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Executive summary

This deliverable describes the research into mathematical and computational methods for
scalable spatial modelling for Collective Adaptive Systems that has taken place within
the QUANTICOL project. Space plays an important role in QUANTICOL because of
the nature of the case studies we have chosen as examples of collective adaptive systems.
When considering smart transport, location in space is an important attribute that shapes
the behaviour of the system. In the case of smart grids, for instance for residential smart
grids, location and proximity are important to optimise the energy flow. In the initial
investigation phase of QUANTICOL, we decided to focus our attention on discrete models
of space, in which space is described by a set of locations, connected by edges representing
the connections between locations. However, such a discrete representation of space poses
formidable computational challenges, as complexity of model analysis scales at least linearly
with the number of locations. In this deliverable, we report several techniques to abstract
and transform space to ease such a computational burden.
We will discuss three classes of approaches:

• Pragmatic approximations: a spatial model is simplified using some heuristic cri-
terion which is shown to work well in practice. Within this umbrella, we will report
on a method based on behavioural distances to aggregate locations, thus simplifying
the space structure. We will also discuss approaches to simplify second order moment
equations in the presence of localities, by setting to zero moments of population vari-
ables in locations which are too distant. In particular, we will describe an approach,
illustrated on bike sharing, to identify the most important locations influencing a
given one, and a method based on a syntactic distance between agents interacting in
space.

• Transformation of space: here the spatial attributes of a model are kept, but
space is transformed into a qualitatively different mathematical object, which makes
the analysis simpler. In particular, we will report on techniques that take a grid
describing a discretised 2-dimensional space, and approximate it with a continuous
state space. The model itself changes from a patch-based population Markov chain
to a set of Partial Differential equations, that can be solved more efficiently. Limit
theorems are proved to show the correctness of the method. The approach is also
extended to a fast simulation results, allowing us to track the behaviour of a single
agent, approximating it as a switched Brownian motion, which is faster to analyse
than the full stochastic model. We will also report on a method to construct patches
from an agent based model in which agents move in continuous space.

• Full abstraction from space: a spatial model is replaced by a simpler one without
an explicit representation of space. In this class, we will discuss three methods: the use
of mean-field techniques that guarantee the asymptotic decoupling of the behaviour in
different locations, allowing us to analyse each location independently, spatial moment
closures, that can be used to capture mean and variance of the total population
over all locations though a system of differential equations which is independent of
localities, and pair approximation, a technique to capture local structure in spatially
non-homogeneous models, by counting pairs of neighbour individuals.

QUANTICOL 1 30 September 2016



Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

Contents

1 Introduction 3

2 Background 4
2.1 Representations of space, a short review . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Discrete-space models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Approximation of Space 6
3.1 Patch aggregation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
3.2 Simplification of moment equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
3.3 Spatial decomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3.1 Directed contribution graph with contribution propagation . . . . . . . . . . . 12

4 Transformation of Space 13
4.1 Partial-Differential Approximation of Population Based Spatial Models . . . . . . . . . 14
4.2 Behaviour of Single Agents in Population Based Spatial Models . . . . . . . . . . . . . 15
4.3 Patch Identification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

5 Abstraction from Space 18
5.1 Abstraction by Asymptotic Decoupling . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.2 Spatial Moment Closure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.3 Pair Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

6 Conclusion 23

A Appendix: Population Discrete Space Models 30

QUANTICOL 2 30 September 2016



Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

1 Introduction

Many collective adaptive systems (CAS) are distributed in space, and their spatial arrangement plays
a fundamental role in governing their behaviour. In QUANTICOL, spatial features play an important
role both in smart transportation and, to a smaller extent, in smart grid case studies.

In previous investigations, reported in deliverable D2.1, we identified a discrete representation of
space as the most useful for the CAS we considered. More specifically, space is described by a finite
set of locations, typically representing physical regions of space. In each location there is a population
of agents. Agents can move from one location to another one, according to their movement policies,
which can be visually represented by describing space as a (weighted) graph, with edges describing
possible movement flows. These models can provide a quite accurate description of CAS in our case
studies, but suffer from computational limits, as the cost of analysing the model grows at least linearly
with the number of locations. In fact, in our population models we need to consider one variable for
each agent type and each location.

For instance, the London bike sharing system has more than 700 stations, and to properly account
for the flows of bike, we need to add 700 times 700 locations to represent populations of agents
travelling from a station i to a station j, for every i and j. If we just limit to count the number
of bikes in each station and those travelling from i to j, we will need about 500 thousand variables.
Solving even a mean field model of this size requires High Performance Computing facilities. Even if
we simplify the model and count only the number of bikes in each station, encoding the flows between
stations in a routing matrix, we still face heavy computational burden to get information about higher
order moments of the system, e.g. covariance between bikes in different stations.

To ameliorate these problems, in Task 2.1 of Work Package 2, we considered different strategies to
obtain efficient analysis techniques, all based on abstraction/ transformation procedures to simplify
the spatial structure. In this deliverable, we report our results in this direction. We can classify our
methods in three different groups, each treating space in a different way, and each based on a different
mathematical background.

• Pragmatic approximations. The idea is to reduce the number of locations, or the number of
location pairs to be considered for a covariance analysis, by some fully automatic heuristic
argument.

• Transformation of space. The idea is to change completely the spatial description, with a different
one allowing a simpler analysis. These transformations are grounded on limit results.

• Full abstraction from space. The idea here is to try to remove space tout-court, either considering
global properties (like the total number of agents of a given kind across locations), or by treating
each location independently.

These different classes of approaches are discussed further below, together with the document
structure, which is complemented by some background material (Section 2) and conclusions at the
end.

Pragmatic approximations will be discussed in Section 3, where we will report two different classes
of results. In Section 3.1, we discuss an heuristic method to aggregate locations, using a behavioural
distance as a guide [BF16]. The idea here is to cluster locations showing a similar behaviour, in a
stochastic sense, using mean-field techniques to compute the distance. In Section 3.2, instead, we
will discuss methods to simplify second-order (and higher) moment equations of a spatial population
model. The issue here is that the number of such equations grows quadratically (or more) with the
number of locations. One approach [FHG16] uses a semantic distance between agents, starting from a
PALOMA1 representation, which captures not only the spatial structure, but also behavioural patterns

1A process algebra with spatial localities developed in the context of the project [FH14]

QUANTICOL 3 30 September 2016



Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

described in the agents. The other approach [FHR16], instead, is a local method, focussing on a single
location and identifying the most relevant locations in terms of movement and interactions. Hence a
local small model of space is generated, which can be analysed more efficiently.

Transformation of space is the content of Section 4. Here we will consider population models in
a two (potentially three) dimensional discrete space, typically a grid, such that there is a population
of agents in each cell of the grid. The basic idea is to replace the discrete space representation with
a continuous one, changing the discrete stochastic model into a set of Partial Differential Equations.
These equations are much faster to solve than the original model or its classic mean-field approxima-
tion. In Section 4.1, the method of [TT13], is presented together with accompanying mean-field like
limit theorems, taking both population size and grid size to infinity. In Section 4.2, instead, we will
report the result of [BT16], in which a fast simulation result is presented, allowing us to approximate
a single agent in such a large population model by a switched Brownian diffusion. Finally, in Section
4.3, we report the approach developed in [Fen14], which deals with the reverse problem: starting from
an agent-based model in continuous space, and exploiting the model structure and some simulations,
the goal is to partition the continuous state into regions, or patches, having a similar dynamics, in
order to transform space from continuous to discrete.

Full abstraction from space techniques are presented in Section 5. Here we report on a technique
[Gas+15] which, under some specific conditions, allows us to treat each location as independent from
the other ones, thus simplifying a lot the model analysis. This method, discussed in Section 5.1,
is grounded in mean-field theory, namely asymptotic decoupling, and it has been applied to a bike-
sharing model. In Section 5.2, instead, we discuss the investigations of [Gal16] on spatial moment
closures, a class of techniques from mathematical ecology that can be used to eliminate space when we
are interested only in the total population counts. Finally, in Section 5.3, we discuss the accuracy of
pair approximation [Gas15], a mean-field method that can be used to deal with spatially heterogenous
models, in which interactions can happen only locally, and thus the number and type of neighbours of
any agent plays an important role. Pair approximation works by counting not only how many agents
in each state are in the system, but also how many pairs of potentially interacting agents are in the
system.

2 Background

2.1 Representations of space, a short review

In Deliverable 2.1 [Gal+14], a classification of mathematical models was presented which considered
spatial aspects together with state and aggregation. A modified version of this appears in Figure 1. The
original table distinguished three different types of discrete space: general, regular and homogeneous
but here only one category is used. All the models given for discrete space in Figure 1 are general space
models apart from IPSs (interacting particle systems) which are typically defined over grids/lattices
which are forms of regular space. As will be seen later in this document, we will consider stochastic
models similar to IPSs (interacting particle systems) defined over a general space in the form of
individual discrete-space models.

The preliminary guidelines in Deliverable 2.1 [Gal+14] suggest that population discrete-space mod-
els are most appropriate for the QUANTICOL case studies. There may also be a role for individual-
based continuous space models in modelling individual bus progress as well as techniques for trans-
forming individual continuous-space models into discrete-space models. Additionally, recent research
into individual discrete-space models [Gas15] has relevance to the modelling of bike-sharing.
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Time continuous
Aggr none state and/or space
State discrete continuous discrete continuous

Space
discrete CTMC, TDSHA [BP10] patch population patch population

IPS [DL94] PDMP [Dav93] CTMC ODEs
[CLBR09] [CLBR09]

continuous molecular dynamics CTMP spatio-temporal PDEs [Hol+94]
[CPB08] [DP03] point processes
agents [SBG02]

Figure 1: Classification of mathematical models in terms of time, aggregation, state and space (CTMC:
continuous time Markov chain, IPS: interacting particle systems, TDSHA: transition-driven stochastic
hybrid automata, PDMP: piecewise deterministic Markov process, ODE: ordinary differential equa-
tion, CTMP: continuous-time Markov process, PDE: partial differential equation

2.2 Discrete-space models

The most general definition of discrete space consists of a finite set of locations and a graph over
these locations and this has been identified most appropriate for the QUANTICOL project. We limit
our focus to graphs that are finite and static, in the sense that the edges of the graph do not change
over time and the number of nodes is finite and remains fixed. We consider two different types of
discrete-space models as now described.

Population discrete-space models: These are population CTMCs (continuous time Markov chains)
where subpopulations in different locations are viewed as separate subpopulations. Hence, the
number of subpopulations in increased by a factor L, where L is the number of locations. Rates
of interactions may be the same or change in each location, the latter case describing some
form of spatial heterogeneity. Furthermore, these models contain additional transitions repre-
senting movement between adjacent locations in the location graph, with rates that can depend
on the pair of locations involved. A formal definition is given in Appendix A. These are also
called patch-based models and there are various examples in the literature [JL00; AP02; Ari+05;
CLBR09; WL95].

