
QUANTICOL
A Quantitative Approach to Management and Design of

Collective and Adaptive Behaviours

quanƟcol.
http://www.quanticol.eu

TR-QC-01-2017

Design and Optimisation of the FlyFast Front-end for
Attribute-based Coordination
Preliminary version

Revision: 0.1; February 3, 2017

Author(s): Diego Latella (CNR), Mieke Massink (CNR)

Publication date: January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Funding Scheme: Small or medium scale focused research project (STREP)

Topic: ICT-2011 9.10: FET-Proactive ‘Fundamentals of Collective Adaptive Systems’ (FOCAS)

Project number: 600708

Coordinator: Jane Hillston (UEDIN)

e-mail: Jane.Hillston@ed.ac.uk

Fax: +44 131 651 1426

Part. no. Participant organisation name Acronym Country
1 (Coord.) University of Edinburgh UEDIN UK
2 Consiglio Nazionale delle Ricerche – Istituto di Scienza e Tecnologie

della Informazione “A. Faedo”
CNR Italy

3 Ludwig-Maximilians-Universität München LMU Germany
4 Ecole Polytechnique Fédérale de Lausanne EPFL Switzerland
5 IMT Lucca IMT Italy
6 University of Southampton SOTON UK
7 Institut National de Recherche en Informatique et en Automatique INRIA France

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Contents

1 Introduction 1

2 Summary on PiFF and FlyFast 2
2.1 PiFF . 3
2.2 FlyFast . 5

3 A revised translation 6

4 A simplified language for Bisimulation-based optimisation 8

5 Bisimilarity and State-space Reduction 10

6 Example 10

7 Conclusions 12

A Appendix 14

Abstract

Collective Adaptive Systems (CAS) consist of a large number of interacting objects. The design
of such systems requires scalable analysis tools and methods, which have necessarily to rely on
some form of approximation of the system’s actual behaviour. Promising techniques are those
based on mean-field approximation. The FlyFast model-checker uses an on-the-fly algorithm for
bounded PCTL model-checking of selected individual(s) in the context of very large populations
whose global behaviour is approximated using deterministic limit mean-field techniques. Recently,
a front-end for FlyFast has been proposed which provides a modelling language, PiFF in the sequel,
for the Predicate-based Interaction for FlyFast. In this paper we present details of PiFF design
and an approach to state-space reduction based on probabilistic bisimulation for inhomogeneous
DTMCs.

1 Introduction

Collective Adaptive Systems (CAS) consist of a large number of entities with decentralised control
and varying degrees of complex autonomous behaviour. They form the basis of many modern smart
city critical infrastructures. Consequently, their design requires support from formal methods and
scalable automatic tools based on solid mathematical foundations. In [8, 7], Latella et al. presented a
scalable mean-field model-checking procedure for verifying bounded Probabilistic Computation Tree
Logic (PCTL, [4]) properties of an individual1 in the context of a system consisting of a large number of
interacting objects. The model-checking procedure is implemented in the tool FlyFast2. The procedure
performs on-the-fly, approximated, model-checking based on the idea of fast simulation, as introduced
in [9]. More specifically, the behaviour of a generic agent with S states in a system with a large number
N of instances of the agent at given step (i.e. time) t is approximated by K(µ(t)) where K(m) is
the S × S probability transition matrix of a (inhomogeneous) DTMC and µ(t) is a vector of size S
approximating the mean behaviour of the rest of the system at t; each element of µ(t) is associated
with a distinct state of the agent, say C, and gives an approximation of the fraction of instances of
the agent that are in state C in the global system, at step t. Note that such an approximation is
a determinstic one, i.e. µ is a function of the step t (the exact behaviour of the rest of the system

1The technique can be applied also to a finite selection of individuals; in addition, systems with several distinct types
of individuals can be dealt with; for the sake of simplicity, in the present paper we consider systems with many instances
of a single individual only and we focus in the model-checking a single individual in such a context.

2http://j-sam.sourceforge.net/

QUANTICOL 1January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

would instead be a large DTMC in turn); note furthermore, that the above transition matrix does not
depend on N [8, 7].

Recently, modelling and programming languages have been proposed specifically for autonomic
computing systems and CAS [3, 1]. Typically, in such frameworks, a system is composed of a set
of independent components where a component is a process equipped also with a set of attributes
describing features of the component. The attributes of a component can be updated during its
execution so that the association between attribute names and attribute values is mantained in the
dynamic store of the component. Attributes can be used in predicates appearing in language constructs
for component interaction. The latter is thus typically modelled using predicate-based output/input
multicast, originally proposed in [6], and forming the basis of interaction schemes in languages like
SCEL [3] and Carma [1].

In [2] we proposed a front-end modelling language for FlyFast that provides constructs for dealing
with components and predicate-based interaction; in the sequel, the language—which has been inspired
by Carma— will be referred to as PiFF, for Predicate-based Interaction for FlyFast.

Components interact via predicate-based communication. Each component consists of a behaviour,
modelled as a DTMC-like agent, like in FlyFast, and a set of attributes. The attribute name-value
correspondence is kept in the current store γ of the component. Actions are predicate based multi-cast
output and input primitives; predicates are defined over attributes. Associated to each action there
is also an (atomic) probabilistic store-update. For instance, assume components have an attribute
named loc which takes values in the set of points of a space, thus recording the current location of the
component. The following action models a multi-cast via channel α to all components in the same
location as the sender, making it change location randomly: α∗[loc = my.loc]〈〉Jump. Here Jump is
assumed to randomly update the store and, in particular attribute loc. The computational model is
clock-synchronous, as in FlyFast, but at the component level. In addition, each component is equipped
with a local outbox. The effect of an output action α∗[πr]〈〉σ is to deliver output label α〈〉 to the local
outbox, together with the predicate πr, which (the store of) the receiver components will be required
to satisfy, as well as the current store γ of the component executing the action; the current store is
updated according to update σ. Note that output actions are non-blocking and that successive output
actions of the same component rewrite its outbox. An input action α∗[πs]()σ by a component will
be executed with a probability which is proportional to the fraction of all those components whose
outboxes currently contain the label α〈〉, a predicate πr which is satisfied by the component, and a
store γ which satisfies in turn predicate πs. If such a fraction is zero, then the input action will not
take place (input is blocking), otherwise the action takes place, the store of the component is updated
via σ, and its outbox cleared.

