-
sible solutions are then to consider whether size can be reduced by working with
a more abstract model, or to consider a different approximation technique which
is more scalable.

Furthermore, we focus on stochastic models. Stochasticity allows model
behaviour to vary, and hence captures the variation we observe in the systems
we wish to model. Specifically, we use random length durations drawn from
exponential distributions. The exponential distribution is suitable and conve-
nient for modelling because it has a single parameter (which is the inverse of
the average duration), it is memoryless (which means that what happens next
is only dependent on the current state, as opposed to any previous states, and
this negates the need when simulating to keep track of prior states or amount of
time elapsed), and other distributions can be approximated by combinations of
exponential distributions. In their most basic form, our models are continuous-
time Markov chains (CTMCs) and their discrete version, where probabilities are
used to determine the next state, discrete-time Markov chains (DTMCs). We
also consider extensions and variations of these models, but in general, any sto-
chasticity in our models occurs because of exponentially-distributed durations

1 Another approach to space is to consider it topologically, that is to consider the
relationships between points in space. This can be applied to both discrete and
continuous space. Details can be found elsewhere in this volume [19] in the context
of spatial and spatio-temporal logics.
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or probabilistic choices. One extension that we may use in some cases is allowing
the exponential rate (and probabilities) to be functional and depend on time or
other aspects of the model. This introduces time inhomogeneity into our models,
and this is often important to capture variations in behaviour at different times
of day, for example. The disadvantage of allowing time inhomogeneity is that it
can reduce the number of analysis techniques that are applicable.

This presentation does not consider any languages for specifying models but
instead focusses on mathematical representations of systems (which we will refer
to as models) to which analysis techniques can be applied. The choice of represen-
tation for a model is often influenced by the type of analysis and approximation
techniques that are available, and the aim of this tutorial to support such deci-
sions when modelling space. This chapter starts with a discussion of the type of
mathematical representations and analysis techniques that can be used if space
is not considered explicitly, and then moves onto consider these with the addi-
tion of space. Techniques for discrete space are considered in detail in Sect. 3,
followed by those for continuous space in Sect. 4. In these two sections, general
concepts are introduced for the type of space, followed by a high-level discussion
of the basic model and analysis techniques. Details are given of techniques that
have relevance to CAS, followed by a brief review of how they have been used
in different disciplines. Finally in Sect. 5, techniques that can be applied to both
types of space, or to models containing both types of space are considered.

2 Representations for Dynamic Modelling

Before considering the role of space, we introduce a number of dimensions that
we consider germane to our modelling, so that we can develop a classification
of dynamic modelling techniques relating to the modelling context described in
the introduction. Even without considering space, there are already a number of
choices that lead to different ways in which to model dynamic systems in a quan-
tified manner. We consider the dimensions and the choices on each dimension.
For example, the time dimension considers how time is treated in different types
of Markov chains. There are other aspects of time such as non-determinism and
causality, but these are not a strong focus of our general modelling approach,
and so are not included in the classification.

Time: Time is non-negative, strictly increasing and infinite, and can either be a
non-negative real or integer. In some models, a finite end-point may be used
to delimit the period of interest.

discrete: In the context of this tutorial, discrete time is used in those
modelling approaches where choices are probabilistic. At each clock tick
(which can be associated with an integer if useful for the specific model),
the next state is chosen probabilistically from all possible next states.
For example, discrete time Markov chains (DTMCs) use this approach
[53,70].
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continuous: In this case, time is represented by the non-negative real
numbers. Actions such as changing state have a duration associated with
them. In the case of continuous time Markov chains (CTMCs), stochas-
ticity is introduced by having random durations that are drawn from
exponential distributions [70].

State: States can be viewed as capturing a quality or attribute of an individual.
An individual is assumed to be in a single state at each point in time2.

discrete: Usually when the states associated with an individual are dis-
crete, there are a finite number of them. However, in the case of an
attribute like year-of-birth, there may be a countably infinite number
of values.
continuous: A continuous-valued state can be interpreted as measure-
ment of some quantity associated with the individual. An example of this
would be temperature or height.

Aggregation: Individuals can be considered separately, or the focus can be on
the number of individuals in each state. This is more relevant to discrete state
approaches than continuous state. In the continuous case, aggregation can be
described by a function, or discretisation can be applied to obtain frequency
data.

none : Behaviour of each individual is considered separately. This is often
referred to as agent-based or individual-based.
state-based : The behaviour of groups of individuals is considered by
counting the number of individuals in each state over time (giving a non-
negative integer value), or by having a non-negative real-valued approx-
imation to this number. This approach appears under a number of dif-
ferent names in the literature including population-based, state frequency
data, numerical vector form, and counting abstraction. The term occu-
pancy measure is used when counts are normalised by the population
size.

These dimensions can be expressed in a table, which can then be populated
with mathematical modelling techniques from the literature. Figure 1 illustrates
this and describes the modelling techniques that fit each possible combination
of elements for each dimension. There is the possibility of hybrid approaches for
the state and aggregation dimensions and we discuss these briefly in Sect. 5.2.

2.1 Scalable Modelling and Analysis Techniques

As mentioned in the introduction, we focus on Markov chain models. Basic def-
initions can be found in the appendix. An important aspect of our modelling
approach is the application of the mean-field technique where the analysis of a
population CTMC or DTMC can be approximated by an analysis using ordinary

2 An individual could have more than one attribute, and then the individual’s state is
multidimensional with a value for each attribute. In this case, the individual’s state
is a tuple of values.
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TIME discrete
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

DTMC [70] LMP [73] population difference equations,
DTMC [10] ODEs [10, 67]

TIME continuous
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

CTMC [70] CTMP [24] population population
CTMC [10, 58] ODEs [10, 58]

Fig. 1. Classification of mathematical models in terms of time, aggregation and state
(DTMC: discrete time Markov chain, LMP: labelled Markov process, ODE: ordinary
differential equation, CTMC: continuous time Markov chain, CTMP: continuous-time
Markov process

differential equations (ODEs) [10,58]. As the number of states of a Markov chain
increases (the “state-space explosion” problem), the analysis of the Markov chain
becomes intractable. Modelling a large number of individuals can lead to a very
large Markov chain. This can be mitigated by using a population Markov chain
where behaviour is considered at a population level rather than at an individual
level. The choice of a population Markov chain means we are interested in how
many individuals from a population PA are in each local state Ai, given by NAi

,
and the states in the Markov chain have the form (NA1 , . . . , NAn

). However, for
large systems this may still not be sufficient to obtain reasonable analysis times,
and an approximation using ODEs obtained from the population Markov chain
can be used. This gives a system of ODEs for the variables (XA1 , . . . , XAn

).
The population Markov chain considers non-negative integer-valued population
counts whereas the ODEs take a fluid approach and population quantities are
non-negative real values XAi

. Considering the modelling techniques in Fig. 1 for
both discrete time and continuous time, the Markov chain obtained by consid-
ering many individuals (in the first column) can be transformed into a smaller
Markov chain (in the third column) which can then be approximated by ODEs
(in the fourth column).

This transformation uses the mean-field approximation technique which
comes from physics, where it refers to the approach where movement of an
individual particle is considered in the field generated by other particles rather
than trying to solve the more complex problem of many particles interacting [68].
In modelling of systems, it has come to mean an approach where it is assumed
that when the number of individuals in a stochastic system becomes very large,
the population-level behaviour of the system can be expressed as ODEs which
provide an “average” behaviour. Results such as those proved by Kurtz [58]
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demonstrate that under certain conditions, convergence occurs, namely as the
number of individuals tends to infinity, the difference between the stochastic
trajectories of the subpopulation sizes and the deterministic trajectories of the
subpopulation sizes tends to zero. Practically, in many cases, good approxima-
tions using the ODE approach over the stochastic approach can be achieved
at relatively low numbers of individuals [85] and there are error bounds on the
approximations [21]. The mean-field approach is discussed in more detail else-
where in this volume [9].