The addition of discrete space requires no substantive changes to the definition of a PCTMC
and the same analysis techniques can be applied. The main differences are a larger number of
subpopulations and a higher likelihood of low population numbers in a particular location; both
of which may affect applicability and feasibility of analysis techniques. We assume the location
set is finite and the graph does not change over time. We consider functional rates that are
dependent on subpopulation, subpopulation sizes and locations.

Individual discrete-space models: These are node-labelled graph-based models where each loca-
tion in the graph represents the state of a single individual at that location or a state of the
location. Model dynamics are defined in terms of graph-transformation rules with associated
exponential rates that modify node labels (but not edges), thereby providing continuous-time
models. Analysis techniques involve counting specific subgraphs of interest over time to under-
stand the proportion of nodes in the graph. The number of locations is finite and the edges do
not change over time. The rates can be functional.
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In both of these models, rates are functional and there is no specific requirement for them to be
continuous, although discontinuities in rate functions may affect the applicability of certain analysis
techniques.

3 Approximation of Space

In this section, we report heuristic approaches that can be used to reduce the cost of analysing space
models. We first report on a method to aggregate locations, using a behavioural distance as a guide
(Section 3.1). Then, we report on methods to simplify second order (and higher) moment equations,
whose number grows quadratically (or more) with the number of locations (Section 3.2). One approach
is based on a semantic distance between population variables, which accounts not only for the spatial
structure, but also for behavioural patterns of the model. This creates a link also with the modelling
language as the distance can be derived from the syntax of the model expression. The other approach
is based on identifying the most relevant locations for a given one, and creating small local models of
space, that can be analysed more efficiently.

3.1 Patch aggregation

The spatial extension of PCTMCs discussed in Section 2.2 introduces a discrete representation of
space in terms of locality, connected in a general topology represented by a (weighted) graph. One of
the effects of explicit modelling of space is the increase of the computational cost of analysis of the
system. For instance, a model with l localities will increase the number of equations for the variance
in any moment closure approach by a factor of O(l2).

However, although space shapes the behaviour of the system, our interest is often in space-free
properties, like the total number of infected individuals in an epidemic scenario, or in localised prop-
erties, like the number of available bikes in a given station or geographic area. In these cases, a full
representation of space may not be necessary to compute such quantities with a reasonable accuracy,
and model simplification and abstraction can be a viable strategy.

In this section, we report the approach of [BF16], which develops an efficient method to aggregate
locations showing a similar dynamical profile. This operation approximately preserves the dynamical
behaviour of the model, but lowers the computational cost: for instance, if the number of locations
decreases from l to k, then the number of differential equations for the variance is reduced by a factor
O((k/l)2). In particular, the focus of [BF16] is to reduce the cost of the analysis of the full stochastic
model when using standard simulation algorithms [Gil77].

The method developed in [BF16] aggregates locations using a state-of-the-art spectral clustering
algorithm, exploiting a metric between locations taking the steady state mean or distribution of sub-
populations into account. Rather than working with exact solution or estimations of these quantities
by simulation, which would be computationally expensive, they are estimated by stochastic approxi-
mation, either by solving mean-field equations for the mean or using moment closure to obtain mean
and variance at steady state.

In the following, we sketch the distances used and how they are computed, the clustering procedure,
and quickly discuss a case study about the London bike sharing system.

Description of the method. The approach of [BF16] is based on three ingredients: the choice of
a metric between locations, the clustering of locations using a spectral clustering algorithm, and the
construction of the reduced model. We briefly discuss these three points below, referring to [BF16]
for a detailed treatment.

1. The distance metrics between locations is defined taking into account the dynamical behaviour
of the system, so that locations showing a similar steady state behaviour are clustered together.
Two distances are considered, described below in increasing order of precision:
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(a) Mean field distance dE . This is the Euclidean distance between the mean of populations at
steady state. It is approximated by first order moment closure, i.e. by relying on the mean
field abstraction of the PCTMC model.

(b) Linear noise distance dL. Steady state distributions of populations in each location are
approximated in continuous space with a Gaussian distribution. The mean and variance
of the Gaussians are obtained by second order moment closure, solving numerically equa-
tions for mean and variance until their steady state is reached. Then, the distance between
locations is computed relying on the Bhattacharyya distance [Bha43] between the corre-
sponding approximating Gaussians. In [BF16], the distance between locations is measured
by averaging one dimensional distances between populations.

2. Once the metric is fixed, distance is computed between each pair of locations. The so-obtained
distance matrix is converted into a similarity matrix and fed into a spectral clustering algorithm
[NJW+02]. The algorithm roughly uses the information contained in the smallest eigenvectors
of the Laplacian of the graph associated with the given similarity matrix to construct a nonlinear
embedding of locations into a real space, which reveals the cluster structure. Then clusters are
identified by relying on the standard k-means clustering algorithm. The number of clusters is
selected using the so-called eigengap heuristic, which looks for the first big gap in the increasingly
ordered eigenspectrum of the Laplacian.

3. Given a clustering of locations, a reduced model is obtained by suitably merging together the
PCTMC variables corresponding to populations of the same kind in the same cluster of loca-
tions. Intra-patch and inter-patch transitions looking identical after variable substitution are
also aggregated together, de facto reducing model complexity.

A London bike sharing case study. In [BF16] the method is tested on a London bike sharing
scenario. Bike-sharing systems are becoming more and more important for urban transportation. In
such systems, users arrive at a station, pick up a bike, use it for a while, and then return it to another
station of their choice. Recently, PCTMCs have been used to model bike-sharing systems [FG14;
GB13].

Here, we consider a map containing 30 bike stations near Russell Square in London which is
illustrated in Figure 2. Each station has several bike slots. The pickup rate of bikes in a station is
governed by an exponential distribution. When a user picks up a bike, the available number of bikes
in the station will decrease by one whereas the available number of slots in that station will increase
by one. The user will choose another zone in the city as their destination. When the users arrive at
their destination, they will return their bike to the bike station. A formalisation of this model as a
PCTMC can be found in [BF16], with rates calculated by journey data which is available online.

The method is then applied to the model. Using the linear noise distance, the number of clusters
predicted by the eigengap heuristic is equal to 5. Figure 3 (left) shows the trajectories of the number
of available bikes in the 5 clusters generated by stochastic simulation before and after aggregation.
Table 1 shows the number of transitions, simulation time of 1000 runs of the bike-sharing model
before and after aggregation, as well as the average error ratio of the trajectories in Figure 3 (left)
after aggregation compared with the counterpart before aggregation. As can be seen, the accuracy is
good despite the 6-fold reduction in model complexity. In Figure 3 (right), instead, the trajectories of
the original model are compared to those of the reduced one according to the mean-field metric dE . In
this case, there are only three clusters and the accuracy decreases considerably, as can be numerically
seen in Table 1. See [BF16] for more experimental analyses.

The experimental evidence introduced in [BF16] shows that the reduction retains reasonable accu-
racy, and simplifies considerably the cost of stochastic simulation or of the use of higher order moment
closure equations. An extension which is under development is to cluster locations in order to preserve
a given set of spatio-temporal properties, specified using SSTL [BN14; Nen+15].

QUANTICOL 7 30 September 2016



Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

Figure 2: The map of bike-sharing stations near Russell Square in London in which red circles repre-
senting bike stations

Bike model No. of transitions simulation time (1000 runs) Avg error ratio

Before aggregation 1800 15.6 mins N/A

After aggregation (dL) 300 2.5 mins 11.94%

After aggregation (dE) 180 1.6 mins 23.06%

Table 1: Size, simulation cost (including the aggregation cost) of the bike-sharing model before and
after aggregation, and error introduced by the aggregation.

3.2 Simplification of moment equations

As already discussed, spatially distributed CAS modelled in the population discrete-space style pose
significant challenges to modelling due to the size and complexity of their state spaces. This problem
is acute when the dynamic behaviour of the system must be captured, for example in order to predict
system performance. Mean-field approximation techniques which derive sets of ODEs to approximate
the moments of the population counts within the system rather than work directly on the discrete state
space offer hope to tackle these large systems. But in many cases, especially when higher moments
(second or third) are required the number of ODEs itself becomes a problem and the models remain
intractable. In [FHG16], the authors propose an abstraction technique which automatically derives
a moment-closure approximation of the dynamic behaviour of a spatially distributed CAS from a
discrete representation of the entities involved. Specifically a rigorous model reduction technique is
presented and demonstrated to substantially reduce the computational effort with only limited impact
on the accuracy if a user-defined reduction threshold is set appropriately.

At the core of the moment ODE reduction technique is a notion of distance between population
variables in the PCTMC. When population variables are deemed to be “far apart” it is assumed
that their joint moments may be accurately approximated by a product of the marginal moments.
Concretely, we say that two population variables xi and xj are one-hop neighbours if one of them can
directly influence the evolution of the other. In this case the variables are clearly not independent.
The form of this influence may be derived from actions which are carried out jointly in some sense,
e.g. one entity evolves to become the other, or if the rate at which an action on one population occurs
depends on the value of the other population variable. Thus for any transition τ in the system and
population variables xi we can define diτ to be the update to the population count xi when τ occurs
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Figure 3: (left) Comparison of the available number of bikes before and after aggregation using the
dL distance. (right) Comparison of the available number of bikes before and after aggregation using
the dE distance.

and δiτ to be an indicator function equal to 1 if and only if xi is updated after transition τ (diτ 6= 0) or
xi appears in the rate function rτ (X) of τ . Then we formally define the distance relation as follows:

(xi, xj) ∈ R(1) ⇐⇒ ∃τ, (diτ 6= 0 ∧ δjτ = 1) ∨ (djτ 6= 0 ∧ δiτ = 1)

Intuitively, this means that there exists a transition in which one of the two population variables is
updated, and the other is also involved.

More generally, we define n-hop neighbours by the relation

∃k /∈ {i, j} (xi, xj) /∈ R(1), . . .R(n−1) ∧ (xi, xk) ∈ R(1) ∧ (xk, xj) ∈ R(n−1) =⇒ (xi, xj) ∈ R(n)

In general, with a higher hop neighbourhood relation, the more tenuous the influence will be of one
population variable on the other. Thus, the neighbourhood relation gives a coarse approximation of
the dependence between the population variables in a PCTMC. By choosing to ignore influence above
a certain threshold hop distance, the modeller is able to simplify the equations of joint moments.

Although the neighbourhood relation does not explicitly reference the spatial structure, it is clear
that the hop-distance defined is, in general, related to the graph hop distance in the spatial graph
of the system under study. Considering R(1), one population cannot evolve into another if they are
more than one hop apart on the graph (assuming that movement is governed by the connections in the
graph) and it is unlikely that the rates of an action in one location will be influenced by the population
variables in another. Thus we can think of R(n) as a generalisation of a spatial distance n.

As suggested above, in the proposed moment equation reduction technique a modeller-given dis-
tance threshold d is used to tune the distance over which an independence assumption is applied.
Specifically two population variables xi and xj are treated as independent of each other if and only if

(xi, xj) ∈ R(d′) ∧ d′ > d.