In this paper we present some details of PiFF, a translation to FlyFast which simplifies that proposed
in [2] and an approach to state-space reduction based on probabilistic bisimulation for Inhomogeneous
DTMCs. In Section 2 we present the main ingredients of the PiFF definition and we recall those
features of FlyFast directly relevant for understanding the translation PiFF to the FlyFast input lan-
guage proposed in [2]. A revised and simplified version of the translation is described in Section 3.
In Section 4 we introduce a simplified language for the definition of transition-probabilities in PiFF
that allows us to define in Section 5 a state reduction procedure of the translation result, based on a
notion of bisimulation for the kind of IDTMCs of interest, introduced in Section 5 as well. An example
of application of the procedure is presented in Section 6. Some conclusions are drawn in Section 7.
A formal proof of decidability of the cumulative probability test for state-space reduction based on
bisimulation is provided in the Appendix.

2 Summary on PiFF and FlyFast

In the following we present the main ingredients of PiFF and the features of FlyFast relevant for the
present paper.

QUANTICOL 2January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

...

attype Space enum A, B, C, D;
...

const H = 0.6;

const L = 1− H;

const Hdiv2 = H/2;

const Ldiv2 = L/2;
...

attribute loc : Space;
...

func Hr(x : Space) : Space; x endfunc;

func N(x : Space) : Space; case x of A : A; B : B; C : B; D : A endfunc;

func S(x : Space) : Space; case x of A : D; B : C; C : C; D : D endfunc;

func E(x : Space) : Space; case x of A : A; B : A; C : D; D : D endfunc;

func W(x : Space) : Space; case x of A : B; B : B; C : B; D : B endfunc;
...

func pHr(x : Space) : float; case x of A : H; B : L; C : H; D : L endfunc;

func pN(x : Space) : float; case x of A : 0; B : 0; C : Ldiv2; D : Hdiv2 endfunc;

func pS(x : Space) : float; case x of A : Ldiv2; B : Hdiv2; C : 0; D : 0 endfunc;

func pE(x : Space) : float; case x of A : 0; B : Hdiv2; C : Ldiv2; D : 0 endfunc;

func pW(x : Space) : float; case x of A : Ldiv2; B : 0; C : 0; D : Hdiv2 endfunc;
...

update Jump

my.loc := Hr(my.loc) with pHr(my.loc);

my.loc := N(my.loc) with pN(my.loc);

my.loc := S(my.loc) with pS(my.loc);

my.loc := E(my.loc) with pE(my.loc);

my.loc := W(my.loc) with pW(my.loc)

endupdate

Figure 1: A fragment of FSI .

2.1 PiFF

A PiFF system model specification Υ = (∆Υ, FΥ,Σ0)(N) is a triple where FΥ is the set of relevant
function definitions (e.g. store updates, auxiliary constants and functions), ∆Υ is a set of state defining
equations, and Σ0 is the initial system state (an N -tuple of component states, each of which being
a 3-tuple (C, γ,O) of agent state C, store γ and outbox O). We describe the relevant details below
referring to [2] for additional information.
The PiFF type system consists of floating point values and operations, as in FlyFast, plus simple enumer-
ation types for attributes, declared according to the syntax attype < name > enum < id− list >.
< id− list > is a finite list of identifiers. Of course, attributes can also take floating point values.

In Figure 1 the attribute type Space is defined that consists of four values A, B, C, D modelling four
locations. Some auxiliary constants are defined, using the const construct inherited from FlyFast:
const < name > = < value >.

A PiFF store update definition has the following sytax3:

3In [2] a slightly different syntax for store updates has been used.

QUANTICOL 3January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

update upd

my.a1 := e11, . . . ,my.ak := ek1with p1;
...

my.a1 := e1n, . . . ,my.ak := eknwith pn
endupdate

where upd is the update name (unique within the system model specification), a1, . . . , ak are the at-
tribute names of the component, e11, . . . , ekn and p1, . . . , pn are attribute/store-probability expressions
respectively, with syntax defined according to the grammars e ::= va | ca | my.a | fna(e1, . . . , em)
and p ::= vp | cp | fnp(e1, . . . , em). In the above definition of attribute expressions va is an attribute
value (drawn from finite set V of attribute values), ca is an attribute constant in V defined using the
const; a ∈ {a1, . . . , ak} is an attribute name and fna is an attribute function defined by the user in
FΥ, which, when applied to attribute expressions e1, . . . , em returns an attribute value; the syntax for
such function definitions afd is given below:

afd ::= func fna(x1 : T1, . . . , xm : Tm) : T ; afb endfunc

afb ::= e |case (x1, . . . , xm) of(va11
, . . . , vam1

) : e1; (va12
, . . . , vam2

) : e2; . . . (va1k
, . . . , vamk

) : ek

where fna is the name of the attribute function, x1 : T1, . . . , xm : Tm are its parameters and their
relative types, T is the type of the result of fna; e, ei are attribute-expressions and vaij are attribite-
values.

In Figure 1 attribute functions N, S, E, W are defined for North, South, East, and West, such that
Space models the Cartesian space with four quadrants: A = N(D) = E(B), B = N(C) = W(A), and so on,
as shown diagramatically in Figure 2 right. Function Hr is the identity on Space.

In the definition of store-probability expressions vp ∈ (0, 1], cp is a store-probability constant in
(0, 1] defined using the FlyFast const construct, and fnp is an store-probability function defined by
the user in FΥ, which, when applied to attribute expressions e1, . . . , em returs a probability value.The
syntax for store-probability function definitions pfd is similar to that of attribute functions:

pfd ::= func fnp(x1 : T1, . . . , xm : Tm) : float; pfb endfunc

pfb ::= p |case (x1, . . . , xm) of(va11
, . . . , vam1

) : p1; (va12
, . . . , vam2

) : p2; . . . (va1k
, . . . , vamk

) : pk

where fnp is the name of the store-probability function, the result type is float (actually the range
[0, 1]) x1 : T1, . . . , xm : Tm are its parameters and their relative types, p, pi are store-probability
expressions and vaij are attribute-values. In any store update definition it must be guaranteed that
the values of p1 . . . pn sum up to 14. The informal meaning is clear. The store update will make
attributes a1, . . . , ak take the values of e1i, . . . , eki respectively with probability equal to the value of
pi.

In Figure 1 store-probability functions pHr, pN, pS, pE, pW are defined that give the probability of
not moving or of jumping to North, South, East, West, respectively, as a function of the current
location.