Additionally, we will consider moment closure approaches to approximation.
For a PCTMC, it is possible to obtain ODEs that describe how the moments
(expected values) of variables and products of variables vary over time. Typically,
this results in an infinite system of ODEs, because the ODE for each moment is
dependent on higher moments. For example, the ODE for E[X] may involve not
only E[X] and E[Y ] but also E[X2], E[Y 2] and E[XY ]. Likewise, the ODE for
E[XY ] may involve expectations of the product of three variables. Moment clo-
sure techniques provide approximations for these higher-order moments through
a number of techniques that will be described later in this tutorial, thus providing
ODEs that give an approximation for the moments. The mean-field approach
described above can be seen as a specific instance of moment closure where
second order moments are replaced by the products of expectations (E[XY ] is
approximated by E[X]E[Y ], for example) under certain conditions relating to
mass actions and pairwise interactions. This is equivalent to assuming that vari-
ances and covariances are zero, and is a reasonable assumption to make if they
are likely to be small enough to be safely abstracted from. Typically, in the spa-
tial case, we wish to consider covariances and other higher moments to ensure
that spatial variation is included and not abstracted from.

Returning to Fig. 1, Markov processes (in the second column of the figure)
do not fit into this work flow (of transforming an individual-based model to
a population-based model and then using an ODE approximation) and seem
different from the other modelling techniques, as they are characterised by a
continuous state space which can also be interpreted as any continuous aspect of
a model, including space. We do not consider labelled Markov processes (LMPs)
further in this chapter, but we will comment further on continuous-time Markov
processes (CTMPs) in Sect. 4.1.

The research surveyed in this chapter involves transformation and analysis
techniques. Transformations of models may be necessary for a different analysis
to be applied. The counting abstraction as described above is an aggregation
technique, and treating population sizes as being real-valued rather than inte-
gral, is fluidisation. Another form of aggregation is when multiple locations are
considered as a single location. Finally, discretisation happens when some contin-
uous value is transformed to a discrete value, such as transforming real space to
discrete space. Hybridisation which can involve fluidisation to make some parts
of a discrete model continuous, or discretisation to make parts of a continuous
model discrete, is discussed in Sect. 5.2.



126 V. Galpin

2.2 Introducing Space

In this tutorial, Space will be considered in two different ways.

continuous: Here, space is represented by real values in the case of one-
dimensional space, pairs of real values in the two-dimensional case and triples
of real values in the three-dimensional case. It is always (uncountably) infinite
but may be bounded in extent. Continuous space used in this way can be seen
as an exact representation of actual physical space.
discrete : Approaches that use discrete space assume a number (usually
finite) of distinct locations where connectivity between locations is described
by an adjacency relation3. At each location, there may be multiple individuals,
although in some cases, such as cellular automata [49], this may be restricted
to a single individual. A location may be an abstraction or aggregation of
actual space.

The table in Fig. 2 shows the mathematical models for the different combinations
of time, aggregation, state and space. Here, we have chosen to focus on continu-
ous time models; however there are discrete time models of various approaches,
for example, some variants of interacting particle systems (IPSs) use probabili-
ties [29]. We now consider each entry of the table in Fig. 2 briefly together with
illustrative diagrams.

TIME continuous
AGGR none (individuals) state (populations)
STATE discrete continuous discrete continuous

SPACE
discrete CTMC, TDSHA [12] patch population patch population

IPS [29] PDMP [22] CTMC ODEs
[17] [17]

continuous molecular CTMP spatio-temporal PDEs [46]
dynamics [20] [24] point processes

]87[stnega

Fig. 2. Classification of mathematical models in terms of time, aggregation, state
and space (CTMC: continuous time Markov chain, IPS: interacting particle systems,
TDSHA: transition-driven stochastic hybrid automata, PDMP: piecewise deterministic
Markov process, ODE: ordinary differential equation, CTMP: continuous-time Markov
process, PDE: partial differential equation)

3 For CAS, we are usually interested in the adjacency of different regions of space, and
as we will see later, we use graphs to describe this relationship. Another approach
is where space has a nested arrangement, as seen in biological modelling. This con-
tainment relationship can be represented graphically by trees, but we do not focus
on this arrangement of space further.
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Fig. 3. Discrete space: (1) no aggregation, discrete state; (2) no aggregation, contin-
uous state; (3) aggregation of state, possible aggregation of space, discrete state (4)
aggregation of state, possible aggregation of space, continuous state

2.3 Discrete Space Illustrated

The approaches in the discrete-space category consider space to consist of a
(usually) finite number of locations that have connections between them. The
most straightforward way is to consider these models as graphs with the locations
as nodes and the links as edges. Discrete space is illustrated in Figs. 3 and 4,
showing the general case of an arbitrary graph, and the case of a more regular
graph structure, respectively. Regular space models are those that have a regular
pattern of locations [28,29]. For example, the locations could be laid out in the
rectangular grid, or a hexagonal tiling. The locations that represent space can
be situated at the nodes of the regular graphs or in the spaces (faces) created
by the regular graph as shown in Fig. 4. Regular space will be more formally
defined in Sect. 3.

In the diagrams, we assume individuals are from two populations. The first,
PA consists of red and white tokens, and has states A1 and A2. The second, PB

consists of blue and white tokens with states B1, B2 and B3. The current state
of an individual is indicated on the top of the token. The four diagrams in each
figure represent four single points in time and do not show change over time4.

Figures 3(1) and 4(1) show discrete-space models of individuals with discrete
states, hence there is no aggregation into populations. Some models only allow
one individual in each location, such as interacting particle systems (IPSs) [29]
and cellular automata (CA) [49], but others may allow multiple individuals.

4 For two-dimensional and three-dimensional space, the best visualisation method for
change over time is video. For one-dimensional space, a graph with two axes can be
used.
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Fig. 4. Regular discrete space: (1) no aggregation, discrete state; (2) no aggregation,
continuous state; (3) aggregation of state, possible aggregation of space, discrete state
(4) aggregation of state, possible aggregation of space, continuous state

In the case of single individuals at a node, this can be indicated by a flat token
as illustrated in Fig. 6.

Models of discrete space without aggregation and with continuous state are
shown in Figs. 3(2) and 4(2). The continuous state is indicated by a solid token
where the height indicates the value of a single continuous state. This is an
inherently continuous value rather than the notion of population size approx-
imation by continuous values described earlier in this section, and could be a
measurement such as strength of radio signal or length of battery life. Different
colours have been used in the diagram to make it clear that the values are con-
tinuous but not a population approximation. In Figs. 3(2) and 4(2), there is an
assumption of at most one individual per node and face, respectively, and two
values associated with that individual.

Next we consider discrete-state aggregation in the context of discrete space,
as illustrated in Figs. 3(3) and 4(3) by the fact that individual tokens are grouped
into stacks at nodes in the network, and it is the size of the stack that is rele-
vant rather than the location of each individual. Finally, in the case of continu-
ous state aggregation in discrete space, each region or point is associated with
approximations to the discrete population shown in Figs. 3(3) and 4(3). These
are illustrated in Figs. 3(4) and 4(4). At each node, for each state in each pop-
ulation, there is a real number that approximates the number of individuals in
that state. This is illustrated by a token with a real-valued height for each state
in each population. Note that in Fig. 3(4), the lowest node has a non-zero value
for blue tokens in state B3 although there were none in the CTMC model in
Fig. 3(3), illustrating that approximation can occur.
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2.4 Continuous Space Illustrated

We first consider continuous space with no aggregation and discrete state. This
covers approaches where each individual’s location and state are modelled sepa-
rately from those of other individuals. An example of this type of model is where
the movement and interaction of each molecule is modelled individually, as in
molecular dynamics [7]. Agent-based models take a similar approach. Figure 5(1)
illustrates this. The continuous space is indicated by a bounded area and each
individual is shown at its own location. These models are typically computation-
ally expensive to simulate.
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A2

A1

B2

B1

B3
B3
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(2)
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B2 B3

A1

0

2

4

60
2

4
6

0

100
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Fig. 5. Continuous space: (1) no aggregation, discrete state; (2) no aggregation,
continuous state; (3) aggregation, discrete state; (4) aggregation, continuous state.

Moving on to state that is continuous rather than discrete, leads to continuous-
time Markov processes (CTMPs) [24], if we assume some of the continuous dimen-
sions relate to space and the others to state. Since there is no state-based aggre-
gation, this approach models individuals rather than populations. The continuous
space is indicated by a bounded area and each individual is shown at its own loca-
tion. The continuous state is indicated by the varying heights of the tokens, and
in Fig. 5(2), it is assumed that there is only one (non-spatial) measurement per
individual, although multiple different measurements are possible.