Note that when d = 0 it means that we assume that all the population variables are independent
of each other; when d =∞, it means that all population variables are treated as inter-dependent.

After the identification of independent population variables in the PCTMC using the neighbour-
hood relation, we can construct a correlation graph for each distinct moment variable in the derived
moment ODEs.
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Figure 4: The correlation graph of a moment variable E[x1x2x3x4x
2
5].

The correlation graph G of a moment variable E[xm] = E[xm1
1 · · ·xmnn ] is a graph, in which there is a

node for each population variable xi that appears in the expression of the moment variable. Moreover,
there is an edge Edge(xi, xj) between two nodes if and only if (xi, xj) ∈ R(d′) ∧ d′ ≤ d.

Furthermore, we say two nodes in G are connected if and only if there exists a path between them.
Therefore, the correlation graph of a moment variable can consist of one or more correlation islands.
Formally, a correlation island I is a subgraph of a correlation graph G such that:

∀ xi, xj ∈ I −→ xi and xj are connected

∀ xi ∈ I, xj /∈ I −→ xi and xj are not connected

Figure 4 illustrates the correlation graph of a moment variable E[x1x2x3x4x
2
5] which consists of

two correlation islands. Each correlation island in a correlation graph represents a decoupled moment
variable with a lower order than the moment variable represented by the correlation graph. Thus, with
the identification of correlation islands in a correlation graph, we can decouple the moment variable
for ODE reduction. Specifically, let E[xm] = E[xm1

1 · · ·xmnn ] be an arbitrary moment variable that
appears on the left hand side of a moment ODE, G be the corresponding correlation graph, and I be
a correlation island in G. We can approximate E[xm] by the following formula:

E[xm] ≈
∏
I∈G

E[
∏
xi∈I

xmii ] (1)

Furthermore, according to the above formula, for a moment variable E[xm] which appears on the left
hand side of a moment ODE, if its correlation graph consists of more than one correlation island, then
this moment ODE can be eliminated since it can be approximated by the product of moment variables
with lower orders.

Clearly, with a smaller value of reduction threshold d, more population variables in the PCTMC will
be approximated as independent of each other. As a result, we can use fewer ODEs to describe the joint
moments for the population variables in the PCTMC. But, in the meantime, a larger amount of error
can also be introduced by the independence approximation. Therefore, the reduction threshold d is a
factor to control the trade-off between the efficiency and accuracy of moment-closure approximation.
Thus, starting from d = 0 where all population variables are treated as independent of each other, we
can find the optimal value of the reduction threshold d for the moment-closure approximation of an
arbitrary PCTMC whenever increasing the value of d will not make any observable difference in the
results on the evolution of required moments.

In the case studies presented in [FHG16] the authors show that this reduction method can sub-
stantially reduce the number of moment ODEs, but still retains very good accuracy compared with
moment-closure approximation without any reduction.

3.3 Spatial decomposition

When considering urban transportation systems, taking a population discrete-space approach, the
graph of possible movements within the system can be extremely large. In the worst case, such as in
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bike-sharing systems, there are no constraints on the possible movement (i.e. in principle a user may
take a bike from any station to any other station in the network), and the graph is fully connected.
This connectedness poses severe challenges for model analysis, as the size of the model grows with
the number of possible connections. This problem is exacerbated when the objective is to support
real-time decision-making and it is desirable to derive performance measures from a model in a short
amount of time.

In [FHR16; Fen16], we consider this situation with respect to the concrete example of providing
a user with journey information, specifically bike/slot future availability predictions, for the London
bike sharing system, Santander Cycles. Rather than consider the fully connected graph of all bike
stations in the system, predictions are made on the basis of a contribution graph, a much smaller
graph that considers only those stations deemed most likely to make a significant contribution to
the journey flows to a target station. Thus we can think of replacing one large fully connected
graph with over 758 nodes, by 758 smaller graphs with typically less than 20 nodes in each. For
any particular query with respect to bike or slot availability only one such small graph needs to be
considered. The underlying probability distribution of the available number of bikes is reconstructed
through the maximum entropy approach based on the derived moments of the corresponding small
PCTMC. Moreover the set of derived moment equations can be reduced using the approach described
in Section 3.2. In experiments, reported in [FHR16], Cheng et al. show that the model outperforms
a time-inhomogeneous queueing model, which discards all spatial relationships [Gas+15], in terms of
accuracy of bike availability predictions.

The previous work by Gast et al. shows the benefits of predicting the entire probability dis-
tributions of possible bike availabilities in a station [Gas+15], compared with previous models that
were only able to produce point estimates, often using time-series-based techniques [FNO09; Kal+10;
YPC12]. The work of [FHR16] adopts a similar approach, constructing the probability distribution
from moment estimates, but unlike [Gas+15], in which all the considered forecasting methods worked
on the level of isolated stations, crucial journey dynamics between stations are taken into account in
deriving the moment equations.

To faithfully represent the journey dynamics between bike stations in a bike-sharing system with
N stations, where journey durations from station i to station j are taken to have an Erlang distribu-
tion with P ij phases, the authors first propose a naive PCTMC model which contains the following
transitions:

Bikei −→ Sloti + Journeyij@P1 at µi(t)p
i
j(t) ∀i, j ∈ (1, N)

Journeyij@Pl −→ Journeyij@Pl+1 at (P ij/d
i
j) #(Journeyij@Pl) l ≥ 1 ∧ l < P ij , ∀i, j ∈ (1, N)

Journeyij@PP ij
+ Slotj −→ Bikej at (P ij/d

i
j) #(Journeyij@PP ij

) ∀i, j ∈ (1, N)

where Bikei, Sloti represent a bike and a slot agent in station i respectively; Journeyij@Pl represents
a bike agent which is currently on a journey from station i to station j at phase l. They fit the journey
duration from station i to station j as an Erlang distribution with P ij phases each with rate P ij/d

i
j ,

where dij is the mean journey duration. µi(t) is the bike pickup rate in station i at time t, pij is the
probability that a journey will end at station j given that it started from station i at time t. #(S)
denotes the population of an agent type S.

Obviously, the above model is not scalable. Since the total number of bike stations N is usually
very large, it is computationally infeasible to analyse a model which captures the full set of bike
stations. However, since we are only interested in the prediction of bike availability of a single target
station at a time, we only need to model stations which have a significant contribution to the journey
flows to the target station. A directed contribution graph together with a contribution propagation
method is proposed to automatically identify the set of stations which need to be modelled with respect
to a given target station for bike availability prediction.
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3.3.1 Directed contribution graph with contribution propagation

The objective is to derive a set of bike stations Θ(v) in which all stations have a significant contri-
bution to the journey flows to a given target station v ∈ (1, 2, . . . , N) for bike availability prediction.
Concretely, we first need a way to quantify the contribution of one station to the journey flows to
another station. Specifically, we let Cij denote the contribution coefficient of station j to station i
which quantifies the contribution of station j to the journey flows to station i.

One station can contribute to the journey flows to another station both directly and indirectly.
The definition of a direct contribution coefficient at time t is given by the following simple formula:

cij(t) = λji (t)/λi(t)

in which λji (t) represents the bike arrival rate from station j to station i at time t and λi(t) =
∑

j λ
j
i (t).

Then, it is clear that cij(t) ∈ [0, 1], 0 ≤
∑

j 6=i cij(t) ≤ 1.
With the definition of directed contribution coefficient, we can construct a directed contribution

graph for the bike-sharing system at each time slot of a day. The definition of the directed contribution
graph is given as follows (for convenience, we abbreviate cij(t) to cij):

Definition 1. For an arbitrary time t, the directed contribution graph for a bike-sharing system at
time t is a graph in which nodes represent the stations in the system, and there is a weighted directed
edge from node i to node j if cij > 0, and in this case the weight of the edge is cij. Thus, the direction
of edges is the inverse of contribution flows.

Figure 5 shows a sample directed contribution graph which consists of six bike stations.

i

n

k

l

m

j

cin = 0.2

cik = 0.7

cnl = 0.5

clk = 0.3

ckm = 0.8

clj = 0.6

cmj = 0.9

Figure 5: An example directed contribution graph with six stations

For those stations which are not directly connected in the directed relation graph, by using a
contribution propagation method, we can evaluate the indirect contribution coefficient of one station
on the journey flows to another station. Specifically, the indirect contribution coefficient is quantified
by a path dependent coefficient cij,γ , which is the product of the direct contribution coefficients along
an acyclic path γ from node i to node j. Then, the contribution coefficient of station j to station i is
characterized by the maximum of the path dependent coefficients:

cij,γ =
∏
kl∈γ

ckl

Cij =

{
maxall paths γ cij,γ if there exists a path from node i to node j
0, otherwise

For example, according to Figure 5, the contribution coefficient of station j to station i is Cij =
cik × ckm × cmj = 0.504, since cik × ckm × cmj > cin × cnl × clj > cin × cnl × clk × ckm × cmj .

With the contribution coefficient, given a target station v, then for i ∈ (1, 2, . . . , N), we can infer:

i ∈ Θ(v) if Cvi > θ

i /∈ Θ(v) if Cvi ≤ θ
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Figure 6: The empirical cumulative distribution function of contribution coefficients (x is the value of
contribution coefficients)

where θ ∈ (0, 1) is threshold value which can be used to control the extent of model reduction. A
point to note is that we choose to characterize contribution coefficients by the maximum instead of
the sum of path dependent coefficients because we only want to model stations which have at least a
significant (direct or indirect) journey flow to the target station. To model stations which have many
small journey flows to the target station is costly but the impact is rather unpredictable. Moreover,
the maximum of path dependent coefficients has another nice property that if i ∈ Θ(v) and Cvi = cvi,γ ,
then for a station j which is on the path γ, it is certain that Cvj > θ, thus j ∈ Θ(v). As a result, for
all stations which have a significant journey flow to the target station, that journey flow will certainly
be captured in the resulting reduced PCTMC. However, this property will not be preserved if we use
the sum of path dependent coefficients. For example in Figure 5, if we set θ = 0.55, then

∑
γ cij,γ > θ,

thus station j is included in the reduced PCTMC. Moreover, since
∑

γ cil,γ < θ, station l will not be
included, thus

∑
γ cij,γ < θ will not be satisfied in the reduced PCTMC. To build the reduced model,

all the discarded stations are clustered into a single macro-station, and their contribution is modelled
as an external arrival rate in the reduced system.

As an illustration of the extent of model reduction, Figure 6 shows the empirical cumulative
distribution function of contribution coefficients between all bike stations during all time slots (which
is computed by journey data from the London Santander Bike-sharing system, with 20 minutes slot
duration). It can be seen that more than 96% stations can be excluded even if θ is set to the small
value 0.01.