Example 1 A simplified version of the behaviour of the epidemic process discussed in [2] is shown
in Fig. 2 left5. In Fig. 1 we show a fragment of FSI defining store update Jump together with the
relevant type, constant and function definitions as introduced above. The component has just one
attribute, named loc, with values in Space. The effect of Jump executed by a component in which loc

4In this version of the translation we allow only flat updates, i.e. the specific probability of each combination of
values assigned to the attributes must be given explicitly. Other possibilities could be defined using combinations of
(independent) probability distributions.

5We focus only on those features that are most relevant for the present paper. In [2] also other features are shown
like, e.g. the use of (predicate-based) input actions, which are not the main subject of this paper.

QUANTICOL 4January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

S := frc (I) :: inf∗[⊥]〈〉Jump.I +

frc (S) :: nsc∗[⊥]〈〉Jump.S

I := ii :: inf∗[⊥]〈〉Jump.I +

ir :: rec∗[⊥]〈〉Jump.S

Figure 2: SI, a behavioural model.

is bound to quadrant ` is to leave the value of loc unchanged with probability pHr(`), change it to the
quadrant North of ` with probability pN(`), and so on. Note that the condition H > L implies that higher
probability is assigned to A and C and low probability to B and D (see Figure 1 right). A susceptible
(state S) component becomes infected (state I) via an inf action which takes place with probability
equal to the fraction of components in the system which are currently infected (i.e. frc(I)); it remains
in state S via the self-loop labelled by action nsc, with probability frc(S) = 1− frc(I). An infected
node (state I) may recover, entering state S with action rec and probability ir; while infected, it keeps
executing action inf, with probability ii. Note that, for the sake of simplicity, we use only internal
actions, modelled by means of output actions with predicate false (⊥). We assume that in the initial
global state all outboxes are non-empty; each contains the initial store on the specific component (i.e.,
its initial location), predicate ⊥ and the empty tuple 〈〉).

A PiFF state defining equation has the following (abstract) form: C :=
∑

j∈J [gj]pj :: actj .Cj where
either [gj]pj is the keyword rest or:

• gj is a boolean expression b which may depend on the current store, but not on the current
occupancy measure vector: b ::= > | ⊥ | e ./ e | ¬b | b ∧ b and e ::= va | ca |my.a where >
(⊥) denotes the constant true (false), ./ ∈ {≥, >,≤, <}, va is an attribute value (drawn from
finite set V of attribute values), ca is an attribute constant in V defined using the FlyFast const
construct, and a is the name of an attribute of the component.

• pj is a transition probability expression:p ::= vp | cp | frc (C) | frc (π) |
∏
i∈I pi |

∑
i∈I pi | 1− p, for

finite I, where vp ∈ (0, 1], cp a constant in (0, 1] defined via the const construct, and π is defined
as b above, but where expressions e can also be attribute names a (i.e. e ::= va | ca |my.a | a).
Note that, in probability expression pj , frc (C) (frc (π), respectively) is the fraction of components
currently in state C (the current store of which satisfies π, respectively), over the total number
N and that it must be guaranteed that

∏
i∈I pi ≤ 1 and

∑
i∈I pi ≤ 1.

• actj can be an output action α∗[π]〈〉σ or an input action α∗[π]()σ, where π is as above and σ is
the name of a store update. Note that in the case of an input action, π refers to the store of the
partner component in the previous step of the computation.

If [gj]pj = rest, then actj must be an output action α∗[π]〈〉σ, to be executed with the residual
probability.

2.2 FlyFast

FlyFast accepts a specification 〈∆, A,C0〉(N) of a model of a system consisting of the clock-synchronous
product of N instances of a probabilistic agent. The states of the DTMC-like agent model are specified
by a set of state-defining equations ∆. The (abstract) form of a state defining equation is the following
C :=

∑r
i=1 ai.Ci where ai ∈ A—the set of FlyFast actions—C,Ci ∈ S—the set of FlyFast states—and,

QUANTICOL 5January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

for i, j = 1, . . . , r ai 6= aj if i 6= j; note that Ci = Cj with i 6= j is allowed instead6. Each action
has a probability assigned by means of an action probability function definition of the form a :: exp
where exp is an expression consisting of constants and frc (C) terms. Constants are floating point
values or names associated to such values using the construct const < name > = < value >; frc (C)
denotes the element associated to state C in the current occupancy measure vector7. So, strictly
speaking, ∆ characterizes an inhomogeneous DTMC whose probability matrix K(m) is a function of
the occupancy measure vector m such that for each pair of states C,C ′, the matrix element K(m)C,C′

is the probability of jumping from C to C ′ given the current occupancy measure vector m. Letting S∆

be the set of states of the agent, with |S∆| = S, and US = {(m1, . . . ,mS)|m1 + . . .+mS = 1} denote
the unit simplex of dimension S, we have K : US × S∆ × S∆ → [0, 1]. Auxiliary function definitions
can be specified in A. The initial state C0 is a vector of size N consisting of the initial state of each
individual object. Finally, note that in matrix K(m) the information on specific actions is lost, which
is common in PCTL/DTMC based approaches; furthermore, we note that, by construction, K(m)
does not depend on N (see [7, 8] for details).

3 A revised translation

As in [2], we define a translation such that, given a PiFF system specification Υ = (∆Υ, FΥ,Σ0)(N), the

translation returns the FlyFast system specification 〈∆, A,C0〉(N) preserving probabilistic semantics.
The predicate-based FlyFast front-end is then completed with a simple translation at the PCTL level,
for which we refer to [2].

The system model specification translation consists of two phases. In the first phase, each action in
the input system model specification Υ is annotated with an identifier which is unique within the spec-
ification. We let ℵ(Υ) denote the resulting specification. These annotations will make action names
unique specification-wide thus eliminating complications which may arise from multiple occurrences
of the same action, in particular when leading to the same state (see [2] for details). Of course, these
annotations are disregarded in the probabilistic semantics, when considering the interaction model of
components. In other words, an output action α〈〉 in outbox (γ, π, α〈〉) must match with any input
action α() even if α〈〉 would actually correspond to (α, ι)∗[π]〈〉 and α() would actually correspond to
(α, η)∗[π′](). Apart from this detail, the probabilistic semantics as defined in [2] remain unchanged.