For the case of aggregation with discrete state, each point in space can be
filled by zero, one or more individuals [78]. Hence for each point in space, it
is possible to aggregate the number of individuals in each state. Figure 5(3)
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shows a fairly sparse number of individuals but much denser arrangements are
also possible. Finally, when aggregation is continuous in nature, then at each
point in space, there is a real value describing an approximation to the number
of individuals at that point [20,71]. In the case of two-dimensional space, the
population of each state can be represented in three-dimensions by surfaces as
defined by partial differential equations (PDEs). Figure 5(4) illustrates a surface
describing the number of individuals at each point for state A1. In contrast to
Fig. 5(3), this figure illustrates a very dense situation.

2.5 Summary

As is the case with techniques that do not include space, presented in Fig. 1,
the techniques using continuous state without aggregation (the second column
of models in Fig. 2) seem distinctly different to the other approaches. The tech-
niques that can be applied to models without space described earlier in this
chapter (approximation by ODEs of a population DTMC or CTMC) can be
applied to discrete space since the Markov chain involved is a population Markov
chain that takes location into account. Furthermore, taking the hydrodynamic
limit of IPS (which are discrete space models without aggregation) models pro-
vides PDEs [23].

In all of the models described in the previous section, there may be interac-
tion between individuals (even if this interaction is expressed at the population
level). Opportunity for interaction is often related to colocation or proximity
(which requires some notion of neighbourhood or distance). Many models cap-
ture movement of individuals explicitly and then use colocation or proximity to
determine the possibility of interaction, although there are some models that only
use proximity without movement such as IPSs and CA. We discuss movement in
more detail when we consider the analysis techniques for the two different kinds
of space.

3 Discrete-Space Modelling Techniques

We now consider discrete space in more detail and formality, so we introduce
both notation and concepts relevant to discrete space. We will focus here on
the continuous-time models, with pointers to the discrete-time models where
appropriate.

In the most general case, we assume a finite (or at most countably infinite)
set of points or locations L with some naming convention [41]. Most generally,
the set of locations L can be taken as the vertices of an undirected graph, and
the connections between locations (the adjacency relation) can be defined as
edges in that graph. The edges of the graph EL are drawn from the subsets of
size two of the location set P2(L), so EL ⊆ P2(L). Each edge has the form
{l1, l2}, and edges of the form {l, l} are permitted. We have chosen to use an
undirected graph which is to be understood as allowing movement or interaction
in at least one direction between the two locations. The absence of an edge
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means that movement and interaction can never take place, in either direction.
Parameters associated with an edge express (possibly in a time-varying manner)
the propensity for movement or interaction in either direction. If a parameter
is zero at a particular time for a particular direction, it means that no active
interaction or movement can take place at that time point. Hence, the graph
of locations provides a skeleton for describing what movement or interaction is
possible.

Locations in discrete space models can have two main sources, either they
are essentially locations on a map, such as bike-stations or bus stops, or alter-
natively each location represents a region on a two-dimensional map, and space
is aggregated. These are called patch-based models. The edges of the graph can
be determined by various factors. Adjacency of regions is an obvious choice, but
there may be other context-specific elements, for example, presence of connec-
tions between regions such as railway lines or similar. A topic whose exploration
is beyond the scope of this chapter is that of how to divide a map in regions.
A simple approach is to base it on a tiling of the plane using triangles, quadri-
laterals or hexagons. More complex approaches involve taking local information
into account and creating irregular patches. Computer networks can be seen as
being located in discrete space, either physically or logically.

An issue for discrete space (and continuous space) is determining what hap-
pens at the boundaries of the space. One approach is to ensure there are none by
working with infinite structures such as infinite graphs, or alternatively bound-
aryless structures such as tori. A rectangular region can be transformed into a
torus by joining the top and bottom edges (to form a cylinder) and then join-
ing the left and right ends (by curving the tube). Other approaches work with
boundaries and either choose to keep individuals inside the region (by reflection
or other techniques) or to treat boundary locations as sources and/or sinks.

The discrete space approach as described above is very general as it allows
arbitrary graphs over locations, as well as heterogeneity for parameters. In the
literature there are modelling techniques that are defined for specific graph sub-
classes and we will discuss some of these below.

3.1 Spatial Parameters and Regularity

A modelling technique with discrete space will have parameters that depend on
locations, or links between locations. We can consider two groups of parameters;
those that are associated with locations, namely with vertices of the graph and
those that are associated with interaction or movement, namely the edges of the
graph, and we define two functions to describe these parameter sets as follows

– λ(l) for l ∈ L, and
– η(l1, l2) and η(l2, l1) for {l1, l2} ∈ EL.

The range of these functions will remain abstract for the purposes of this discus-
sion. Note that although the edges of the graph are not directed, the function η
is sensitive to direction. Movement is obviously directional but interaction can
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be undirected when considering an abstract view of effect or communication.
Alternatively, it can be directed if one party is the sender and the other the
recipient. Our choice of an undirected graph allows these details to be expressed
in parameters. In the rest of this chapter, the term transfer will be used to refer
to both movement and interaction.

We present the following definitions, leading to a definition of spatial homo-
geneity (a term which is used in the literature but not formally defined), by
considering the location-related parameters. A spatial model is

– location homogeneous if λ(li) = λ(lj) for all locations li, lj ∈ L.
– transfer homogeneous if η(li, lj) = η(lj , li) = η(li′ , lj′) = η(lj′ , li′) for all edges

{li, lj}, {li′ , lj′} ∈ EL.
– (spatially) parameter homogeneous if it is both location and transfer homo-

geneous.
– spatially homogeneous if it is parameter homogeneous, and its location graph

is complete5. Regular connections between locations which do not give total
connectivity are discussed below.

Models with spatial homogeneity have a symmetry that can allow for analyses
that are not possible for more complex models. Examples are the bike-sharing
system considered in [39] where the metrics of interest are the number of empty
and full bike stations.

Spatial inhomogeneity/heterogeneity can be introduced in two ways: the first
involves connectivity where equal accessibility is no longer assumed, and the
second where all locations are still accessible from all locations, but parameters
vary between locations. Note that if a parameter ρi,j ∈ η(li, lj) is constant for
all i and j but other parameters vary by locations, then the model is spatially
inhomogeneous.

Regular discrete space covers those discrete space models where the organ-
isation of space is regular (rather than an arbitrary graph where each vertex
may have an arbitrary number of edges). By contrast to spatial homogeneity,
regularity of space is more difficult to define formally when starting from a graph
(and we do not give details here), although it is very straightforward to identify
visually [72]. Terms such as lattice, grid or mesh are frequently used to describe a
graph based on a square or rectangular tiling of the plane. The other two regular
tiling possibilities are equilateral triangles and regular hexagons. Alternatively,
a graph with regular structure can be constructed by identifying points in Z×Z

or R × R, and adding links. We will not attempt that level of generality for
discrete space beyond saying that regular space should have the property that
at each location (except possibly at boundary locations) there is a uniform way
to determine the immediate neighbours6. One-dimensional regular space can be
represented simply as an undirected path. We do not tackle a formal definition
of three-dimensional regular space.

5 A complete undirected graph has an edge {l, l′} between each pair of vertices l and l′.
6 We exclude from this definition n-hop neighbours in an arbitrary graph (see definition

of n-hop in the next subsection).
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3.2 Neighbours and Neighbourhoods

In an undirected graph of locations representing discrete space, the links between
locations are used to define neighbours. Given a location l, its immediate neigh-
bours are those vertices l′ such that {l, l′} is an edge in the graph. Its n-hop
neighbours are those that can be reached through a path in the location graph
of at most n steps (but usually excluding the location l itself). In the case of
a regular grid graph, the immediate neighbours (west, north, east and south)
are referred to as the Von Neumann neighbourhood. The larger neighbourhood
that includes the northwest, northeast, southeast and southwest points as well
as the immediate neighbourhood is known as the Moore neighbourhood. Both
types of neighbourhoods can be extended to n-hop neighbours and also applied
to hexagonal and triangular regular location graphs, with obvious adaptations.

This is a purely spatial approach to defining neighbourhoods. However, in
some cases, it can be the entity or process itself that defines its neighbourhood
depending on its capabilities. Other approaches use a (perception) function that
determines the de facto neighbours of an individual by specifying the other
individuals with which it can interact.