4 Transformation of Space

In this section, we discuss an approach that allows the simplification of a population model defined in
a two or three dimensional discrete space (typically a grid), by replacing it with a model in continuous
space. The discrete stochastic model is replaced by a Partial Differential Equation, which can be
typically solved much faster by using dedicated adaptive numerical algorithms. The correctness of
this transformation is based on a limit theorem, where both population size and grid size are taken
to infinity (Section 4.1). We will also report on local limits, where we focus on a single agent and
prove its convergence to a switched Brownian motion (Section 4.2). Finally, we will discuss a method
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to identify discrete regions, or patches, starting from an agent based model with agents moving in
continuous space (Section 4.3).

PDE13

4.1 Partial-Differential Approximation of Population Based Spatial Models

In [TT13; TT14], Tschaikowski and Tribastone study population based CTMCs where agents are
subject to a random walk on the uniform lattice R := {(i∆s, j∆s) | 0 ≤ i, j ≤ K} in the unit square
[0; 1]2 with ∆s := 1/K and K ≥ 1. Each agent may attain one of the local states A1, . . . , AL while
being at any point in R, meaning that the CTMC state

~A := (A
(x,y)
1 , . . . , A

(x,y)
L )(x,y)∈R

provides the agent populations in each local state at each region. Possible examples are cellular
networks [BNKS94; AHL96], routing protocols [IM06], ad-hoc networks [Gam+04] or ecological and
epidemiological models [TT14]. While [TT13] provides a low level language that is able to express a rich
class of aforementioned CTMCs, [TT14] presents a spatial process algebra inspired by PEPA [Hil96]
which allows for compositional reasoning at the expense of a smaller expressibility. The spatial domains
of [TT13; TT14] are assumed to have absorbing or reflective boundary conditions. While the former
can be used to model hostile and/or open environments, the latter account for closed ones.

By setting the initial conditions of the CTMC ( ~AN (t)/N)t≥0 to Al(0) = bNα0
l c, where αl0 :

[0; 1]2 → [0;∞) are differentiable functions, 1 ≤ l ≤ L and N ≥ 1, it is then shown that the CTMC
of size O(NL·K2

) converges, as N →∞, to the solution of a system of ordinary differential equations
(ODEs) of size O(L ·K2). This is achieved by relying on fluid approximations [Bor+13; Bor10]. These
techniques approximate a stochastic model by a smaller deterministic one. Their correctness is rooted
in convergence theorems that guarantee that the approximation is correct in the limit of a divergent
population size [Bor+13]. In the case of [TT13], a model of exponential size is turned into one of
polynomial size. However, the ODE system may still be hard to solve if K is large.

The authors tackle this problem in [TT13] by identifying a finite difference scheme [Gea71] which
a) solves the ODE system of size O(L ·K2) and which b) can be also interpreted as a finite difference
scheme [Tho95] of a PDE system of size L. Using this observation it is proven that the solutions
of the ODE systems of size O(L · K2) converge, as K → ∞, to the solution of a PDE system of
size L. By combining this with the former result, the authors conclude that the sequence of CTMCs
( ~AN (t)/N)t≥0 converges to the solution of the PDE system as N,K →∞. In contrast to [TT13], the
work [TT14] only conjectures such a convergence but does not provide a formal proof for this fact.

At first sight, an approximation via PDEs might appear of little use in practice because, apart
from special cases, analytical PDE solutions are not available and PDE systems are solved numerically
using algorithms that discretise the continuous space [Tho95]. However, the size of the spatial ODE
system is induced by the population based CTMC, whereas the coarseness of the discrete mesh used
by the PDE solver essentially depends on the stiffness of the PDE system. Substantial speed-ups have
been reported in [TT13; TT14; BT16], thus showing the applicability of the approach. The speed-up
is thus caused by the fact that PDE solvers typically need considerably fewer patches than grid cells
in the original model to obtain a comparable accuracy, so in a sense this method is a cousin of patch
aggregation for 2-dimensional space.

Tschaikowski and Tribastone validate the framework [TT13] by considering a simplified version of
the peer-to-peer network from [QS04]. To this end, they fix a uniform lattice of (K+1)2 regions where
each region represents an area offering internet connectivity to all nodes therein located by means of
an 802.11 access point. The authors assume that nodes feature an on/off behaviour whereby they
interpose an exponentially distributed think time between successive connections. Whilst pausing,
nodes may decide to move across one of the neighbouring regions according to an unbiased RW. When
connected, a node downloads a file with an exponentially distributed size, and does not move until the
download has finished. The authors further assume that the overall network’s bottleneck is represented
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by the link between the node and the access point, therefore the performance depends on the current
load at each region and on how the capacity is shared amongst the nodes in a region.

They implement the system in the JiST framework, using the SWANS module for the modelling
of wireless and ad-hoc networks [Gam+04]. The physical layer is configured using default values
for all parameters. For simplicity, the authors use a model of transmission with no packet loss.
Because of the scenario considered in the study, nodes are not equipped with a dynamically updating
routing protocol because there is no direct communication between nodes, and the destination of a
packet can be determined based on the node location, by maintaining a simple mapping between the
current location and the MAC address of the access point. The application layer is implemented as a
lightweight file transfer protocol on top of UDP. The file size to download is exponentially distributed
with mean 40 KB, and the file is transmitted in 2 KB packets.

The authors express the above JiST model by considering nodes with two local states, A1, and
A2, denoting an off state where the node does not use network capacity, and an on state where it
downloads a file, respectively. They further assume that all nodes share the same capacity cN and
that 1/λ is the average time spent by the node in the off state. The local reactions in a region (x, y)
of the lattice are given in the reaction notation

A
(x,y)
1

F1−→ A
(x,y)
2 , at rate F1 = λA

(x,y)
1 ,

A
(x,y)
2

F2−→ A
(x,y)
1 , at rate F2 = cmin{A(x,y)

2 , N}

The first reaction expresses the fact that an agent in the off state spends, on average, 1/λ time units
before becoming active again. Instead, the second reaction describes the downloading where the rate
function F2 is based on a standard bandwidth sharing argument [QS04]. The network offers a capacity

equal to cN in region (x, y), whereas the downloading users request an overall capacity cA
(x,y)
2 . Thus,

the actual number of files downloaded per unit time is min{cA(x,y)
2 , cN} = F2. This introduces resource

contention and the corresponding delay experienced by the downloading nodes.
By choosing c such that it matches the exponentially distributed file size of 40 KB of the JiST

model, the authors validate their models for different values of rate λ and the diffusion rate µ of
A1 (recall that agents in state A2 do not move and thus have a diffusion rate of zero). The results
depicted in Table 2 show that the CTMCs of the framework reflect the JiST simulation and converge
with increasing N and K to the deterministic PDE model. This provides numerical evidence for
the soundness of the approach. As mentioned before, the main advantage in using the limit PDE
instead of the limit ODE system is that the mesh discretization becomes a parameter of the solver,
instead of being a parameter of the model (i.e., the actual number of regions in the spatial domain). An
ODE/PDE comparison is proposed in Figure 7, where the authors consider the absolute error between
the ODE solution and the PDE solution of the population of agents in the off state after 10.0 time
units, together with their runtimes. This was done by fixing N = 10 and varying λ = 0.25, 1.25, 2.25.
Using Matlab’s PDE solver default settings, in all cases considered the PDEs were analysed within
8 s on an ordinary machine. This turned out to be significantly cheaper from a computational point
of view than directly solving the system of 2(K + 1)2 ODEs (with Matlab’s ode15s function). In
particular, for K = 63 the authors registered ODE runtimes two orders of magnitude larger than
the PDE solution times, whilst yielding accurate results in all cases (up to at most ca 1%). Clearly,
instead, CTMC simulations required a substantial amount of computational power — for instance,
the authors measured runtimes of ca. 32 hours for the CTMC simulation for the cases N = 20 and
K = 79, with independent replicas being run in parallel on eight cores.

4.2 Behaviour of Single Agents in Population Based Spatial Models

In [BT16], Bortolussi and Tschaikowski study the spatio-temporal behaviour of agents in large scale
systems that can be expressed using an extended version of the framework [TT13]. The authors are
in particular concerned with checking properties of single random individuals (e.g., the probability of
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µ = 0.001 µ = 0.010

N Nodes JiST CTMC (Error) PDE (Error) JiST CTMC (Error) PDE (Error)

10 56 0.8852 0.8638 (0.0214) 0.9007 (0.0155) 0.5161 0.5368 (0.0207) 0.2716 (0.2445)
25 156 0.6968 0.6939 (0.0029) 0.7186 (0.0218) 0.5207 0.5480 (0.0273) 0.3807 (0.1400)
50 320 0.4734 0.4578 (0.0156) 0.4646 (0.0088) 0.3926 0.3742 (0.0184) 0.2840 (0.1086)

Table 2: Validation results: Average populations of nodes in the off state after 10 time units in an
area divided in 64 regions (K = 7). The errors are given as the absolute difference with respect to the
JiST estimated average.
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Figure 7: Comparison of ODE/PDE estimation errors and runtimes for N = 20 and different values of
K and λ (0.25, left plot, 1.25 middle plot, and 2.25, right plot; the left y axis shows the absolute error
between the ODE solution and the PDE solution of the population of agents in the off state after
10.0 time units; the right y axis shows the runtimes (in seconds) of the ODE solution with varying K
relative to the PDE runtime (dashed line).

an agent to receive a file within a certain time in a mobile computer network) and not the dynamics
of the overall system.

The underlying CTMCs exhibit very large state spaces that are very challenging and expensive
to analyse, even by stochastic simulation, especially when large populations of agents are involved.
Fast simulation [DN08] is an efficient technique that allows one to study the stochastic behaviour of a
single random agent in a large population model and has been exploited extensively to approximatively
verify behavioural properties in the so called fluid model checking framework [BH12; BH15]. When
space is also taken into account, however, there is an increased level of difficulty. By combining the
concept of fast simulation and the approach taken in [TT13] that relates the global population counts
of a spatial system to the solution of a PDE system, the authors of [BT16] prove that the stochastic
behaviour of a single agent in such a spatial model converges in probability to a switched diffusion
process whose probability density function is a solution of a forward Kolmogorov PDE system. As in
the case of [TT13], the forward Kolmogorov PDE system allows for efficient solutions.

Bortolussi and Tschaikowski validate their approach by considering an extended version of the
peer-to-peer network from [TT13]. In particular, they consider the following two questions related to
their peer-to-peer example. First, what is the probability that an agent that starts as a downloader
will act as a seed at time T? Second, how likely is it that an agent that started off as seed is still
offering the file at time T? Both quantities are computed in less than one second by solving the
underlying forward Kolmogorov PDEs. For consistency, the authors estimate both quantities also by
exhaustive stochastic simulation in the case of N = 50 and K = 25. That took more than 45 minutes
on a common desktop machine and revealed that the PDE solutions were in 95% confidence intervals.
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4.3 Patch Identification

In this section we present a reverse approach, in which we start from a (stochastic) individual 2-
dimensional continuous-space model (an agent model) and transform it to a (stochastic) population
discrete-space model expressed as a population continuous-time Markov chain with locations2. Typ-
ically, individual continuous-space models are expensive to simulate, and often good results can be
obtained from a transformed model. Furthermore, an additional non-spatial transformation can be
made to obtain a deterministic population-based discrete space model that is expressed as ODEs,
and this makes the approach more scalable. Part of the process of transformation is to partition
continuous space into distinct regions or patches, each of which will be considered as a single location
in the discrete-space model. Hence this technique for discretisation of space is also called “patch
identification”.