The second phase is defined by the translation algorithm defined in Fig. 5, which is a revised and
simplified version of that presented in [2] and is applied to ℵ(Υ). We let I(ℵ(Υ)) denote the result of

the translation, namely the pure FlyFast system specification 〈∆, A,C0〉(N).
We recall here some notation from [2]. We let S∆Υ

denote the set of states of Υ; Γ∆Υ
is the set

of all stores defined over the attributes of Υ—a store is a finite mapping from the attributes of the
component to a finite set of values V, thus Γ∆Υ

is finite—and O∆Υ
the finite set of all outboxes of

Υ. A Υ component-state is a triple (C, γ,O) ∈ S∆Υ
× Γ∆Υ

×O∆Υ
= Ω∆Υ

. If the component-state is
the target of a transition modelling the execution of an output action, then O = (γ′, π, α〈〉), where γ′

is the store of the (component-state) source of the transition, π is the predicate used in the action—
actualized with γ′—and α〈〉 the actual message sent by the action. If, instead, the component-state
is the target of a transition for an input action, then O = 〈〉, i.e. the empty outbox. Note that the
set of component states of ℵ(Υ) is identical to that of Υ. Also the set of all stores of ℵ(Υ) is the
same as that of Υ. In the algorithm of Fig. 5 by t ∗ t′ we mean the syntactical term representing
the product of terms t and t′; the notation is extended to PROD{t|cond(t)}, denoting the syntactical
product t1 ∗ . . . ∗ tn if {t|cond(t) = tt} = {t1, . . . , tn} 6= ∅ and 1 otherwise. Similarly, SUM{t|cond(t)}
denotes the syntactical sum t1 + . . . + tn if {t|cond(t) = tt} = {t1, . . . , tn} 6= ∅ and 0 otherwise. The

6The concrete FlyFast syntax is: state C{a 1.C 1 + a 2.C 2 ...a r.C r}.
7The occupancy measure vector is a vector with as many elements as the number of states of an individual agent; the

element associated to a specific state gives the fraction of the subpolulation currently in that state over the size of the
overall population. The occupancy measure vector is a compact representation of the system global state.

QUANTICOL 6January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

translation algorithm uses a few auxiliary functions which we briefly discuss below:

• IS : Ω∆Υ
→ S is a total injection which maps every component state of ℵ(Υ) to a distinct state

of I(ℵ(Υ)); we recall that S denotes the set of state names of FlyFast models.

• IA : (S∆Υ
× Γ∆Υ

) × (Λ∆Υ
× Iℵ) × Ω∆Υ

→ A is a total injection where, as in [2], Λ∆Υ
is the

set of action labels of Υ and Iℵ is the set of unique identifiers used in the first phase of the
translation. We recall that A is the set of action names of FlyFast. The mapping of actions
is a bit more delicate because we have to respect FlyFast static constraints and, in particular,
we have to avoid multiple probability function definitions for the same action. A first source of
potential violations (i.e. multiple syntactical occurrences of the same action) has been removed
by action annotation in the first phase of the translation. A second source is the fact that the
same action can take place in different contexts (for example with different stores) or leading to
different target component states (maybe with different probabilities). To that purpose, we could
distinguish different occurrences of the same action in different transitions, each characterized by
its source component-state and its target component-state in Ω∆Υ

. In practice, since an action
of a component cannot be influenced by the current outbox of the component, it is sufficient to
restrict the first component of the domain from Ω∆Υ

to (S∆Υ
× Γ∆Υ

).

• The interpretation functions defined in Fig. 3, namely those depending on stores only (and not
on occupancy measure vectors); we assume EL[[·]]γ extended to EL[[fn]]γ for defined function fn,
in the standard way. In Fig. 3 βΥ denotes the constant to value bindings generated by the const
construct in the input model specification Υ, whereas store update upd is defined as above.

• The translation function IP for transition probability expressions pj , defined in Fig. 4.

Output actions are dealt with in step 1 of the algorithm of Fig. 5. Take for example (inf, 1)∗[⊥]〈〉Jump
in the definition of state S in Fig. 2 (assuming annotations are integer values and the action has been
annotated with 1). We know that the possible values for locations are A,B,C,D, so that the set of
all stores is {loc} → {A,B,C,D}. The algorithm generates 12 actions8. Let us focus on the action ξ
associated to local position A (i.e. γ = [loc 7→ A]) and possible next position B (i.e. γ′ = [loc 7→ B]); the
algorithm will generate the FlyFast probability function definition ξ :: pW(A)∗(frc (I1) + . . .+ frc (In))9

as well as a transition leading to (a state which is the encoding, via IS , of) the component state with I

as (proper) state, store γ′, and outbox (γ,⊥, inf〈〉). Since the action is not depending on the current
outbox, in practice a copy of such a transition is generated for each component state sharing the
same proper state S and the same store γ. The translation scheme for input actions is defined in
case 2 and is similar, except that one has also to consider the sum of the fractions of the possible
partners. The translation of the rest case is straighforward. Note that for every ζ :: r ∗ q ∈ Aγ , r
is a probability value associated to a store update; since any store update characterizes a probability
distribution over stores, assuming the range of such a distribution is {r1, . . . , rn} if ζi :: ri ∗ q ∈ Aγ ,
then also ζj :: rj ∗ q ∈ Aγ for all j = 1, . . . , n, j 6= i with

∑n
i=1 rj = 1. Thus the remaining probability

is qγ = (1−SUM{q|ζ :: r ∗q ∈ Aγ}), where q is either a term IP(pj)γ , with pj occurring in a summand
of the state defining equation (see step 1), or a term IP(pj)γ ∗ SUM{frc (IS(Σ))| . . .} (see step 2).

We note that in the algorithm sets Ω∆Υ
, Γ∆Υ

and O∆Υ
are used. Of course, an alternative

approach could be one which considers only the set Ω∆Υ
of component states which are reachable from

a given initial component state and, consequently, the sets Γ∆Υ
and O∆Υ

of used stores and outboxes.
In this way, the size of the resulting FlyFast model specification would be smaller (for example in
terms of number of states). On the other hand, this approach might require recompilation for each
model-checking session starting from a different initial component state.

8Diagonal jumps are not contemplated in the example; technically this comes from the actual probability values used
in the definition of Jump.

9Here we assume that IS({(C, γ,O) ∈ Ω∆Υ |C = I}) = {I1, . . . , In} ⊂ S.