3.3 Techniques for Individual Discrete-Space Models

We now consider the different modelling techniques that have been applied to
discrete space starting with those that do not involve aggregation of state. When
there is no aggregation and state is discrete, the focus is on individuals and an
example is an agent-based system over discrete space. Each individual has some
state and is located at exactly one location. There may be a restriction to one
individual per location. To describe these models in their most general form, we
assume that each individual I (where I is a unique name for the individual) has
associated time-based information:

– loc(I, t) ∈ L which is its location at time t
– state(I, t) ∈ {A1, . . . , An} which is its state7 at time t

Additionally there are rules that describe how an individual can change location
or change state. Since this is a continuous time model, these rules specify rates to
describe how long it takes on average for the changes to occur. Each rate defines
an exponential distribution, and may be constant or the rates may be functions
that depend on the presence of others at that location, the characteristics of
the location or the current time (thus introducing time-inhomogeneity). The
behaviour of the agents in this modelling technique is thus described as they
individually change state and/or location. Assuming a fixed population size, we
can model this system as a CTMC, where each state in the CTMC is a tuple
consisting of information about each individual in the system. If we assume N
individuals then a state has the following form

(
(loc(I1, t), state(I1, t)), . . . , (loc(IN , t), state(IN , t))

)

7 If the population PA has multiple attributes A[1], . . . , A[p], then state(I, t) =

(A
[1]
i1
, . . . , A

[p]
ip

) represents a tuple of attributes.
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There are (L×n)N states in this Markov chain if there are L locations, n states
and every combination of state and location is possible for all individuals.

Simulation suits this type of model, and techniques for simulating systems
where behaviour is based on functional exponential rates are well understood
[43]. They can also be analysed using standard numerical CTMC techniques for
steady state and transient behaviour. However, a large number of individuals
can make this computationally infeasible.

Next, we consider discrete space modelling techniques without aggregation
but where the state is continuous. Therefore, instead of having a rule describ-
ing how (discrete) state change can happen, there needs to be a rule describing
how the continuous state changes over time. A good candidate for this type of
rule is an ODE. These techniques are hybrid in that they exhibit both contin-
uous behaviour with respect to state and stochastic behaviour with respect to
space. Transition-driven stochastic hybrid automata (TDSHAs) [12] and piece-
wise deterministic Markov chains (PDMPs) [22] are suitable modelling tech-
niques. Both of these also introduce the possibility of instantaneous behaviour.

3.4 Pair Approximation: Spatial Moment Closure
Based on Structure

The technique called pair approximation, which we will refer to as structure-
based moment closure, provides ODEs which describe the changes over time in
the probabilities of certain pairs (adjacent locations) in the model [66,91]. From
these ODEs, the proportion of locations in a particular state can be determined.

It is applied to a specific class of discrete-space models of individuals with
discrete state, namely graph-transformation models. In these models, each node
either represents a single individual or a single position in space or location
which can take on exactly one of a small number of states. Whether the node
itself is modelled or an individual at the node is modelled, the node is the agent
in the model. Hence there is no distinction between location and agent, unlike
in population discrete-space models.

The dynamics of the model are defined in terms of graph transformation rules
with associated exponential rates (when using continuous time). A graph trans-
formation rule describes how a small subgraph or pattern can be transformed
in another pattern. There are two possible types of transformation: those that
change the state of the nodes in the graph and those that modify the graph

Fig. 6. A graph-transformation rule applied to an individual discrete-space model with
discrete state
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by removing or adding nodes or edges. Here, we investigate a static model of
space and so we only consider the first type of transformation in this chapter.
An example of such a rule is given in Fig. 6. The lack of distinction between
location and agent is indicated by the fact that the disks are flat rather than
raised tokens, as mentioned earlier.

As an example, consider a graph-based SIR model8 where each node is an
individual who can be in one of a number of states (susceptible, infected, recov-
ered, hence the abbreviation SIR) and the edges of the graph link individuals
that can affect each other. The graph-transformation rules include a linked pair
consisting of one susceptible and one infected being modified to a linked pair
consisting of two infected nodes (as illustrated in Fig. 6), and a infected node
being modified to a recovered node. In ecological modelling, nodes may represent
a patch of ground which can be in a number of states including filled by a plant
of a specific species, empty but suitable for growth or infertile. Often the nodes
are laid out in a grid pattern, and the transformation rules describe how plants
spread, and how nodes become fertile or infertile.

The stochastic graph transformation model is used to obtain ODEs which
describe the change in how often each pattern appears over time. By patterns,
we mean small graphs consisting of nodes with states of interest. The reason this
technique is called pair approximation is because one can consider the patterns
of interest to be a graph consisting of two linked vertices, with the two vertices
having specific states, and one wants to know how many times this pattern
appears in the graph of the model. Much of the existing research assumes a
finite grid/lattice [66,91], but one can also consider the more general case of
arbitrary graphs rather than regular ones.

Deriving the ODE for a particular pattern may involve understanding how
often a different pattern occurs (because the one pattern is transformed into
the other by the stochastic process). Typically, to understand the various pair
patterns that can occur, the number of certain triplet patterns must be known,
and at the next step of obtaining ODEs for triplet patterns, the number of specific
quadruplets must be known. This generation of ODEs is similar to that of the
moment ODEs described in Sect. 2.1 and leads to an infinite system of ODEs.
This system of ODEs can be closed using certain closure techniques (which will
be discussed in more detail in Sect. 3.6) and thereby give an approximation to
the true value. Structure-based moment closure has also been considered as a
multi-scale technique [31]. In this case, different sizes of neighbourhood are used
for different types of interaction.

3.5 Techniques for Population Discrete-Space Models

We now move on to consider discrete space when aggregation of state occurs
resulting in populations, whose sizes are either integral or real-valued. It is

8 This is different to the population SIR model that appears in another chapter in this
volume [9] because there is at most one individual at each node in the graph, and
that individual has an associated state, rather than subpopulations in each state.
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assumed that we have many individuals to whom the same set of rules apply
with the same parameters, and we choose to view them as a population and
to reason about them as a population. These models are population CTMCs
where subpopulations in different locations are viewed as separate subpopula-
tions. These are also called patch-based models and there are various examples
in the literature [17,93].

We consider a population PA. At each point in time, each individual in PA

is in exactly one of its local states A1, . . . , An. Let NAi
(t) refer to the number

of individuals in population PA that are in state Ai at time t. These are called
subpopulations. The total number of individuals in the population at time t
can be expressed as NA(t) =

∑n
i=1 NAi

(t). Furthermore, if no births or deaths
are assumed, and an individual must be in one of the available states9, then
NA(t1) = NA(t2) for all times t1 and t2 and the size of PA is a constant NA.
We use XAi

(t) ∈ R≥0 to represent a non-negative real-valued description of the
population PA which is an approximation to NAi

(t).
If we assume that we have a fixed number of locations, l1, . . . , lL, we can now

obtain the counts of subpopulations at each location. So for PA, we have a value
N

(k)
Ai

which is the number of individuals at location k in state i. Additionally

NAi =
L∑

k=1

N
(k)
Ai

and N
(k)
A =

n∑

i=1

N
(k)
Ai

and NA =
n∑

i=1

NAi =
L∑

k=1

N
(k)
A

We can create a continuous time Markov chain smaller than that of the previous
section consisting of at most (NA + 1)L×n states where each state has the form

(
N

(1)
A1

, . . . , N
(1)
An

, . . . , N
(k)
A1

, . . . , N
(k)
An

, . . . , N
(L)
A1

, . . . , N
(L)
An

)

This provides a discrete aggregated representation of individuals in space where
for each location, we know how many individuals are in each state without
knowing exactly which individual at that location is in which state. An example
of behaviour in such a model is illustrated in Fig. 7 where an individual in state
B3 moves from one location to another and the population sizes at those locations
change as a result of this movement.

In the case of continuous state aggregation, the notation X
(k)
Ai

is used for
the real value that describes the quantity of individuals in state i at location
k. Since this can be a non-integer value, it is an approximation to the actual
count N

(k)
Ai

. Since the subpopulation sizes are treated as continuous values, a
standard modelling technique is to express the change in this quantity in terms
of an ODE.

dX
(k)
Ai

dt
= Fi,k

((
X

(1)
A1

, . . . , X
(1)
An

, . . . , X
(k)
A1

, . . . , X
(k)
An

, . . . , X
(L)
A1

, . . . , X
(L)
An

)
, t

)

9 In some models, births and deaths can be included for a fixed size population by
introducing a “dead” state. However, this requires that there is a finite maximum
population size.
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Fig. 7. Behaviour in a population discrete-space model with discrete state

This is a population ODE because it tracks the changes in subpopulation sizes
over time. There are L × n variables in total; one for each combination of state
and location. The inclusion of t as an argument to Fi,j indicates that it can be
a time-inhomogeneous ODE. This ODE often has the following form

dX
(k)
Ai

dt
= fi,k

(
X

(k)
A1

, . . . , X
(k)
An

)
+

L∑

j=1,j �=k

(
gi,k,j

(
X

(k)
A1

, . . . , X
(k)
An

, X
(j)
A1

, . . . , X
(j)
An

)− hi,k,j

(
X

(k)
A1

, . . . , X
(k)
An

, X
(j)
A1

, . . . , X
(j)
An

))

where fi,k captures the local behaviour which only depends on the subpopu-
lation sizes locally, gi,k,j describes the inflow of population from location j to
location k, hi,k,j describes the outflow of population from location k to loca-
tion j, and these flows depend only on the subpopulation sizes in location k
and location j. This is a time-homogeneous ODE since change over time is only
dependent on subpopulation sizes (that are dependent on time) rather than on
time directly. For both the general and regular space cases and assuming only
movement/interaction between 1-hop neighbours, then a term X

(j)
Ai

should only
appear in the right hand side of the ODE if {lk, lj} is an edge in the location
graph.