This technique has been explored in [Fen14]3 where the stochastic process algebra HYPE [GBH13;
BGH14] was used to create a model of ZebraNet [Jua+02], an opportunistic sensor network developed
to obtain information about wildlife movement. The animals are fitted with collars bearing sensors
and radio transmitters, and collected data is transferred between animals or to a mobile base sta-
tion when the transmitters are in close enough proximity. Initially, a stochastic HYPE model was
developed [Fen12] based on the description of a simulation written in C in which individual animals
were considered in 2-dimensional space [Jua+02]. The initial model in HYPE was limited because the
model complexity meant that at most 5 zebras could be modelled. Thus, it made sense to transform
the model to one with a higher level of abstraction, a lower level of model complexity and as a result,
obtaining a more scalable approach that allows many more animals to be modelled.

Two diametrically-opposed techniques were used on different aspects of the model.

Discretisation of space: Space was transformed from continuous space to discrete space by a dis-
cretisation. Because the movement of the zebras were influenced by thirst and the location of
waterholes, a grid-based approach [CLBR09] was not appropriate. Instead, using the location of
waterholes, a Voronoi tessellation of the landscape was performed, as demonstrated in Figure 8.
This transformation means that instead of keeping track of the location of each zebra (which
involves a coordinate pair and ODEs to capture their movement), each zebra has a location
attribute which describes the patch they are currently in, and hence the model size is reduced.
This, in turn, enables the following abstraction step.

Aggregation and fluidisation of agents: The complexity of the original model arises from the fact
that each zebra is modelled separately. This complexity can be reduced by considering popu-
lations of zebras in each patch (once patches have been identified). In the original individual-
based model, all possible pair-wise interactions between zebras had to be explicitly modelled,
thus making the model size quadratic in terms of the number of zebras. By contrast, in the
transformed model, only the possible interactions between populations in adjacent patches must
be considered, thus removing this quadratic complexity. Furthermore, in going from a stochastic
population discrete-space model to a deterministic population discrete-space model, the popu-
lation counts were fluidised, resulting in a population discrete-space ODE model that was faster
to simulate and which gave a good approximation to the results of the population discrete-space
CTMC model [Fen14].

As part of the transformation, it was necessary to obtain parameters for the transformed model.
This was achieved by simulation of the zebra model using a much smaller individual continuous-space
model. Further details can be found in Deliverable 2.2 [GFR16]. A comparison of the results from

2This is a population continuous-time Markov chain where a location attribute is used to indicate a subpopulation is
based at a particular location. If there are n subpopulations in a non-spatial model, there will be np subpopulations in
a spatial model with p locations.

3An aspect of this research has been reported in Deliverable 2.2 [GFR16], specifically the parameterisation of the
transformed model. In this current deliverable, we consider the transformation technique in a more general fashion.
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Figure 8: An example of a Voronoi tessellation of a landscape. Waterholes are indicated by asterisks
and the rectangle indicates the route of the mobile base station that gathers data from the animal
collars (left) and comparison of the results of the stochastic population discrete-space model with the
original simulation program [Jua+02] for different radio ranges (right).

the original simulation program and that of the population discrete-space CTMC model are given in
Figure 8 for different transmitter ranges and show a good approximation for most values.

This transformation technique has also been explored more generally in one-dimensional space by
considering models which consist of Markovian agents (MAs) moving on a bounded one-dimensional
continuous space. This approach is applicable when investigating behaviour of transport over fixed
routes, such as buses. Markovian agents are a formalism that involves message-passing between agents,
and whose overall behaviour can be expressed as a CTMC or a set of ODEs [CGB14; Bru+15]. It is
assumed that the movement speed of MAs solely depends on the current state of the agents.

The analysis of interest is the transient evolution of the state density distribution of agents of class
c in state i at position ` and at time t, to understand the size of different subpopulations at different
locations. The change in this value over a small amount of time can be expressed in terms of those
agents at location ` who change state and those agents who move to `. The term describing the agents
that move can be derived using the Taylor expansion. The change in value can then be expressed
as a PDE in terms of both time and distance (in 1-dimension). Assuming upper and lower bounds,
the upwind semi-discretisation technique [Hor+98] can be applied to discretise the distance aspect of
the PDE leading to a set of ODEs expressing the change of state density at each discretised location.
Thus, the discretisation technique identifies the contiguous intervals in the one-dimensional space that
will be represented by the discretised locations. It is unclear whether a similar approach can be used
for higher dimensional spaces.

5 Abstraction from Space

In this section, we report work on techniques that can be used to fully abstract from space. We
will first discuss methods that treat each location independently, rooted in mean-field theory, namely
asymptotic decoupling/ propagation of chaos (Section 5.1). We then discuss spatial moment closure
approaches, that can be used to obtain information about moments of global populations (Section
5.2). Finally, we will report about investigations into the accuracy of pair approximation (Section
5.3).
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5.1 Abstraction by Asymptotic Decoupling

The spatial position of an object plays a significant role on its characteristics and crucially affects
its behaviour. Consider for instance a bike-sharing system. Commuters go from their home in the
suburban area to their office in the morning. As a consequence, the stations that are located close
to office buildings are popular destinations of bike travels in the morning, resulting in high arrival
rate of bikes, while the stations that are in suburbs tend to be popular origins of journeys, implying
a high request rate of bikes. By viewing a bike-sharing station as an object, this leads us to consider
systems where there are few local interactions between objects but where the spatial location of an
object influences its popularity.

We model this by associating to each location ` a popularity parameter p(`)(t) that can depend
on time. If the system is composed of N locations, the system’s state is (Z1(t) . . . ZN (t)) where Z`(t)
is the state at time t of the object located at `. When each object has S possible states, the system
has SN possible states. Hence, any numerical methods that tracks the probability distribution of the
system state P(Z1(t) = i1 . . . ZN (t) = iN ) cannot be used as soon as N exceeds a few tens. The
complexity of the numerical algorithm can be greatly reduced by using a decoupling approximation.
This approximation is to consider that for any tuple of locations, P(Z`1 = i1(t), . . . , Z`k(t) = ik) ≈
P(Z`1 = i1(t)) . . .P(Z`k = ik(t)). This simplifies the analysis by replacing the SN variables by the

N × S variables x
(`)
i (t) = P(Z`1 = i1(t)), for i ∈ {1 . . . S} and ` ∈ {1 . . . N}. We then obtain a system

of ordinary differential equation on the variables x
(`)
i of the form

ẋ(`) = p(`)x`Q(x̄),

where x̄ = N−1
∑N

k=1 x
(k) is the empirical measure.

Our contributions cover two aspects of this problem. In [FGM12; GVH15], we justified the use of
the decoupling approximation for systems where each object has its own popularity, e.g., influenced
by its spatial location. Our justification is based on a theorem that shows that this approximation
becomes asymptotically exact, as the number of objects goes to infinity. In [Gas+15], we applied this
idea to build a forecasting tool for bike-sharing systems. We associate to each station two popularities
(of being the origin or the destination of a trip). We use our model to predict the probability for a
user to be able to make a trip. We calibrated our model by using real data from the Velib’ system
in Paris and provided evidence that without side-information, it achieves close to the best achievable
performance.

5.2 Spatial Moment Closure

In some circumstances, performing an analysis of space based on averages across various different
locations can be useful. ODEs can be derived for these spatial moments but typically these are
infinite systems of ODEs, and a closure technique must be applied to permit numerical calculation of
the spatial moments, and to thus approximate their values. This technique is called spatial moment
closure. It should be noted that the term “spatial moment closure” has been applied in two different
ways when considering discrete-space models. In both individual and population discrete-space models,
we assume a graph of locations. In the case of individual discrete-space models, the dynamics of such
models are defined by transformation rules that define how the value at each location (which is a node
in the graph) varies over time depending on the values of neighbouring nodes. In this context, spatial
moment closure is also called pair approximation [LD96; BP97; BP99; Gas15] and this technique is
considered further in Section 5.3.

The current section focusses on spatial moment closure applied to population discrete-space models
and more detail can be found in [Gal16]. In these models, multiple agents are located at each node
in the graph, and these models can be expressed as an extension and generalisation of the standard
population continuous-time Markov model whereby subpopulations are associated with locations in
the location graph. We can derive ODEs for the spatial moments of the models. The moments are some
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dE[〈S〉]
dt

= −cE[〈SI 〉]

dE[〈I〉]
dt

= cE[〈SI 〉]− hE[〈I〉]

dE[〈R〉]
dt

= hE[〈I〉]

dE[〈SI 〉]
dt

≈ c(E[〈S2I 〉]−E[〈SI2〉])− (c+ h)E[〈SI 〉]− p(mI +mS)Cov[S, I]

dE[〈S2〉]
dt

≈ −c(2E[〈S2I 〉]−E[〈SI 〉])− 2pmS(Var[S]−E[〈S〉])

dE[〈I2〉]
dt

≈ c(2E[〈SI2〉] + E[〈SI 〉])− h(2E[〈I2〉]−E[〈I〉])− 2pmI(Var[I]−E[〈I〉])

dE[〈S2I 〉]
dt

≈ −c(2E[〈S2I2〉]−E[〈S3I 〉]−E[〈SI2〉]− cE[〈SI 〉] + (c− h)E[〈S2I 〉]

+pmSE[〈SI 〉] + pmSE[〈S〉]E[〈I〉]− 2pmSCov[S, SI]− pmICov[S2, I]

dE[〈SI2〉]
dt

≈ c(2E[〈S2I2〉] + E[〈SI3〉] + E[〈S2I 〉])− 2(c+ h)E[〈SI2〉] + (c+ h)E[〈SI 〉]

+pmIE[〈SI 〉] + pmIE[〈S〉]E[〈I〉]− 2pmICov[SI, I]− pmSCov[S, I2]

Var[X] = E[〈X2〉]− (E[〈X〉])2

Cov[X,Y ] = E[〈XY 〉]−E[〈X〉]E[〈Y 〉]

Figure 9: Spatial moment ODEs for the spatial SIR model with movement of both susceptibles and
infecteds

quantity of interest that is summed across all locations and then divided by the number of locations.
An infinite system of ODEs is obtained in most cases and moment closure techniques must be applied
[PL97; Mar+02; MSH05]. This is a technique that abstracts from space since it provides information
about spatial averages and gives a global view of space. A possible application of this technique to
collective adaptive systems is in the case where one area or group of locations is of particular interest,
and the remainder are less interesting. The behaviour of agents in the less interesting locations can
be approximated using spatial moment closure, and then combined with a more detailed modelling
of the behaviour of the agents in the interesting locations. This provides a scalable technique in the
case of models with many locations, for which it would be prohibitively computationally expensive to
consider all locations in detail.