QUANTICOL 7January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

EL[[>]]γ = tt
EL[[⊥]]γ = ff
EL[[e1 ./ e2]]γ = EL[[e1]]γ ./EL[[e2]]γ
EL[[¬b]]γ = ¬EL[[b]]γ
EL[[b1 ∧ b2]]γ = EL[[b1]]γ ∧ EL[[b2]]γ
EL[[va]]γ = va
EL[[ca]]γ = βΥ(ca)
EL[[vp]]γ = vp
EL[[cp]]γ = βΥ(cp)
EL[[a]]γ = a
EL[[my.a]]γ = γ(a)

EL[[fna(e1, . . . , em)]]γ = EL[[fna]]γ(EL[[e1]]γ , . . . ,EL[[em]]γ)
EL[[fnp(e1, . . . , em)]]γ = EL[[fnp]]γ(EL[[e1]]γ , . . . ,EL[[em]]γ)

EU[[upd]]γ = λγ′.dom(γ′) 6= {a1, . . . , ak} → 0;
γ′(a1) = EL[[e11]]γ ∧ . . . ∧ γ′(ak) = EL[[ek1]]γ → EL[[p1]]γ ;
...
γ′(a1) = EL[[e1n]]γ ∧ . . . ∧ γ′(ak) = EL[[ekn]]γ → EL[[pn]]γ ;
otherwise → 0

ER[[>]]γ = tt
ER[[⊥]]γ = ff
ER[[e1 ./ e2]]γ = ER[[e1]]γ ./ER[[e2]]γ
ER[[¬b]]γ = ¬ER[[b]]γ
ER[[b1 ∧ b2]]γ = ER[[b1]]γ ∧ ER[[b2]]γ
ER[[va]]γ = va
ER[[ca]]γ = βΥ(ca)
ER[[a]]γ = γ(a)

Figure 3: Interpretation functions relevant for the translation

4 A simplified language for Bisimulation-based optimisation

In this section we consider a simplified language for transition probability expressions appearing in
state defining equations which will allow us to perform bisimulation based optimisation of the result
〈∆, A,C0〉(N). The restricted syntax for transition probability expressions p we use in this section is
the following: p ::= ep | ep · frc (C) | ep · frc (π) and ep ::= vp | cp where vp and cp and π as defined in
Section 2.

By inspection of the FlyFast translation as defined in Section 3, and recalling that the set S∆ of the
states of the resulting FlyFast model, ranged over by z, zi, . . ., has cardinality S, it is easy to see that
the probability action definition in the result of a translation of a generic output action is either of the
form ξ :: k, or it is of the form ξ :: k ∗SUM{frc (zi)|i ∈ I} where k is a FlyFast constant. Moreover, if p

IP(vp)γ = vp
IP(cp)γ = βΥ(cp)
IP(frc (C))γ = SUM{frc (IS((C ′, γ′, O′))) | (C ′, γ′, O′) ∈ Ω∆Υ

and C ′ = C}
IP(frc (π))γ = SUM{frc (IS((C ′, γ′, O′))) | (C ′, γ′, O′) ∈ Ω∆Υ

and ER[[EL[[π]]γ]]γ′ = tt}
IP(
∏
i∈I pi)γ = PROD{IP(pi)γ | i ∈ I}

IP(
∑

i∈I pi)γ = SUM{IP(pi)γ | i ∈ I}

Figure 4: Transition probability expressions translation function definition

QUANTICOL 8January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

For each state equation C :=
∑
j∈J [gj]pj :: actj .Cj in ∆Υ:

1. For each output action (α, ι)∗[π]〈〉σ = actk with k ∈ J and [gk]pk 6= rest,
for each γ ∈ Γ∆Υ

s.t. EL[[gk]]γ = tt and (C, γ,O) ∈ Ω∆Υ
for some O ∈ O∆Υ

, for each γ′ ∈ Γ∆Υ
s.t.

(Ck, γ
′, (γ,EL[[π]]γ , α〈〉)) ∈ Ω∆Υ

and EU[[σ]]γ(γ′) > 0, let ξ = IA ((C, γ), (α〈〉, ι), (Ck, γ′, (γ,EL[[π]]γ , α〈〉))) be

a fresh new action on the FlyFast model specification I(ℵ(Υ)) = 〈∆, A,C0〉(N) and add the following action
probability function definition in A: ξ :: EU[[σ]]γ(γ′) ∗ IP (pk)γ .

Moreover, for each outbox O ∈ O∆Υ
s.t. (C, γ,O) ∈ Ω∆Υ

, the following summand is added to the equation in
∆ for state IS ((C, γ,O)): ξ. IS ((Ck, γ

′, (γ,EL[[π]]γ , α〈〉)));

2. For each input action (α, ι)∗[π]()σ = actk, with k ∈ J and [gk]pk 6= rest,
for each γ ∈ Γ∆Υ

s.t. EL[[gk]]γ = tt and (C, γ,O) ∈ Ω∆Υ
for some O ∈ O∆Υ

, for each γ′ ∈ Γ∆Υ
s.t.

(Ck, γ
′, 〈〉) ∈ Ω∆Υ

and EU[[σ]]γ(γ′) > 0,
let ξ = IA ((C, γ), (α(), ι), (Ck, γ

′, 〈〉)), be a fresh new action on the FlyFast model specification I(ℵ(Υ) =

〈∆, A,C0〉(N) and add the following action probability function definition in A:
ξ :: EU[[σ]]γ(γ′) ∗ IP (pk)γ∗

∗SUM{frc (IS (Σ))|Σ = (C′′, γ′′, (γ, π, α〈〉)) ∈ Ω∆Υ
∧

∧ ER[[π]]γ = ER[[EL[[π]]γ]]γ = tt}.
Moreover, for each outbox O ∈ O∆Υ

s.t. (C, γ,O) ∈ Ω∆Υ
, the following summand is added to the equation in

∆ for state IS ((C, γ,O)): ξ. IS ((Ck, γ
′, 〈〉));

3. If there exists k ∈ J s.t. [gk]pk = rest, and actk = (α, ι)∗[π]〈〉σ, for each γ ∈ Γ∆Υ
s.t. (C, γ,O) ∈ Ω∆Υ

for some
O ∈ O∆Υ

, let Aγ be the set of probability function definitions which has been constructed in steps (1) and (2)
above. Let qγ be defined by qγ = (1−SUM{q|ζ :: r ∗ q ∈ Aγ}). For all γ′ ∈ Γ∆Υ

s.t. (Ck, γ
′, (γ,EL[[π]]γ , α〈〉)) ∈

Ω∆Υ
, let ξ = IA ((C, γ), (α, ι)〈〉, (Ck, γ′, (γ,EL[[π]]γ , α〈〉))) ∈ Ω∆Υ

, be a fresh new action on the FlyFast model

specification I(ℵ(Υ) = 〈∆, A,C0〉(N) and add the following action probability function definition in A: ξ ::
EU[[σ]]γ(γ′) ∗ qγ .
Moreover, for each outbox O ∈ O∆Υ

s.t. (C, γ,O) ∈ Ω∆Υ
, the following summand is added to the equation in

∆ for state IS ((C, γ,O)): ξ. IS ((Ck, γ
′, (γ,EL[[π]]γ , α〈〉)));

4. No other action probability function definition and transition is included and the initial state C0 of I(Υ) is
defined as C0 = IS (Σ0).