In both models, discrete population and continuous population, rates are
functional and there is no specific requirement for them to be continuous,
although discontinuities in rate functions may affect the applicability of certain
analysis techniques.

Since PCTMCs with locations are PCTMCs then the usual linear algebra
numerical techniques that can be applied to PCTMCs to understand the prob-
ability of being in a specific state at steady state, or at a particular time during
transient behaviour, can be applied. The computational feasibility is limited by
the size of the state space.

Simulation is also applicable to simulate individual trajectories of behaviour
using an algorithm such as that proposed by Gillespie [44]. A basic assumption
is that the model has the property of being well-mixed, that is the entities in
the model are evenly distributed throughout space and hence there is no spatial
heterogeneity. If sufficient trajectories are simulated, statistical measures can be
calculated across all trajectories. In the case of PCTMCs with locations, the
assumption of well-mixedness must be made for each location.
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Finally, the techniques based on Kurtz’s result [58] that express the average
behaviour of a PCTMC as ODEs also apply to the fluidisation of a PCTMC
with locations. The assumption of well-mixedness also applies, as with Gillespie
simulation. Although the ODEs provide an approximation to the true values,
this is achieved much faster as it is easier to calculate the trajectory of a set
of coupled ODEs than it is to do multiple simulations for statistical analysis.
Techniques such as exact fluid lumpability and related approximation techniques
[87,88] identify when it is possible to apply an aggregation when dealing with
ODEs and these techniques are discussed further elsewhere in this volume [90].

We can also consider homogeneity of parameters. In the case of spatial homo-
geneity, the fact that parameters are identical may make the model amenable
to an analytic approach, rather than requiring simulation [39]. However, vari-
ations in parameters and rates do not affect the speed of analysis, although it
may make the description of the PCTMC more complex. This is because these
analyses consider each possible transition (or term in the ODEs) individually
and have no way to speed up analysis by considering transitions with the same
rate (or identical terms in the ODEs) together (either as a group or to reduce
calculation).

Another issue to consider that relates to spatial heterogeneity is that of
dynamic space where nodes can leave and join a network and links can be added
or removed. Although we do consider that time-homogeneity may be a feature of
our PCTMCs and associated ODEs because rates are dependent on time, we do
not consider dynamic location graphs here, because of the complexity introduced
by this additional change in behaviour over time.

3.6 Aggregate Moment Closure: Spatial Moment
Closure Based on Averages

We now consider existing techniques from the literature referred to as spatial
moment closure that can abstract from the details of space but still provide a
spatially based approach. We will use the term aggregate moment closure for the
techniques that are applicable to population discrete-space models because it is
more descriptive. Aggregate moment closure requires fluidisation of the popula-
tion model, derivation of moment ODEs, and application of an approximation
technique to close the moment ODEs.

In this approach, moment ODEs (see the appendix for a definition) are
obtained for averages over all locations (or values for a specific attribute) for
various subpopulations. When applied to spatial models, it is a spatial abstrac-
tion technique because information about what happens in individual locations
is lost. The basic approach is to obtain an ODE for each subpopulation for the
ensemble10 of the average over all locations for that subpopulation. This will
then (in most cases) be expressed in terms of the expectation of the product of
two variables (a higher order moment). The ODE for this can then be derived
and this again is likely to contain even higher order moments. In most cases, the

10 The mean (at time t) over all stochastic realisations (at time t).
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system of ODEs is not closed (or it is not reasonable to determine whether it
is closed), and it can be closed by approximating higher order moments after a
certain level. Earlier it was mentioned that the mean-field approximation (in the
sense of Kurtz) is given by the first moment ODEs with approximations for vari-
ances and covariances based on an assumption that these were zero or negligible
(see also [9] in this volume). Because the covariance captures spatial variation,
we must have ODEs for at least second moments but third and higher moments
can be approximated. There are four ways to approach this approximation.

– Assume that the higher order moments above this level provide negligible
contributions and ignore them by approximating them with zero. A related
approach is to assume that higher order cumulants are zero [65].

– Use the technique of stochastic linearisation which approximates the expecta-
tions of products with the product of expectations for higher order moments
above this level. It is not sufficient to express second order terms as the prod-
uct of first order terms as mentioned above, hence this technique can only
be applied to third and higher order moments [61]. The modified mean-field
approach from ecology takes a similar approach by approximating higher
moments with powers of first order moments [74].

– Assume that the data has a particular distribution and use that distribution
to determine the values of the higher order moments above this level. The log
normal distribution is frequently used because of its positive support which
makes it suitable for population modelling [61,62].

– Apply a Taylor expansion of moments, as used in scale transition theory [18]
which formalises how local dynamics relate to global dynamics, particularly
in the case of nonlinearity.

Most applications of this technique assume a complete graph, or alternatively
when neighbourhood is used in an incomplete graph, approximate the results
with those obtained from a complete graph [62].

Another approach to moment closure is language-based where information
from the model specification language is used to determine which moments
are likely to be negligible [36]. A neighbourhood relation is derived from the
(language-based) model to determine when it is appropriate to approximate the
expectation of a product with the product of expectations. This relation could
also use spatial information to determine approximation.

3.7 Multi-scale Techniques Based on Differences in Rates

As mentioned previously, rates can vary, and it may be possible to exploit this
variation in the analysis techniques. There are well-known techniques that use
differences in interaction rates between entities, such as the Quasi-Steady-State
Assumption (QSSA) which assumes an equilibrium for the parts of the system
that have fast interaction rates and then derives expressions for the slower parts
of the system [45,79]. This can be done both within a stochastic approach and
a deterministic approach using ODEs. Another technique is timescale decom-
position applied to CMTCs which have the characteristic that its states can be
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partitioned into groups such that transitions between group members are fast,
and transitions between groups are slow. This permits an approximation tech-
nique that allows for the CTMC represented by each group of states to be solved
separately and then combined into a solution for the whole CTMC [80].

In ecological modelling, spatial aggregation methods consider the combina-
tion of different time scales that are location-based [1]. Starting with an assump-
tion that interactions that occur at a location are slow and movement between
locations is fast, the usual ODEs for a population model can be derived, consist-
ing of terms for migration and terms for local interaction. It is assumed that the
terms for migration are multiplied by the inverse of the scale parameter, a value
much smaller than 1. This expresses the difference between the fast migration
and slow local interaction. Through a change of variables from subpopulation
size at a location to a pair consisting of density at a location and total subpopu-
lation over all locations, with a related change in the time variable that divides
time by the scale parameter, a slow-fast system can be obtained to which either
the quasi-steady-state assumption or Fenichel’s theorem [37,92] can be applied
to obtain a reduced system. This technique can perform much better than the
spatial moment technique when there is substantial demographic variation across
patches but it does require differences in rates.

In other models outside of ecology, particularly those involving computer
systems, it is likely to be the case that the pattern will be the opposite as
movement between locations is typically physical, whereas interaction within
locations may be computer-based and much faster than physical movement and
then techniques based on QSSA is more appropriate.

3.8 Applications of Discrete Space Models

In this section, some applications of the discrete space models that have been
presented are now discussed briefly. For a detailed survey of the applications of
discrete space models, the reader is referred to [41].