To investigate the spatial moment closure technique, the stochastic SIR model defined over a grid
was considered. In this model, there are three subpopulations for each grid location ij: susceptibles,
S(ij), infecteds, I(ij), and recovereds, R(ij). The possible transitions in this model are given below
with the first line describing infection, the second recovery and the remainder movement between grid
locations. We assume spatial homogeneity of infection, recovery and movement parameters, and hence
they do not vary by location.

S(ij) + I(ij) → I(ij) + I(ij) at rate cS(ij)I(ij)

I(ij) → R(ij) at rate hI(ij)

S(ij) → S(lk) for (l, k) ∈ N (i, j) at rate mSS
(ij)

I(ij) → I(lk) for (l, k) ∈ N (i, j) at rate mII
(ij)

R(ij) → R(lk) for (l, k) ∈ N (i, j) at rate mRR
(ij)

Here N defines the neighbourhood of a grid location which could be the von Neumann neigh-
bourhood, the Moore neighbourhood or the whole grid if full connectivity is assumed. Note that the
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Figure 10: Stochastic versus (a) deterministic (b) third moment stochastic linearisation (c) third
moment log-normal approximation; fourth moment stochastic linearisation approximations using
(d) E[〈SI 〉]E[〈SI 〉], E[〈SI 〉]E[〈I2〉] and E[〈S2〉]E[〈SI 〉] (e) E[〈SI 〉]E[〈SI 〉], E[〈SI 〉]E[〈I2〉] and
E[〈S〉]E[〈S2I 〉] (f) using E[〈S2I 〉]E[〈I〉], E[〈SI 〉]E[〈I2〉] and E[〈S〉]E[〈S2I 〉]: simulation of the SIR
model on 12x12 grid with full connectivity with initial values S(ij)(0) = 49, I(ij)(0) = 1, R(ij)(0) = 0,
and parameters c = 0.011, h = 0.1, mS = mI = 0.00001
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Figure 11: Covariance of S and I for different techniques: simulation of the SIR model on 12x12 grid
with full connectivity with initial values and parameters as in Figure 10

movement of recovereds can have no effect on the disease dynamics of the model, since the number of
recovereds do not affect the rate of infection or the rate of recovery and can be omitted. Assuming
full connectivity, the spatial moment ODEs in Figure 9 can be derived, where

〈Sq1Iq2Rq3〉 =
1

xmaxymax

xmax∑
i=1

ymax∑
j=1

(
S(ij)

)q1(I(ij))q2(R(ij)
)q3

with xmax and ymax representing the grid dimensions. Note that for second moments and higher,
the ODEs are already approximations since terms of the form E[〈X〉〈Y 〉] have been approximated
with E[〈X〉]E[〈Y 〉]. As expected, the ODEs for the second moments are defined in terms of third
moments and those for the third moments are defined in terms of fourth moments. There are two
distinct techniques that can be used to close these ODEs. In the case of stochastic linearisation,
E[〈XY 〉] is approximated with E[〈X〉]E[〈Y 〉]. Alternatively, the log-normal distribution can be used
to approximate third moments [MSH05]. Applying these closure techniques leads to three distinct
options whose results are shown in Figure 10. Also including in this figure, are the results of the
deterministic model obtained from the spatial stochastic model.
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Third moment stochastic linearisation: Approximate

• E[〈S2I 〉] with E[〈S〉]E[〈SI 〉] or E[〈S2〉]E[〈I〉], and

• E[〈SI2〉] with E[〈S〉]E[〈I2〉] or E[〈SI 〉]E[〈I〉].

Fourth moment stochastic linearisation: Approximate

• E[〈S3I 〉] with E[〈S2〉]E[〈SI 〉] or E[〈S〉]E[〈S2I 〉],
• E[〈SI3〉] with E[〈SI 〉]E[〈I2〉] or E[〈SI2〉]E[〈I〉], and

• E[〈S2I2〉] with E[〈S2〉]E[〈I2〉], E[〈SI 〉]2, E[〈S2I 〉]E[〈I〉] or E[〈S〉]E[〈SI2〉].

Log-normal distribution for third order Use the following approximations [Mar+02].

E[〈S2I 〉] ≈ E[〈S2〉]E[〈SI 〉]2

E[〈S〉]2E[〈I〉]
E[〈SI2〉] ≈ E[〈I2〉]E[〈SI 〉]2

E[〈I〉]2E[〈S〉]

As can be seen from the results, neither the deterministic approximation, the third moment stochas-
tic linearisation approximation or the third moment log normal approximation (shown in the top row
of Figure 10) give a good qualitative approximation, in the sense that the stochastic model indicates
that not all susceptibles will succumb to the disease, where as these three approximations indicate the
opposite. Whether susceptibles remain in the population has implications in the case of new infecteds
entering the population and it would be preferable that an approximation could show this. In the
case of the fourth moment stochastic linearisation (shown in the bottom row of Figure 10), of the
various possibilities for factoring moments, the successful ones are demonstrated. Figure 11 illustrates
how well the covariance of S and I is approximated. Hence, we can conclude that the fourth moment
stochastic linearisation provides the best results, though there is a dependency on the results on the
specific way of factoring moments. This raises the question of how to choose which approximation to
use when it is not possible to compare it with the results of the stochastic model.

5.3 Pair Approximation

Pair-approximation is one of the simplest moment closure technique. In [Gas15], we show that this
approximation can be used to predict very accurately the performance of a load-balancing strategy.
This work extends our previous results obtained in [FG14] to incorporate spatial interactions. We
show by simulation that, for our model that contains local interactions, pair-approximation is much
more accurate that a mean-field approximation.

Let us now briefly discuss the principle of pair-approximation and the main difference with mean-
field approximation. To be more concrete, we use the model of [Gas15] as an illustration. This model
is shown in Figure 12(a). We consider a system of N identical servers that are placed on a ring and let
Zi(t) be the number of jobs that server i has at time t. A mean-field approximation of such a system
is to consider that for any two servers, their states are independent. By using this approximation, we
then obtain an ordinary differential equation on the variables (xj)j≥0, where xj(t) = P(Zi(t) = j).

This mean-field approximation neglects the correlations between stations. Yet, because of the
allocation scheme, choosing between two adjacent neighbours the one with the shortest queue, two
neighbours are far from being independent: P(Zi(t) = j1 ∧ Zi+1(t) = j2) 6= P(Zi(t) = j1)P(Zi+1(t) =
j2). The pair approximation is then to consider that, knowing the state of a server i, its two neighbours
(i and i− 1) are independent:

P(Zi−1 = a ∧ Zi+1 = b|Zi = c) ≈ P(Zi−1 = a|Zi = c)P(Zi+1 = b|Zi = c)

This leads us to replace the classical ODE on xj by an ODE on yj|k, where yj|k = P(Zi+1 = j|Zi = k).
Note that the mean-field approximation is to assume that yj|k(t) = xj(t).
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Figure 12: Pair-approximation: Model and simulation results.

In Figure 12(b), we report simulation results showing that the pair-approximation is much more
accurate than the mean-field model. In this figure, we plot the probability that a queue has j jobs as
a function of j, obtained by three methods: (1) in blue, by simulating the model, (2) in green, by pair-
approximation and (3) in red, by mean-field approximation. We observe that, at least for this model,
pair-approximation predicts accurately the shape of the distribution. The paper [Gas15] contains a
comparison for a larger range of parameters and different topologies. In all cases, we observe the same
trend: the pair-approximation seems to predict accurately the shape of the distribution but not the
tail of the distribution.

6 Conclusion

This deliverable presents the research in the QUANTICOL project related to Task 2.1, about methods
to scale the analysis of spatial models.

Adding space to collective population models is challenging from a computational point of view,
due to the large number of locations typically involved. Even if for the graph-based discrete space
considered in the project we can still rely on mean-field approximation to reduce model complexity, we
face the challenge of having to solve a large number of differential equations (particularly for moment-
closure). Moreover, populations in each location may not be so high (due to physical constraints),
hence the mean-field approximations may perform poorly. Most of the research in the project has
focussed on how to reduce the complexity of analysis on spatial models. There is no general method-
ology that can be followed, but the choice of the approach is connected with the structure of the
model (e.g. grid, patches, continuous space) and with the properties to be verified (e.g. on the full
population, on the population in one location, or on an individual agent). We can summarize the
developed methodologies in the following set of recommendations (see Figure 13 for a summary):

• For general patch based models, with a large number of patches, one can try to cluster them
preserving dynamic behaviour using the approach of [BF16], use spatial moment closure methods
[Gal16], simplify moment equations as done by [FHG16], or rely on asymptotic decoupling
[Gas+15].

• For grid-based models of space, with simple movement dynamics, the collective dynamics can
be approximated by a PDE [TT13].

• Individual properties of agents moving in a grid-based space can be computed also by integrating
a PDE using mean-field results [BT16], or leveraging pair approximation [Gas15].
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Full population Single location pop. Individual agent
Patches [BF16] [Gal16] [FHG16]

[Gas15]
[FHR16] [FHG16] [Gas15]

Grid [TT13] [TT13] [BT16]
Continuous [Fen14] [Fen14]

Figure 13: Classification of reported methods with respect to the type of space and of the type of
properties investigated in the project

• If one is interested in a population in a specific location, the method of [FHR16] can be used to
reduce the model to only those locations influencing the target one.

• Individual agents moving in continuous space can be simplified using a method like the one in
[Fen14].

Links with other work packages. Work Package 1 deals with mean-field based methods for
CAS. Methods for uncertainty management, distributed and centralised control, and other approaches
developed can all benefit from a reduction in the number of locations, reducing their computational
cost. The work of [BF16] is promising in this sense.

Work Package 3 deals with methods for scalable verification of CAS, and with Spatio-Temporal
logics. The results of [BT16] can be used to generalise Fluid Model Checking [BH12; BH15] to a grid-
based model. Signal Spatio-Temporal logic formulae [BN14; Nen+15] can be used to guide location
clustering, thus extending [BF16] in order to preserve only some behavioural aspects of the model,
possibly achieving greater reduction. Finally, location aggregation may be performed also relying on
some lumping techniques for ODEs developed in this Work Package.

Finally, case studies are dealt with in Work Package 5, and provided many examples for application
of space reduction techniques, with bike sharing playing the main role.

QUANTICOL 24 30 September 2016



Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

References (from the Quanticol project within the reporting period)

[BF16] L. Bortolussi and C. Feng. “Location Aggregation of Spatial Population CTMC Mod-
els”. In: 14th Workshop on Quantitative Aspects of Programming Languages and Systems
(QAPL 2016). 2016.

[BT16] L. Bortolussi and M. Tschaikowski. “Fluid Analysis of Spatio-Temporal Properties of
Agents in a Population Model”. In: 23rd International Conference on Analytical & Stochas-
tic Modelling Techniques & Applications (ASMTA 2016). 2016.