Figure 5: The translation algorithm

was of the form ep · frc (C), then index set I ⊆ {1, . . . , S} identifies those states in S∆ that represent
(via IS) component states with proper local state C; if instead, p was of the form ep · frc (π), then
I ⊆ {1, . . . , S} identifies those states in S∆ that represent (via IS) component states with a store
satisfying π in the relevant store. At the FlyFast semantics level, recalling that frc (zi) is exactly the
i-th component mi of the occupancy measure vector m = (m1, . . . ,mS) of the model, we can rewrite10

the above as k or k ·
∑

i∈I mi.
Similarly, the probability action definition in the result of a translation of a generic input action

(α, ι)∗[π′]() (executed in local store γ′) will necessarily be of the form k ·
(∑

j∈I′mj

)
or of the form

k ·
(∑

j∈I mj

)
·
(∑

j∈I′mj

)
, for index sets I as above and I ′ as follows:

I ′ = {i ∈ {1, . . . , S}|∃C, γ, γ, π, s.t.
zi = IS((C, γ, (γ, π, α〈〉))) ∧ ER[[π]]γ′ = ER[[EL[[π′]]γ′]]γ = tt}

An immediate consequence of using the above, restricted, syntax for the probability function
definitions is that, letting K : US ×S ×S → [0, 1] be the transition probability matrix for the FlyFast
translation of a model specification, we have that K(m1, . . . ,mS)z,z′ is a polynomial function of degree
at most 2 in variables m1, . . . ,mS .

10With a little notational abuse using k also as the actual value in [0, 1] of the FlyFast constant k.

QUANTICOL 9January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

5 Bisimilarity and State-space Reduction

The following definition generalizes standard probabilistic bisimilarity for state labelled DTMCs to
the case in which transition probabilities are functions instead of constant values.

Definition 1 For finite set of states S, let K : US × S × S → [0, 1] and, for z ∈ S and Q ⊆ S, write
K(m)z,Q for

∑
z′∈Q K(m)z,z′. Let furthermore L : S → 2AP be a state-labelling function, for a given

set AP of atomic propositions. An equivalence relation R ⊆ S × S is called a bisimulation relation if
and only if z1R z2 implies: (i) L(z1) = L(z2) and (ii) K(m)z1,Q = K(m)z2,Q, for all m ∈ US and
Q ∈ S/R. The bisimulation equivalence on S is the largest bisimulation relation R ⊆ S × S.

Of course K(m1, . . . ,mS)z1,Q = K(m1, . . . ,mS)z2,Q for all (m1, . . . ,mS) ∈ US is in general not
decidable. If instead we consider only transition probability matrices as in Section 4, we see that
each side of the above equality is a polynomial function of degree at most 2 in variables m1, . . . ,mS

and one can define a normal form for the polynomial expressions in m1, . . . ,mS supported by an
ordering relation on the variable names (e.g. m1 ≺ . . . ≺ mS) and get expressions of the general

form
(∑S

i=1

∑S
j≥i hij ·mi ·mj

)
+
(∑S

i=1 hi ·mi

)
+h for suitable hij , hi, h. Actually, such expressions

can always be rewritten in the form
(∑S

i=1

∑S
j≥i uij ·mi ·mj

)
+ u for suitable uij , u since, recalling

that
∑S

i=1mi = 1, we get
∑S

i=1 hi · mi =
(∑S

i=1mi

)
·
(∑S

i=1 hi ·mi

)
which, by simple algebraic

calculations, yields an expression of the following form:
(∑S

i=1

∑S
j≥i u

′
ij ·mi ·mj

)
; finally, we get(∑S

i=1

∑S
j≥i uij ·mi ·mj

)
+ u by letting uij = hij + u′ij and u = h. The following proposition thus

establishes decidability of K(m1, . . . ,mS)z1,Q = K(m1, . . . ,mS)z2,Q for all (m1, . . . ,mS) ∈ US for
transition probability matrices as in Section 4:

Proposition 1

Let A(m1, . . . ,mS) =
(∑S

i=1

∑S
j≥i aij ·mi ·mj

)
+a and B(m1, . . . ,mS) =

(∑S
i=1

∑S
j≥i bij ·mi ·mj

)
+

b with aij , bij , a, b ∈ R, where m1, . . . ,mS are variables taking values over R≥0 with
∑S

i=1mi = 1. The
following holds: (∀m1, . . . ,mS .A(m1, . . . ,mS) = B(m1, . . . ,mS))⇔ ((∀i, j = 1, . . . , S with i ≤ j.aij =
bij) ∧ a = b).

The above results can be used for reduction of the state-space of the individual agent, i.e. the
resulting FlyFast model specification, after the application of the translation described in Section 3, by
using for instance the standard probabilistic relational coarsest set partition problem algorithm (see
e.g. [5], page 227) with slight obvious modifications due to the presence of state-labels and the need of
symbolic computation capabilities required for checking (degree 2) polynomial expressions equality.11

It is worth mentioning that state aggregation via bisimilarity is effective only if there is some sort
of compatibility between (i) state labelling—and, conseqently, the specific PCTL atomic propositions
one uses—and (ii) the way probabilities are assigned to transitions—and, consequently, the cumulative
probabilities to equivalence classes. We will come back on this issue in the following section.

6 Example

The application of the translation to the specification of Example 1 generates an agent model with 8
states, say S∆ = {SA, SB, SC, SD, IA, IB, IC, ID}12 with associated IDTMC probability transition

11For instance, on page 227 of [5], line 12, v(x, S) = v(y, S) should be replaced with L(x) = L(y) ∧ v(x, S) = v(y, S)
and in line 13, v(x, S) 6= v(y, S) should be replaced with L(x) 6= L(y) ∨ v(x, S) 6= v(y, S), in order to take state labels
into consideration as well. Of course v(x, S) (L, respectively)is to be intended as K(m)z,Q (L, respectively), using the
notation we introduced above for Bisimilarity.