Ecology: Space plays a crucial role in many ecological models and ecologists are
interested in global qualities of the whole space such as whether species persist
or can co-exist, as well as dynamic patterns such as stationarity, oscillatory
behaviour, chaos or multistability [68]. Berec [5] provides a classification of
spatial models where he considers the time, space and population as different
dimensions. Reaction-dispersal networks (also called metapopulation mod-
els) are continuous-time, discrete-space, continuous-population models that
describe change over time by a system of ODEs over species in locations. They
are the same as ODE patch models in our terminology. Coupled-map lattices
are a discrete-time model defined systems of difference equations [51] and
regular discrete space, and allow continuous population sizes. Morozov and
Poggiale [68] highlight that the term “mean-field” can be used in the ecol-
ogy literature to both describe the non-spatial Kurtz-based approximation
technique as well spatial approaches.
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Biology: Bittig and Uhrmacher [7] identify five distinct methods for spatial
modelling in cell biology that offer different granularities in their approxima-
tion of physical reality. Two of these are continuous space approaches and are
discussed in Sect. 4.5. The discrete-space models are those that use compart-
ments as a nested arrangement of space, discrete-space lattice approaches
with a single molecule at each face of the lattice, and discrete-space lat-
tice approaches where multiple molecules are permitted at each face. For an
overview of techniques to model diffusion, both stochastically and continu-
ously, see [33]. Patch models are also used to model biochemical reaction sys-
tems [61]. Pattern formation is also important in biology and Turing’s paper
gave an initial insight into this process [89]. Pattern formation is considered
in [19] in this volume.

Epidemiology: Riley [75] identifies four distinct approaches to disease spread
modelling that considers different levels of interaction: patch-based, distance,
multigroup and individual. Patch-based or metapopulation models11 are used
extensively in modelling of epidemics [27]. These models often focus on the
calculation of the basic reproduction number, R0, which determines whether
a disease will die out or spread to the whole population. Individual discrete
space models have also been used for disease modelling [59], as illustrated in
Sect. 3.4.

Networking: Computer networks, in particular ad hoc networks and mobile
networks, often require spatial modelling for evaluation. For example, com-
puter and mobile phone virus spread modelling involves spatial aspects and
much of this research draws on epidemiological approaches [48,55]. Routing
protocols may have spatial aspects that can be discrete or continuous [95].
Patch models have been used to model information transmission between
mobile nodes [17,35,94].

Forest fires: Propagation of forest fires is investigated using Multi-class Multi-
type Markovian Agent Model (M2MAM) [16]. The approach models individ-
ual agents in discrete space and from this, a patch ODE model is derived.
Forest fires have also been modelled using stochastic cellular automata in a
climate model [60].

Robotics: A robotics case study consists of a swarm of robots that have to
collectively identify a shortest path [63]. The division of a path into separate
sections which are considered as discrete locations provides a way to approx-
imate the traversal time by real robots and the convergence on the shortest
path.

Emergency Egress: The modelling of evacuation from a multi-story build-
ing [64] involves a multi-story building with building elements such as rooms,
corridors and stairwells, doors and exits. To model the movement of people
and the time to evacuate the building, a discrete-space model using patches
was developed.

11 The basic epidemiological SIR model is called the compartment model [13] and this
consists of a single population with no spatial aspects. It should not be confused
with the compartment models in biology which are patch-based models.
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Crowd Behaviour: Spontaneous drinking parties are a common phenomenon
in cities in the south of Spain [76]. A model shows that the introduction
of small variations that break symmetry, both in space and in the degree
of connectivity between locations and in the behaviour of the individuals
can lead to new behaviour [11]. This example is considered elsewhere in this
volume [90].

Bike Sharing: Bike sharing systems have been modelled with homogeneous dis-
crete space using a population CTMC approach with an associated mean-field
model [39]. When space is not homogeneous, a clustering approach has been
used to group similar locations together [40]. This example is also considered
in this volume [90].

A number of the above examples are CAS. Other CAS examples where discrete-
space techniques are applicable include smart transport and smart grids. The
next section considers modelling with continuous space.

4 Continuous-Space Modelling Techniques

Continuous space is more straightforward to define than discrete space. In this
section, we will focus on two-dimensional space; however, both one- and three-
dimensional space may be useful in various contexts. Continuous space can either
be the Euclidean plane extending infinitely in all directions, R×R, or it can be
a bounded connected (contiguous) subset of this plane. Points in the plane can
be referred to by their coordinates (x, y) ∈ R×R. As with discrete space, we can
consider two cases, depending on whether we focus on individuals or populations.

This section starts with considering individual-based continuous-space mod-
els. Next, population continuous-space models are presented, followed by two
techniques that are relevant for population discrete-space modelling, but involve
continuous-space models or techniques as well. The section ends with examples
of the application of continuous-space techniques in various disciplines.

4.1 Techniques for Individual Continuous-Space Models

In these models, we consider identifiable individuals. There are many different
models of the movement of individuals through two-dimensional space, such as
models of animal movement and models for ad hoc and opportunistic networks
[14]. These are often stochastic and capture the probability of movement in a
particular direction at a certain speed. Additionally, it may be necessary to deter-
mine what happens at the boundary of the space. Often, it is assumed that the
space is the surface of a torus and hence has no boundaries – this is more com-
mon than assuming the surface of a sphere, as it is hard to map subsets of R×R

to the sphere. There are also models to describe the movement of a related group
of individuals through the space [14]. Connectivity models on the other hand,
describe interaction (for example, contact duration and time between contacts)
rather than location [52] so they are implicit movement models. Interaction can
be interpreted as dynamic graphs with the individuals as the nodes.
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Next, we consider the form that these models can take. If I is an individual,
then it has associated information, similar to the discrete state case.

– loc(I, t) ∈ R × R which is its location at time t, and
– state(I, t) ∈ {A1, . . . , An} which is its state12 at time t.

There are rules which describe how the individual changes state and these may
take into account the individual’s current location, and rules that describe an
individual’s movement through space which may take into account the individ-
ual’s state. As with discrete space, the rates for state change are exponential
and can be functional. Unlike with discrete space, it is not useful to construct
a Markov chain whose states are obtained from the locations and states of each
individual. Discrete event simulation can be used to explore the behaviour of
these systems [38].

In the case that the state is continuous, then

state(I, t) ∈ R
n for n ≥ 1, which is continuous and represents its state at

time t.

As with the discrete space case, some way is required that describes the change
of state over time, and an ODE can be used for this. Some models require
both discrete and continuous non-aggregated states and this requires a hybrid
solution. Agent-based models in continuous space are examples of an individual
continuous-space model where individuals can take on discrete states or contin-
uous values.

A different approach to modelling continuous state with continuous time is
that of continuous time Markov processes (CTMP) [24]. A CTMP is a tuple
(S,Σ,R,L) where (S,Σ) forms a specific type of topological manifold and R :
S × Σ → R≥0 is a rate function which is measurable in its first coordinate and
a measure on its second coordinate. L is a state labelling function. Applying
this in the context of space, the manifold is (R × R, Σ) where Σ consists of the
open sets of R × R, hence defining a σ-algebra. A notion of path through this
space can be defined describing the behaviour of an individual. Furthermore, if
there are additional continuous quantities associated with the individual then
additional dimensions of R can be used.

4.2 Techniques for Population Continuous-Space Models

When individuals are aggregated into populations, there is no need to keep track
of them individually and densities become more important. In spatio-temporal
point processes13, each point in space (x, y) has an associated integral count
for a state in a population at a specific point in time t. We can denote this as
12 As with discrete space, if the population PA has multiple attributes A[1], . . . , A[p],

then state(I, t) = (A
[1]
i1
, . . . , A

[p]
ip

) representing a tuple of attributes.
13 In contrast to spatio-temporal point processes, spatial point processes describe dis-

tributions in space, and do not include a notion of change over time [3] and hence
are not relevant in this context.
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NAi
((x, y), t) and its behaviour is described by a function λ((x, y), t). In general,

λ can depend on all preceding events, but in the case of a Poisson process, it
only depends on (x, y) and t [78]. If λ is a constant, then there is no spatial
heterogeneity. If the equation defining λ includes comparison with other points,
then either clustering or inhibitory behaviour can be defined. If time and space
are independent then λ can be defined by λ((x, y), t) = λ1(x, y)λ2(t). The form
of λ may also describe a reduction in the population at a specific point (x, y)
and dispersal of that population to other points, thus capturing movement.