[Fen14] C. Feng. “Patch-based hybrid modelling of spatially distributed systems by using stochas-
tic HYPE – ZebraNet as an example”. In: Twelve International Workshop on Quantitative
Aspects of Programming Languages and Systems (QAPL 2014). 2014.

[FHG16] C. Feng, J. Hillston, and V. Galpin. “Automatic Moment-Closure Approximation of Spa-
tially Distributed Collective Adaptive Systems”. In: ACM Trans. Model. Comput. Simul.
26.4 (2016), p. 26. doi: 10.1145/2883608.

[FHR16] C. Feng, J. Hillston, and D. Reijsbergen. “Moment-based Probabilistic Prediction of Bike
Availability for Bike-Sharing Systems”. In: 13th International Conference on Quantitative
Evaluation of SysTems (QEST 2016). 2016.

[Gal16] V. Galpin. An investigation of spatial moment closure. Tech. rep. TR-QC-05-2016. In
preparation. QUANTICOL, 2016.

[Gas+15] N. Gast, G. Massonnet, D. Reijsbergen, and M. Tribastone. “Probabilistic Forecasts of
Bike-Sharing Systems for Journey Planning”. In: The 24th ACM International Conference
on Information and Knowledge Management (CIKM 2015). 2015.

[Gas15] N. Gast. “The Power of Two Choices on Graphs: The Pair-Approximation is Accurate?”
In: SIGMETRICS Perform. Eval. Rev. 43.2 (2015), pp. 69–71. issn: 0163-5999. doi:
10.1145/2825236.2825263. url: http://doi.acm.org/10.1145/2825236.2825263.

[TT13] M. Tschaikowski and M. Tribastone. “Spatial Fluid Limits for Stochastic Mobile Net-
works”. In: CoRR abs/1307.4566 (2013).

References

[AHL96] I. Akyildiz, J. Ho, and Y.-B. Lin. “Movement-based location update and selective paging
for PCS networks”. In: IEEE/ACM Transactions on Networking 4.4 (1996), pp. 629–638.

[AP02] F. Arrigoni and A. Pugliese. “Limits of a multi-patch SIS epidemic model”. In: Journal
of Mathematical Biology 45.5 (Nov. 2002), pp. 419–440. issn: 0303-6812, 1432-1416. doi:
10.1007/s002850200155. url: http://link.springer.com/10.1007/s002850200155
(visited on 02/23/2014).

[Ari+05] J. Arino, J. Davis, D. Hartley, R. Jordan, J. Miller, and P. van den Driessche. “A multi-
species epidemic model with spatial dynamics”. In: Mathematical Medicine and Biology
22.2 (2005), pp. 129–142. issn: 1477-8599, 1477-8602. doi: 10.1093/imammb/dqi003.
url: http://imammb.oupjournals.org/cgi/doi/10.1093/imammb/dqi003 (visited on
02/23/2014).

[Bai+05] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. “Comparative branching-time se-
mantics for Markov chains”. In: Information and Computation 200.2 (2005), pp. 149–
214.

[BGH14] L. Bortolussi, V. Galpin, and J. Hillston. “Stochastic HYPE: Flow-based modelling of
stochastic hybrid systems”. In: CoRR/arXiv.org:1411.4433 (2014).

QUANTICOL 25 30 September 2016

http://dx.doi.org/10.1145/2883608
http://dx.doi.org/10.1145/2825236.2825263
http://doi.acm.org/10.1145/2825236.2825263
http://dx.doi.org/10.1007/s002850200155
http://link.springer.com/10.1007/s002850200155
http://dx.doi.org/10.1093/imammb/dqi003
http://imammb.oupjournals.org/cgi/doi/10.1093/imammb/dqi003


Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

[BH12] L. Bortolussi and J. Hillston. “Fluid Model Checking”. In: CONCUR’12. Springer, 2012.

[BH15] L. Bortolussi and J. Hillston. “Model checking single agent behaviours by fluid approx-
imation”. In: Information and Computation 242 (2015), pp. 183–226. doi: 10.1016/j.
ic.2015.03.002.

[Bha43] A Bhattacharyya. “On a measure of divergence between two statistical population defined
by their population distributions”. In: Bulletin Calcutta Mathematical Society 35 (1943),
pp. 99–109.

[BN14] L. Bortolussi and L. Nenzi. “Specifying and monitoring properties of stochastic spatio-
temporal systems in signal temporal logic”. In: Proceedings of the 8th International
Conference on Performance Evaluation Methodologies and Tools. 2014, pp. 66–73. doi:
10.4108/icst.Valuetools.2014.258183.

[BNKS94] A. Bar-Noy, I. Kessler, and M. Sidi. “Mobile Users: To Update or not to Update?” In:
INFOCOM 1994. 1994, pp. 570–576.

[Bor+13] L. Bortolussi, J. Hillston, D. Latella, and M. Massink. “Continuous approximation of
collective system behaviour: A tutorial”. In: Performance Evaluation 70.5 (May 2013),
pp. 317–349. doi: 10.1016/j.peva.2013.01.001.

[Bor10] L. Bortolussi. “Limit Behavior of the Hybrid Approximation of Stochastic Process Alge-
bras”. In: ASMTA 2010. 2010, pp. 367–381.

[BP10] L. Bortolussi and A. Policriti. “Hybrid dynamics of stochastic programs”. In: Theoretical
Computer Science 411 (2010), pp. 2052–2077.

[BP97] B. Bolker and S. Pacala. “Using moment equations to understand stochastically driven
spatial pattern formation in ecological systems”. In: Theoretical population biology 52.3
(1997), pp. 179–197.

[BP99] B. Bolker and S. Pacala. “Spatial Moment Equations for Plant Competition: Under-
standing Spatial Strategies and the Advantages of Short Dispersal”. In: The American
Naturalist 153.6 (1999), pp. 575–602. issn: 0003-0147, 1537-5323. doi: 10.1086/303199.
url: http://www.jstor.org/stable/10.1086/303199 (visited on 02/23/2014).

[Bru+15] D. Bruneo, M. Scarpa, A. Bobbio, D. Cerotti, and M. Gribaudo. “An Intelligent Swarm of
Markovian Agents”. In: Handbook of Computational Intelligence. Springer, 2015, pp. 1345–
1359.

[CGB14] D. Cerotti, M. Gribaudo, and A. Bobbio. “Markovian agents models for wireless sensor
networks deployed in environmental protection”. In: Reliability Engineering & System
Safety 130 (2014), pp. 149–158.

[CLBR09] A. Chaintreau, J.-Y. Le Boudec, and N. Ristanovic. “The age of gossip: spatial mean field
regime”. In: Eleventh International Joint Conference on Measurement and Modeling of
Computer Systems (SIGMETRICS/Performance 2009). ACM, 2009, pp. 109–120. url:
http://dl.acm.org/citation.cfm?id=1555363 (visited on 02/27/2014).

[CPB08] E. Codling, M. Plank, and S. Benhamou. “Random walk models in biology”. In: Journal
of the Royal Society Interface 5.25 (2008), pp. 813–834. issn: 1742-5689, 1742-5662. doi:
10.1098/rsif.2008.0014. url: http://rsif.royalsocietypublishing.org/cgi/
doi/10.1098/rsif.2008.0014 (visited on 02/23/2014).

[Dav93] M. Davis. Markov Models and Optimization. Chapman & Hall, 1993.

[DL94] R. Durrett and S. Levin. “Stochastic Spatial Models: a User’s Guide to Ecological Applica-
tions”. In: Philosophical Transactions of the Royal Society B: Biological Sciences 343.1305
(1994), pp. 329–350. issn: 0962-8436, 1471-2970. doi: 10.1098/rstb.1994.0028. url:
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.1994.0028

(visited on 02/23/2014).

QUANTICOL 26 30 September 2016

http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.1016/j.ic.2015.03.002
http://dx.doi.org/10.4108/icst.Valuetools.2014.258183
http://dx.doi.org/10.1016/j.peva.2013.01.001
http://dx.doi.org/10.1086/303199
http://www.jstor.org/stable/10.1086/303199
http://dl.acm.org/citation.cfm?id=1555363
http://dx.doi.org/10.1098/rsif.2008.0014
http://rsif.royalsocietypublishing.org/cgi/doi/10.1098/rsif.2008.0014
http://rsif.royalsocietypublishing.org/cgi/doi/10.1098/rsif.2008.0014
http://dx.doi.org/10.1098/rstb.1994.0028
http://rstb.royalsocietypublishing.org/cgi/doi/10.1098/rstb.1994.0028


Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

[DN08] R. Darling and J. Norris. “Differential equation approximations for Markov chains.” eng.
In: Probability Surveys [electronic only] 5 (2008), pp. 37–79.

[DP03] J. Desharnais and P. Panangaden. “Continuous stochastic logic characterizes bisimulation
of continuous-time Markov processes”. In: The Journal of Logic and Algebraic Program-
ming 56.1-2 (2003), pp. 99–115. issn: 15678326. doi: 10.1016/S1567-8326(02)00068-1.
url: http://linkinghub.elsevier.com/retrieve/pii/S1567832602000681 (visited
on 02/23/2014).

[Fen12] C. Feng. “Modelling opportunistic networks with HYPE”. MSc dissertation. School of
Informatics, University of Edinburgh, 2012.

[Fen16] C. Feng. “The Process Algebra for Located Markovian Agents and Scalable Analysis
Techniques for the Modelling of Collective Adaptive Systems”. PhD thesis. School of
Informatics, University of Edinburgh, 2016.

[FG14] C. Fricker and N. Gast. “Incentives and redistribution in homogeneous bike-sharing sys-
tems with stations of finite capacity”. In: EURO Journal on Transportation and Logistics
(2014), pp. 1–31.

[FGM12] C. Fricker, N. Gast, and H. Mohamed. “Mean field analysis for inhomogeneous bike
sharing systems”. In: DMTCS Proceedings 01 (2012), pp. 365–376.

[FH14] C. Feng and J. Hillston. “PALOMA: A Process Algebra for Located Markovian Agents”.
In: 11th International Conference on Quantitative Evaluation of Systems, QEST 2014.
Vol. 8657. LNCS. Springer, 2014, pp. 265–280. doi: 10.1007/978-3-319-10696-0\_22.

[FNO09] J. Froehlich, J. Neumann, and N. Oliver. “Sensing and Predicting the Pulse of the City
through Shared Bicycling.” In: IJCAI. Vol. 9. 2009, pp. 1420–1426.

[Gal+14] V. Galpin et al. A preliminary investigation of capturing spatial information for CAS.
QUANTICOL Deliverable D2.1. 2014.

[Gam+04] A. Gamal, J. Mammen, B. Prabhakar, and D. Shah. “Throughput-delay trade-off in
wireless networks”. In: INFOCOM 2004. 2004.

[GB13] M. Guenther and J. Bradley. “Journey data based arrival forecasting for bicycle hire
schemes”. In: Analytical and Stochastic Modeling Techniques and Applications. Springer,
2013, pp. 214–231.