12Actually the agent resulting from the translation of Fig. 5 has a higher number of states due to the different
possibilities for outbox values. Many of these states are unreachable from the initial state since the agent has no input

QUANTICOL 10January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

L	

H	

h	
H	

L	

l

Figure 6: SI in two quadrants

SA SB SC SD IA IB IC ID

SA HφS(m) L
2
φS(m) 0 L

2
φS(m) HφI(m) L

2
φI(m) 0 L

2
φI(m)

SB H
2
φS(m) LφS(m) H

2
φS(m) 0 H

2
φI(m) LφI(m) H

2
φI(m) 0

SC 0 L
2
φS(m) HφS(m) L

2
φS(m) 0 L

2
φI(m) HφI(m) L

2
φI(m)

SD H
2
φS(m) 0 H

2
φS(m) LφS(m) H

2
φI(m) 0 H

2
φI(m) LφI(m)

IA Hir L
2
ir 0 L

2
ir Hii L

2
ii 0 L

2
ii

IB H
2
ir Lir H

2
ir 0 H

2
ii Lii H

2
ii 0

IC 0 L
2
ir Hir L

2
ir 0 L

2
ii Hii L

2
ii

ID H
2
ir 0 H

2
ir Lir H

2
ii 0 H

2
ii Lii

Figure 7: IDTMC transition probability matrix K(m), for m in U8.

matrix as shown in Fig. 7 where mxy represents the fraction of objects currently in state xy for
x ∈ {S, I} and y ∈ {A,B,C,D}—i.e. the components in state x and with loc = y in the original
specification of Fig 2—so that m = (mSA,mSB,mSC ,mSD,mIA,mIB,mIC ,mID) is the occupancy
measure vector. In Fig. 7, functions φS and φI are used as abbreviations in the obvious way: φS(m) =
mSA +mSB +mSC +mSD and φI(m) = mIA +mIB +mIC +mID. Let us assume now that we are
interested in checking PCTL formulas on the model of Fig 2 which distinguish components located
in A or C from those located in B or D, and those in state S from those in state I, that is we
consider atomic propositions Sh, Ih, Sl and Il and a labelling L such that L(SA) = L(SC) = {Sh},
L(IA) = L(IC) = {Ih}, L(SB) = L(SD) = {Sl}, and L(IB) = L(ID) = {Il}.

Consider relation R on S∆ defined as R = IS∆
∪ {(SA, SC), (SB, SD), (IA, IC), (IB, ID)} ∪

{(SC, SA), (SD, SB), (IC, IA), (ID, IB)} where IS∆
is the identity relation on S∆. It is very easy

to show that R is a bisimulation according to Definition 1. Clearly R is an equivalence relation and
its quotient S∆/R is the set {QSh, QSl, QIh, QIl} with QSh = {SA, SC}, QSl = {SB, SD}, QIh =
{IA, IC}, QIl = {IB, ID}. In addition, for all z1, z2 ∈ S∆, whenever z1Rz2, we have L(z1) = L(z2)
and K(m)z1,Q = K(m)z2,Q for all Q ∈ S∆/R and for all m, as one can easily check; clearly, R is
also the largest bisimulation relation on S∆. The relationship between the two occupancy measure
vectors is: mQSh = mSA +mSC , mQSl = mSB +mSD, mQIh = mIA +mIC , and mQIl = mIB +mID.

We can thus use the reduced IDTMC defined by matrix K̂(mQSh ,mQSl ,mQIh ,mQIl) shown in Fig. 9

which corresponds to the FlyFast agent specification ∆̂ given in Fig. 8. In a sense, the high probability
locations A and C, in the new model, have collapsed into a single one, namely h and the low probability
ones (B and D) have collapsed into l, as shown in Fig. 6. We point out again the correspondence
between the symmetry in the space jump probability on one side and the definition of the state labelling
function on the other side. Finally, note that a coarser labelling like, e.g. L′(SA) = L′(SC) = L′(IA) =
L′(IC) = {h}, L′(SB) = L′(SD) = L′(IB) = L′(ID) = {l} would make the model collapse into one
with only two states, Qh and Ql, with probabilities H : Qh → Qh, H : Ql → Qh, L : Qh → Ql and
L : Qh → Ql where only the location would be modelled whereas information on the infection status
would be lost.

action and we assume an initial unreachable state pruning has been performed.

QUANTICOL 11January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

action QSh_inf_QIh: H*(frc(QIh)+frc(QIl)); action QSh_nsc_QSh: H*(frc(QSh)+frc(QSl));

action QSh_inf_QIl: L*(frc(QIh)+frc(QIl)); action QSh_nsc_QSl: L*(frc(QSh)+frc(QSl));

action QSl_inf_QIh: H*(frc(QIh)+frc(QIl)); action QSl_nsc_QSh: H*(frc(QSh)+frc(QSl));

action QSl_inf_QIl: L*(frc(QIh)+frc(QIl)); action QSl_nsc_QSl: L*(frc(QSh)+frc(QSl));

action QIh_inf_QIh: H*ii; action QIh_rec_QSh: H*ir;

action QIh_inf_QIl: L*ii; action QIh_rec_QSl: L*ir;

action QIl_inf_QIh: H*ii; action QIl_rec_QSh: H*ir;

action QIl_inf_QIl: L*ii; action QIl_rec_QSl: L*ir;

state QSh{QSh_inf_QIh.QIh + QSh_inf_QIl.QIl + QSh_nsc_QSh.QSh + QSh_nsc_QSl.QSl}

state QSl{QSl_inf_QIh.QIh + QSl_inf_QIl.QIl + QSl_nsc_QSh.QSh + QSl_nsc_QSl.QSl}

state QIh{QIh_inf_QIh.QIh + QIh_inf_QIl.QIl + QIh_rec_QSh.QSh + QIh_rec_QSl.QSl}

state QIl{QIl_inf_QIh.QIh + QIl_inf_QIl.QIl + QIl_rec_QSh.QSh +QIl_rec_QSl.QSl}

Figure 8: Reduced agent specification ∆̂

QSh QSl QIh QIl
QSh H · (mQSh

+mQSl
) L · (mQSh

+mQSl
) H · (mQIh

+mQIl
) L · (mQIh

+mQIl
)

QSl H · (mQSh
+mQSl

) L · (mQSh
+mQSl

) H · (mQIh
+mQIl

) L · (mQIh
+mQIl

)
QIh H · ir L · ir H · ii L · ii
QIl H · ir L · ir H · ii L · ii

Figure 9: IDTMC transition probability matrix function K̂(m), for m in U4.