For continuous aggregation of populations, we now consider the classical
model of movement in continuous space, that of partial differential equations.
For populations described by XAi

((x, y), t), the general form is

Fi

(
x, y, t,XA1 , . . . , XAn

,
∂XAi

∂x
,
∂XAi

∂y
,
∂XAi

∂t
,
∂2XAi

∂x2
,
∂2XAi

∂xy
,
∂2XAi

∂y2

)
= 0

if we assume that we are interested in second order partial derivatives over
space only for the population XAi

((x, y), t). Note that writing the PDE in this
form simply allows it to be described as a function over all the derivatives of
interest rather than as a single partial derivative being equal to a function of
other derivatives. When interactions between populations are to be modelled,
diffusion-reaction PDEs are used since they can express movement as diffusion
and interaction as reactions [20,89]. The diffusion terms can also capture drift
which accounts for obstacles or external stimuli such as wind, the likelihood of
continuing in the same direction, the effect of the density of other individuals,
and the impact of environmental characteristics. The reaction term describes
interactions between individuals. Examples are given in the following sections.
There are various techniques for solving PDEs which we will not consider here,
many of which involve discretising the plane into a mesh [81].

We now consider two approaches to modelling discrete space where contin-
uous space plays an important role, in the sense that transformation from one
type of space to another is involved.

4.3 PDE-Based Analysis of Discrete-Space Models

Tschaikowski and Tribastone [88] have considered an approach which involves
taking a discrete space model with random walks to continuous space through
spatial fluidisation and then using PDE analysis techniques to get good approx-
imation results.

They studied population-based CTMCs where agents are subject to a random
walk on the uniform lattice R := {(iΔs, jΔs) | 0 ≤ i, j ≤ K} in the unit square
[0; 1]2 with Δs := 1/K and K ≥ 1. Each agent may attain one of the local states
A1, . . . , AL while being at any point in R, meaning that the CTMC state

A := (A(x,y)
1 , . . . , A

(x,y)
L )(x,y)∈R

provides the agent populations in each local state at each region. Agents in the
same region may cooperate with each other by performing local interactions
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from a rich class of functions. The spatial domain is assumed to have absorbing
or reflective boundary conditions. The former can be used to model a hostile
environment, while the latter account for closed environments. It can be shown
that the CTMC of size O(NL·K2

) converges to the solution of an ODE system
of size O(L · K2) as N → ∞. While this is a major improvement because the
complexity drops from exponential to polynomial, the ODE system may be hard
to solve if K is large.

Fortunately, it is possible to identify a finite difference scheme [42] which
solves the ODE system of size O(L · K2) and that can be also interpreted as a
finite difference scheme [84] of a PDE system of size L. By combining this with
the former result, one then proves that the solutions of the ODE system of size
O(L · K2) converge, as K → ∞, to the solution of a PDE system of size L. This
is not a purely theoretical result because one solves PDE systems by discretising
them to large ODE systems and the discretization induced by a PDE solver
is purely dependent on the PDE system itself and thus may be substantially
coarser than the one induced by the spatial domain R which can be arbitrarily
fine. Indeed, substantial speed-ups have been reported in [86,88], thus showing
that a characterization of mobile systems in terms of PDEs gives rise to shorter
calculation times.

4.4 Fluid Approximation and Spatial Discretisation Applied to
Agent-Based Continuous Space Models

The use of fluid approximation of population and spatial discretisation has been
applied in an ad hoc manner to a 2-dimensional space model of delay-tolerant
networks [35]. A general approach based on Markovian agents has been proposed
for 1-dimensional space which aggregates and fluidises individuals and discretises
space.

Feng developed a continuous-space model with individual agents (using the
process algebra stochastic HYPE) for a delay-tolerant network which used wild
animals as nodes. Due to computational limitations, the analysis was restricted
in terms of how many nodes could be modelled. The model was then transformed
to a discrete-space model by dividing up space according to waterhole locations,
and using the continuous space model to derive parameters for movement [35].
This enabled the population-based modelling of systems with many more nodes
and still provided good approximations.

More recently, a proposal has been made to apply this process in a gen-
eral way to 1-dimensional space. Specifically, it considers models which consist
of Markovian agents (MAs) moving on a bounded one-dimensional continuous
space. Markovian agents are a formalism that involves message-passing between
agents, and whose overall behaviour can be expressed as a CTMC or a set of
ODEs [15]. A detailed definition of Markovian agents is beyond the scope of this
tutorial.

The analysis of interest is the transient evolution of the state density distri-
bution of agents of class c in state i at position l and at time t. The change in
this value over a small amount of time can be expressed in terms of those agents
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at location l who change state and those agents who move to l. The movement
speed of MAs solely depends on the current state of the agents. A new term to
describe the agents that move can be derived from the Taylor expansion of the
movement term. The change in value can be then be expressed as a PDE in terms
of both time and distance (in 1-dimension). Assuming upper and lower bounds,
the upwind semi-discretisation technique [47] can be applied to discretise the
distance aspect of the PDE leading to a set of ODEs expressing the change of
state density at each discretised location.

4.5 Applications of Continuous Space

As with the case for discrete space, the aim of this section is to briefly consider
various applications and a survey can be found in [41].

Ecology: Spatio-temporal point processes have been used to model plant growth
and dispersal [8] and other applications [25]. Markov random graphs on con-
tinuous space over continuous time can also be considered as spatio-temporal
point processes [50]. Holmes et al [46] review the use of PDEs in ecological
applications, and consider the different forms of PDEs that are used for dif-
ferent models including Brownian (random) motion, drift and the telegraph
equation.

Biology: Bittig and Uhrmacher [7] describe two continuous space approaches
for cellular modelling: particle space and PDEs. In the former, each molecule
is modelled separately and these models can be simulated more efficiently by
assuming that each particle is only affected by nearby events. When using
PDEs, often only simple diffusion based on Brownian motion is required.
Fange et al [34] describe three different techniques for spatially heteroge-
neous stochastic kinetics as microscopic when each individual particle is con-
sidered in terms of its position (continuous-space), as mesoscopic when the
Reaction Diffusion Master Equation (RDME) is used (discrete space) and
as macroscopic when PDEs are used. PDEs can also be obtained by taking
the hydrodynamic limit of IPSs, namely as the number of particles tends to
infinity [23,30]. Pattern formation is important in biology and an important
PDE in this context is the Swift-Hohenberg equation [82].

Epidemiology: Spatial point processes have been used to model the spread
of foot and mouth disease [26]. Kendall [54] proposed the first spatial epi-
demic PDE model based on the Kermack-McKendrick nonspatial compart-
ment model, and this has been extended to the Diekmann-Thieme model
where traits of individuals affect both their susceptibility to infection and
their infectiveness to other individuals [77].

Networking: There is a substantial amount of work on mobility models, both
at the analytical level and experimentally through traces in the domain of
networking [14,69]. Connectivity models provide an abstraction of mobility
models in that they provide information about intercontact time [52]. Sto-
chastic geometry has been applied to wireless networks [2] and epidemiological
approaches using PDEs have been used for routing in networks [57].
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Continuous-space techniques can be applied to CAS modelling when individ-
ual movement is to be tracked, or when it is possible to aggregate movement
using PDEs because of the large subpopulation sizes. However, any techniques
that tracks individuals is unlikely to be scalable. In the next section, hybrid
approaches are considered that can be used to mitigate this problem.

5 Other Approaches to Modelling Space

The techniques discussed in this section are not specific to whether a model is an
individual or a population model and may also apply to models that have char-
acteristics of both. Using logic-based approaches, spatial and spatio-temporal
model checking can be applied to either sort of model and are addressed in
another chapter in this volume [19].

5.1 Crowding

In biological modelling of cells, crowding (occupation of space) is an important
issue, because cells have limited volume and it can be important to consider how
much space various molecules take up, and how this may affect reactions, as well
as the health of the cell. Models range from those that model continuous space
in which each entity has a volume and collision between molecules are explicitly
modelled, to grid-based approaches where there is space for only one entity in
each location [56,83]. The lattice-based approaches can be similar to individual
discrete-space models but use regular graph rather than arbitrary graphs.

For population discrete-space models, crowding can be modelled by imposing
maximum quantities on locations. Functional rates for movement into a location
can be defined to be zero when the maximum population count for a location
has been reached This can lead to discontinuous rate functions. Crowding can
be important in CAS, as we may want to impose occupation limits, such as
the number of people in a shared taxi, or the capacity of a bike station in a
bike-sharing scheme.

5.2 Hybrid Approaches

Hybridness is a ubiquitous feature in many models of real systems. As far as
space is concerned, there are many ways in which one can construct hybrid
models. Here we list some possibilities for future research, with CAS examples
from smart transport.