[GBH13] V. Galpin, L. Bortolussi, and J. Hillston. “HYPE: Hybrid modelling by composition of
flows”. In: Formal Aspects of Computing 25 (2013), pp. 503–541.

[Gea71] C. W. Gear. Numerical Initial Value Problems in Ordinary Differential Equations. Pren-
tice Hall PTR, 1971.

[GFR16] V. Galpin, C. Feng, and D. Reijsbergen. From spatial data to spatial models. QUANTI-
COL Deliverable 2.2. Mar. 2016.

[Gil77] D. T. Gillespie. “Exact stochastic simulation of coupled chemical reactions”. In: The
Journal of Physical Chemistry 81.25 (1977), pp. 2340–2361. doi: 10.1021/j100540a008.

[GVH15] N. Gast and B. Van Houdt. “Transient and steady-state regime of a family of list-based
cache replacement algorithms”. In: ACM SIGMETRICS Performance Evaluation Review
43.1 (2015), pp. 123–136.

[Hil96] J. Hillston. A compositional approach to performance modelling. New York, NY, USA:
Cambridge University Press, 1996. isbn: 0-521-57189-8.

[Hol+94] E. Holmes, M. Lewis, J. Banks, and R. Veit. “Partial differential equations in ecology:
spatial interactions and population dynamics”. In: Ecology 75.1 (1994), pp. 17–29.

QUANTICOL 27 30 September 2016

http://dx.doi.org/10.1016/S1567-8326(02)00068-1
http://linkinghub.elsevier.com/retrieve/pii/S1567832602000681
http://dx.doi.org/10.1007/978-3-319-10696-0\_22
http://dx.doi.org/10.1021/j100540a008


Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

[Hor+98] G. Horton, V. Kulkarni, D. Nicol, and K. Trivedi. “Fluid stochastic Petri nets: Theory,
applications, and solution techniques”. In: European Journal of Operational Research 105
(1998), pp. 184–201.

[IM06] S. Ioannidis and P. Marbach. “A Brownian Motion Model for Last Encounter Routing”.
In: INFOCOM 2006. 2006.

[JL00] V. Jansen and A. Lloyd. “Local stability analysis of spatially homogeneous solutions of
multi-patch systems”. In: Journal of Mathematical Biology 41 (Sept. 2000), pp. 232–
252. issn: 0303-6812, 1432-1416. doi: 10.1007/s002850000048. url: http://link.
springer.com/10.1007/s002850000048 (visited on 02/26/2014).

[Jua+02] P. Juang, H. Oki, Y. Wang, M. Martonosi, L. Peh, and D. Rubenstein. “Energy-efficient
Computing for Wildlife Tracking: Design Tradeoffs and Early Experiences with ZebraNet”.
In: SIGPLAN Notices 37 (2002), pp. 96–107. doi: 10.1145/605432.605408. url: http:
//doi.acm.org/10.1145/605432.605408.

[Kal+10] A. Kaltenbrunner, R. Meza, J. Grivolla, J. Codina, and R. Banchs. “Urban cycles and
mobility patterns: Exploring and predicting trends in a bicycle-based public transport
system”. In: Pervasive and Mobile Computing 6.4 (2010), pp. 455–466.

[Kur81] T. Kurtz. Approximation of population processes. SIAM, 1981.

[LD96] S. Levin and R. Durrett. “From individuals to epidemics”. In: Philosophical Transactions
of the Royal Society of London. Series B: Biological Sciences 351.1347 (1996), pp. 1615–
1621.

[Mar+02] G. Marion, X. Mao, E. Renshaw, and J. Liu. “Spatial heterogeneity and the stability of
reaction states in autocatalysis”. In: Physical Review E 66.5 (Nov. 2002), p. 051915. issn:
1063-651X, 1095-3787. doi: 10.1103/PhysRevE.66.051915. url: http://link.aps.
org/doi/10.1103/PhysRevE.66.051915 (visited on 02/26/2014).

[MSH05] G. Marion, D. Swain, and M. Hutchings. “Understanding foraging behaviour in spatially
heterogeneous environments”. In: Journal of Theoretical Biology 232.1 (2005), pp. 127–
142. issn: 00225193. doi: 10.1016/j.jtbi.2004.08.005. url: http://linkinghub.
elsevier.com/retrieve/pii/S0022519304003765 (visited on 02/26/2014).

[Nen+15] L. Nenzi, L. Bortolussi, V. Ciancia, M. Loreti, and M. Massink. “Qualitative and quan-
titative monitoring of spatio-temporal properties”. In: Runtime Verification. Springer.
2015, pp. 21–37.

[NJW+02] A. Y. Ng, M. I. Jordan, Y. Weiss, et al. “On spectral clustering: Analysis and an al-
gorithm”. In: Advances in neural information processing systems 2 (2002), pp. 849–856.
doi: 10.1.1.19.8100.

[PL97] S. Pacala and S. Levin. “Biologically generated spatial pattern and the coexistence of
competing species”. In: Spatial ecology: the role of space in population dynamics and
interspecific interactions. Ed. by D. Tilman and P. Kareiva. Princeton University Press,
1997, pp. 204–232.

[QS04] D. Qiu and R. Srikant. “Modeling and performance analysis of BitTorrent-like peer-to-
peer networks”. In: SIGCOMM. 2004.

[SBG02] F. Schoenberg, D. Brillinger, and P. Guttorp. “Point processes, spatial–temporal”. In:
Encyclopedia of environmetrics. Vol. 3. Wiley Online Library, 2002, pp. 1573–1577.

[Tho95] J. W. Thomas. Numerical Partial Differential Equations: Finite Difference Methods.
Springer-Verlag, 1995.

[TT14] M. Tschaikowski and M. Tribastone. “A Partial-differential Approximation for Spatial
Stochastic Process Algebra”. In: VALUETOOLS. 2014.

QUANTICOL 28 30 September 2016

http://dx.doi.org/10.1007/s002850000048
http://link.springer.com/10.1007/s002850000048
http://link.springer.com/10.1007/s002850000048
http://dx.doi.org/10.1145/605432.605408
http://doi.acm.org/10.1145/605432.605408
http://doi.acm.org/10.1145/605432.605408
http://dx.doi.org/10.1103/PhysRevE.66.051915
http://link.aps.org/doi/10.1103/PhysRevE.66.051915
http://link.aps.org/doi/10.1103/PhysRevE.66.051915
http://dx.doi.org/10.1016/j.jtbi.2004.08.005
http://linkinghub.elsevier.com/retrieve/pii/S0022519304003765
http://linkinghub.elsevier.com/retrieve/pii/S0022519304003765
http://dx.doi.org/10.1.1.19.8100


Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

[WL95] J. Wu and O. Loucks. “From balance of nature to hierarchical patch dynamics: a paradigm
shift in ecology”. In: The Quarterly Review of Biology 70.4 (1995), pp. 439–466. url:
http://www.jstor.org/stable/3035824.

[YPC12] J. W. Yoon, F. Pinelli, and F. Calabrese. “Cityride: a predictive bike sharing journey ad-
visor”. In: Mobile Data Management (MDM), 2012 IEEE 13th International Conference
on. IEEE. 2012, pp. 306–311.

QUANTICOL 29 30 September 2016

http://www.jstor.org/stable/3035824


Transformation and limit results between spatial representations (Revision: 1.0) 30 September 2016

A Appendix: Population Discrete Space Models

This section briefly introduces population discrete-space models, by first defining Continuous Time
Markov Chains (CTMCs) and Population CTMCs, [Bai+05; Bor+13] and then extending them by
adding discrete space.

Definition 2. A continuous time Markov chain (CTMC) is a tuple M = (S,R) where

• S is a finite set of states, and

• R : S × S → R≥0 is a rate matrix.

If an entity is currently in state S, then R(S, S′) is a non-negative number that defines an exponential
distribution from which the duration of the time taken to transition from state S to state S′ can be
drawn. Under certain conditions, transient and steady state probabilities can be calculated which
describe the probability of being in each state at a particular time t or in the long run, respectively.
CTMCs can be state-labelled (usually with propositions) or transition-labelled (usually with actions).

For population Markov chains, instead of considering an entity with states, we consider a vector
of counts X that describes how many entities are in each state; thus it is a population view rather
than an individual view.

Definition 3. A population continuous time Markov chain (PCTMC) is a tuple X = (X,D, T ) where

• X = (X1, . . . , Xn) is a vector of variables

• D is a countable set of states defined as D = D1 × . . . × Dn where each Di ⊆ N represents the
domain of Xi

• T = {τ1, . . . τm} is the set of transitions of the form τj = (v, r) where

– v = (v1, . . . , vn) ∈ Nn is the state change or update vector where vi describes the change
in number of units of Xi caused by transition τj, and

– r : D → R≥0 is the rate function of transition τj with r(d) = 0 whenever d + v 6∈ D.

Typically, transitions can be represented in the Chemical Reaction Style, in the form

u1X1 + . . .+ unXn −→ w1X1 + . . .+ wnXn

where u counts how many agents are involved in the transition and w what they will be transformed
into, so that the update vector is v = w − u.

From a population Markov chain, the associated Markov chain can be obtained. D is the state
space S. For the population CTMC, the rate matrix of its associated CTMC is

R(d,d′) =
∑

τ∈T ,vτ=d′−d
rτ (d) whenever d 6= d′

and if the summation is empty, then R(d,d′) = 0.
As the size of the population increases, it has been shown [Kur81] under specific conditions that

cover a large range of models that the behaviour of an (appropriately normalised) population CTMC at
time t is very close to the solution of a set of ODEs, expressed in the form X(t) = (X1(t), . . . , Xn(t))
defining a trajectory over time. The ODEs can be expressed in terms of a single vector ODE as
Ẋ = dX/dt = f(X), where the drift f(X) is defined by

f(X) =
∑
τj∈T

vjrj(X).

Population CTMCs can be easily extended by adding a spatial dimension.
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Definition 4 (Population discrete-space model. ). A population discrete-space model is a tuple
XG = (X , G,V) where:

• X = (X,D, T ) is a population CTMC, as defined above;

• G = (L, E, w) is a weighted graph where:

– L is the finite set of L locations, L > 0;

– E ⊆ L× L is the set of edges or links;

– w : E → R>0 is the function that returns a real weight for each edge.

• V = {ν1, ..., νk} is the set of movement transitions, i.e. the transitions that describe the migra-
tion of entities between locations, each transition is of the form νl = s, gl), where:

– s ∈ {1, . . . , n} is the state of the entity that migrates

– gl : D × L × L → R≥0 is the rate function, where D is the state space of the system;
gl(X, `i, `j) is the rate for the migration of a component in state s from location `i to
location `j when the global state of the system is X.

These models can be expanded into a PCTMC by considering a new set of local states, as the
product of agent’s states and locations. Hence, the PCTMC will have state variables indexed by Xi,l,
i ∈ {1, . . . , n} and l ∈ {1, . . . , L}, counting how many agents in each state are in each location.
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