7 Conclusions

In this paper we presented PiFF, a language for the predicate-based front-end of the FlyFast on-the-fly
tool for approximated mean-field model-checking. A simplified version of the translation proposed
in [2] has been presented together with an approach for reducing the state-space of individual agents
based on probabilistic bisimularity for inhomogeneous DTMCs. An example of application of the
procedure has been shown. The implementation of a compiler for PiFF mapping the language to
FlyFast is under development.

References

[1] L. Bortolussi, G. Cabri, G. Di Marzo Serugendo, V. Galpin, J. Hillston, R. Lanciani, M. Massink,
and D. Tribastone, M. Weyns. Verification of CAS. In J. Hillston, J. Pitt, M. Wirsing, and
F. Zambonelli, editors, Collective Adaptive Systems: Qualitative and Quantitative Modelling and
Analysis. Schloss Dagstuhl Leibniz-Zentrum fur Informatik, Dagstuhl Publishing, Germany, 2015.
Dagstuhl Reports. Vol. 4, Issue 12. Report from Dagstuhl Seminar 14512. ISSN 2192-5283.

[2] V. Ciancia, D. Latella, and M. Massink. On-the-Fly Mean-field Model-checking for Attribute-based
Coordination. In A. Lluch Lafuente and J. Proença, editors, Coordination Models and Languages,
volume 9686 of LNCS, pages 67–83. Springer-Verlag, 2016. DOI: 10.1007/978-3-319-39519-7 5,
ISSN: 0302-9743, ISBN: 978-3-319-39518-0 (print), 978-3-319-39519-7 (on line).

[3] R. De Nicola, D. Latella, A. Lluch Lafuente, M. Loreti, A. Margheri, M. Massink, A. Morichetta,
R. Pugliese, F. Tiezzi, and A. Vandin. The SCEL Language: Design, Implementation, Verification.
In M. Wirsing, M. Hölzl, N. Koch, and P. Mayer, editors, Software Engineering for Collective
Autonomic Systems, volume 8998 of LNCS, chapter I.1, pages 3–71. Springer-Verlag, 2015. DOI:
10.1007/978-3-319-16310-9 1, ISBN 978-3-319-16309-3 (print), 978-3-319-16310-9 (online), ISSN
0302-9743.

[4] H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal Aspects of
Computing. The International Journal of Formal Methods. Springer-Verlag, 6(5):512–535, 1994.

QUANTICOL 12January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

[5] D. Huynh and L. Tian. On some equivalence relations for probabilistic processes. Fundamenta
Informaticae, 17:211–234, 1992.

[6] D. Latella. Cmunicazione basata su proprietà nei sistemi decentralizzati, 1983. [Property-based
inter-process communication in decentralized systems] Graduation Thesis. Istituto di Scienze
dell’Informazione. Univ. of Pisa, Italy (in italian).

[7] D. Latella, M. Loreti, and M. Massink. On-the-fly Fast Mean-Field Model-Checking. In M. Abadi
and A. Lluch Lafuente, editors, Trustworthy Global Computing, 4th International Symposium,
TGC 2013, Buenos Aires, Argentina, August 30-31, 2013, Revised Selected Papers, volume 8358
of LNCS, pages 297–314. Springer, 2014. DOI:10.1007/978-3-319-05119-2 17, ISBN 978-3-319-
05118-5 (print), 978-3-319-05119-2 (on-line), ISSN 0302-9743 .

[8] D. Latella, M. Loreti, and M. Massink. On-the-fly PCTL fast mean-field approximated model-
checking for self-organising coordination. Science of Computer Programming. Elsevier, 110:23–50,
2015. DOI: 10.1016/j.scico.2015.06.009; ISSN: 0167-6423.

[9] Jean-Yves Le Boudec, David McDonald, and Jochen Mundinger. A generic mean field convergence
result for systems of interacting objects. In QEST07, pages 3–18. IEEE Computer Society Press,
2007. ISBN 978-0-7695-2883-0.

QUANTICOL 13January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

Designing Attribute-based FlyFast (Revision: 0.1; February 3, 2017)January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

A Appendix

Proof of Proposition 1
⇐: Trivial.
⇒:
We first prove that a = b:
∀m1, . . . ,mS .A(m1, . . . ,mS) = B(m1, . . . ,mS)

⇒ {Logic}

A(0, . . . , 0) = B(0, . . . , 0)

⇒ {Def. of A(m1, . . . ,mS) and B(m1, . . . ,mS)}

a = b

Now we prove that aii = bii for i = 1, . . . , S:

∀m1, . . . ,mS .A(m1, . . . ,mS) = B(m1, . . . ,mS)

⇒ {Take the S − tuple (m̄1, . . . , m̄S) where m̄k = 1 if k = i and 0 otherwise}

A(m̄1, . . . , m̄S) = B(m̄1, . . . , m̄S)

⇒ {Def. of A(m1, . . . ,mS) and B(m1, . . . ,mS)}

aii + a = bii + b

⇒ {a = b (see above)}

aii = bii

Finally we prove that aij = bij , for i, j = 1, . . . , S, j > i:

∀m1, . . . ,mS .A(m1, . . . ,mS) = B(m1, . . . ,mS)

⇒ {(m̃1, . . . , m̃S) where m̃k = 0.5 if k ∈ {i, j} and 0 otherwise}

A(m̃1, . . . , m̃S) = B(m̃1, . . . , m̃S)

⇒ {Def. of A(m1, . . . ,mS) and B(m1, . . . ,mS)}

0.25aii + 0.25aij + 0.25ajj + a = 0.25bii + 0.25bij + 0.25bjj + b

⇒ {a = b (see above)}

0.25aii + 0.25aij + 0.25ajj = 0.25bii + 0.25bij + 0.25bjj

⇒ {Algebra}

aii + aij + ajj = bii + bij + bjj

⇒ {aii = bii and ajj = bjj (see above)}

aij = bij •

QUANTICOL 14January 16, 2017 (revision 0.0), February 3, 2017 (revision 0.1)

	Introduction
	Summary on PiFF and FlyFast
	PiFF
	FlyFast

	A revised translation
	A simplified language for Bisimulation-based optimisation
	Bisimilarity and State-space Reduction
	Example
	Conclusions
	Appendix