– Space may be seen or modelled differently depending on which kind of agent
we are considering in the model. An example taken from biology is in the
description of large and small molecules. The former are often modelled as
individual objects having a precise position in continuous space. The latter
are described as populations, and hence represented by counting variables, in
subregions of space [6]. This produces a model combining individual objects
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moving in space with discretised stochastic diffusion process. If we consider
models of interaction of pedestrians with public transportation, we can inves-
tigate a scenario in which buses are modelled as individual entities moving in
continuous space, while pedestrians or bus users are modelled as populations
moving from one discrete location in the city to another, or on and off a
bus. Alternatively, buses outside the city centre could be modelled as moving
in continuous space, whereas those within the city centre are modelled as a
population with movement rates that are determined by the number of buses.

– Another source of hybridness in spatial modelling can be related to different
representations of space at different scales or in different locations. The sim-
plest scenario to consider is a high level representation of space in terms of
locations, and a low level description of space inside each location in terms of
a grid or continuous space. In this case, one has to define appropriate inter-
faces between the dynamics at the two scales, in terms of abstraction and
concretisation functions mapping the low level into the high level and vice
versa. By contrast to the previous example, one may wish to model details
of the bus movement within the city centre but represent the flow of buses in
and out of the centre to different suburbs in a discrete-space style.

– A similar situation to the previous one is a scenario in which one special
location of interest is treated in detail, while the rest of the system is approx-
imated in a coarser manner as a single component. The detailed model of a
region may be either continuous or grid-based, while the rest of the system
can be abstracted as a location-based model, possibly homogeneous, hence
resorting to some kind of aggregate moment closure technique. An example
of collective adaptive system of this kind may be a crowd movement scenario,
in which different squares of a city are described in detail, and the flow of
people in and out of each square is represented in a location-based style.

– Similarly, there may be situations in which different locations require a dif-
ferent level of detail in their treatment. For instance, in a crowd movement
scenario, we may be interested in tracking the density of people on bikes in
the streets or in a square, which calls for a continuous space representation
and a PDE dynamics, but coupling this model with a model describing the
number of people at bike stations, in order to keep track of the inflow and
outflow of people from the streets or the square.

– From a more classical perspective, we can imagine hybrid models in space
where small and large populations are both present [9]. This may be location
specific, and change as the system evolves. Then, we can construct hybrid
models in which some populations are kept discrete in some locations, but
are approximated continuously in other ones.

Analysing hybrid spatial models can be challenging, but also opens new ways
of using locally different forms of spatial abstraction techniques. As an exam-
ple, consider a multi-scale scenario where the local space is described as a fine
grid, while globally space is represented by a collection of locations. In such a
situation, we may use structure-based moment closure approximation locally (if
that is accurate enough), de facto reducing the model to a standard location
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population ODE. In the case of the hybrid treatment of populations, simula-
tion of TDSHA (transition-driven stochastic hybrid automata) [12] or PDMPs
(piecewise deterministic Markov processes) [22] can be used.

6 Conclusion

To conclude, this tutorial has provided information about the choices than can be
made when modelling space in a quantified manner, focussing on the modelling
of CAS. Scalability of techniques have been considered, with specific references
to moving away from individual-based modelling to population modelling, using
both exact and approximate techniques. There has been an exploration of tech-
niques for both discrete and continuous space, as well a review of how techniques
have been applied in the literature, and specific details of techniques that have
been considered for CAS.

Acknowledgements. This work is supported by the EU project QUANTICOL,
600708. The author thanks Jane Hillston and Mieke Massink for their useful com-
ments.

Appendix: Discrete and continuous time Markov Chains

This section briefly introduces these concepts, as they would be used in stochas-
tic modelling both without aggregation of state and with aggregation of state
(population-based Markov chains) [4,10].

Definition 1. A discrete time Markov chain (DTMC) is a tuple MD = (S ,P)
where

– S is a finite set of states, and
– P : S × S → [0, 1] is a probability matrix satisfying

∑
S′∈S P(S, S′) = 1

for all S ∈ S .

A DTMC is time-abstract [4] in the sense that time is viewed as a sequence of
discrete steps or clock ticks. It describes behaviour as follows: if an entity or
individual is currently in state S ∈ S then the probability of the entity being in
state S′ at the next time step is defined by P(S, S′). Under certain conditions,
the steady state of the DTMC can be determined and this describes when the
DTMC is at equilibrium and gives the (unchanging) probability of being in any
of the states of S . By contrast, transient state probabilities can be determined
at each point in time before steady state is achieved.

Definition 2. A continuous time Markov chain (CTMC) is a tuple MC =
(S ,R) where

– S is a finite set of states, and
– R : S × S → R≥0 is a rate matrix.
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CTMCs are time-aware [4] since they use continuous time. If an entity is cur-
rently in state S, then R(S, S′) is a non-negative number that defines an expo-
nential distribution from which the duration of the time taken to transition from
state S to state S′ can be drawn. As with DTMCs and under certain conditions,
transient and steady state probabilities can be calculated which describe the
probability of being in each state at a particular time t or in the long run,
respectively.

Let E(S) =
∑

S′∈S R(S, S′) be the exit rate of state S′. Then the embedded
DTMC of a CTMC has entries in its probability matrix of the form P(S, S′) =
R(S, S′)/E(S) if E(S) > 0 and P(S, S′) = 0 otherwise. DTMCs and CTMCs can
be state-labelled (usually with propositions) or transition-labelled (usually with
actions). The research in QUANTICOL focusses on transition-labelled Markov
chains. We next consider population Markov chains, both discrete time and
continuous time. Instead of considering an entity with states, we now consider
a vector of counts X that describes how many entities are in each state; thus
it is a population view rather than an individual view. Our definition in the
continuous-time case is slightly simpler than that appearing in another chapter
in this volume [9] since transitions do not have guards and we do not parameterise
the Markov chain with the population size.

Definition 3. A population discrete time Markov chain (PDTMC) is a tuple
XD = (X,D ,T ) where

– X = (X1, . . . , Xn) is a vector of variables
– D is a countable set of states defined as D = D1 × . . . × Dn where each

Di ⊆ N represents the domain of Xi

– T = {τ1, . . . τm} is the set of transitions of the form τj = (v, p) where
• v = (v1, . . . , vn) ∈ N

n is the state change or update vector where vi

describes the change in number of units of Xi caused by transition τj

• p : D → R≥0 is the probability function of transition τj that defines a
sub-probability distribution, namely

∑
τ∈T pτ (d) ≤ 1 for all d ∈ D , such

that p(d) = 0 whenever d + v �∈ D

Definition 4. A population continuous time Markov chain (PCTMC) is a tuple
XC = (X,D ,T ) where

– X and D are defined as in the previous definition,
– T = {τ1, . . . τm} is the set of transitions of the form τj = (v, r) where

• v is defined as in the previous definition,
• r : D → R≥0 is the rate function of transition τj with r(d) = 0 whenever

d + v �∈ D .

In both types of population Markov chain, the associated Markov chain can be
obtained. In both cases, D is the state space S . For the population DTMC, the
probability matrix of its associated DTMC is defined as

P(d,d′) =
∑

τ∈T ,vτ=d′−d

pτ (d) whenever d �= d′
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and since probability functions define sub-probabilities then the rest of the prob-
ability mass must be accounted for by defining

P(d,d) = 1 −
∑

τ∈T ,vτ �=0

pτ (d).

For the population CTMC, the rate matrix of its associated CTMC is

R(d,d′) =
∑

τ∈T ,vτ=d′−d

rτ (d) whenever d �= d′

and if the summation is empty, then R(d,d′) = 0.
As the size of the population increases, it has been shown [58] under specific

conditions that cover a large range of models that the behaviour of an (appro-
priately normalised) population CTMC at time t is very close to the solution
of a set of ODEs, expressed in the form X(t) = (X1(t), . . . , Xn(t)) defining a
trajectory over time. The ODEs can be expressed in terms of a single vector
ODE as

Ẋ =
dX
dt

= f(X)

where f(X) is a function derived from the specifics of the PCTMC (see [9] in this
volume for details). It is also possible to approximate the moments of a PCTMC
using the ODEs [32]

d
dt

E[M(X(t))] =
∑

τ∈T

E[(M(X(t) + vτ ) − M(X(t)))rτ (X(t))]

where M(X) denotes the moment to be calculated, vτ and rτ (X(t)) represents
the update vector and the rate of a transition τ , respectively.
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