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Abstract

This document investigates the use of spatial moment closure techniques on large grid-based spatial
models. The basic SIR model is extended to a spatial SIR model by the addition of locations. Ordinary
differential equations are derived for spatial moments and three different closure techniques are applied.
Experimentation shows that (for the parameters under consideration) the fourth moment stochastic
linearisation gives a better approximation than third moment stochastic linearisation or third moment
log-normal approximation.
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1 Introduction

In this document, we consider dynamic mathematical models defined over discrete space. We assume
that discrete space is represented by an undirected graph with nodes representing locations and edges
representing connections between the nodes. Movement and/or interaction between two nodes can only
take place if there is an edge between those nodes. We consider spatial moment closure which is a group
of approximation techniques applied to spatial moment ODEs (ordinary differential equations). These
ODESs describe the dynamics of moments defined for variables of interest relating to space. Typically,
these moment ODE systems are infinite, and moment closure techniques approximate higher order
moments, thus reducing an infinite system of ODEs to a usable finite system of ODEs.

The term “spatial moment closure” has been applied in two different ways when considering
discrete-space models. There are two main types of discrete-space models: individual and population.
Individual discrete-space models are those where each node in the location graph is viewed either as a
location which can take one of a finite number of discrete values, or alternatively, as a single individual
at that location taking one of these values. Typically, the dynamics of such models are defined by
transformation rules that define how the value at each node varies over time depending on the values
of neighbouring nodes. In this context, spatial moment closure is also called pair approximation.
This is because the variables of interest are those that count the number of patterns in the model over
time. By patterns, we mean small subgraphs, starting with each possible combination of pairs of nodes
joined by an edge (hence the term “pair approximation”). Moment ODEs are derived by considering
the transformation rules that can affect each pair. The right-hand sides of these ODEs may contain
references to three-node patterns. In general, an infinite system of moment ODEs are obtained and
moment closure techniques can be applied [LD96], [BP97, BP99, [Gas15]. We do not consider spatial
moment closure techniques for individual discrete space models further in this document.

Instead, we focus on population discrete-space models where multiple agents are located at each
node in the graph. This is an extension and generalisation of a standard population continuous-time
Markov model to include locations. We can derive ODEs for the spatial moments of the models. The
moments are some quantity of interest that is summed across all locations and then divided by the
number of locations. Again, we obtain an infinite systems of ODEs in most cases and moment closure
techniques can be applied [PL97, MMRLO02, MSHO5|.

The remainder of this document considers population discrete models, with a specific focus on
epidemiological models of disease spread where space plays an important role. We start with general
definitions before proceeding with examples.

2 Definitions and notation

Population CTMCs

A population continuous-time Markov chain (PCTMC) can be defined with or without locations. We
give both definitions now.

Definition 1. A population continuous time Markov chain (PCTMC) is a tuple (Y,D,T) where
e Y =(Y1,...,Y,) is a vector of variables

e D is a countable set of states defined as D = Dy x ... X D, where each D; C N represents the
domain of Y;

o T ={11,...Tm} is the set of transitions of the form 7, = (v, r) where

— v =(v1,...,v,) € Z" is the state change or update vector where v; describes the change in
number of units of Y; caused by transition 1

— r: D — Rxq is the rate function of transition 7, with r(d) = 0 whenever d +v ¢ D.
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As we wish to consider location indices in this document, we can introduce a slightly different
definition that considers these. We assume n subpopulations as is the case for the standard CTMC
definition above, and p locations. The notation X Z-(j ) denotes the size of the subpopulation ¢ at location
7.

Definition 2. A population continuous time Markov chain with locations (PLCTMC) is a tuple
(X,D,T) where

e X = (Xy), ces ,X](Jl), e ,an), .. .,Xl(yn)) s a vector of variables

e D is a countable set of states defined as D = Dgl) X ... X D%p) X ... X D,gl) X ... X D,(f) where
each DZ(]) C N represents the domain of XZ-(])

o T ={11,...Tm} is the set of transitions of the form 7, = (v, r) where

(1) (p) (1) (p)

—v=(v;,...,0 ..., ,...,vn ) € Z" is the state change or update vector where v;

)

describes the change in number of units of Xi(j caused by transition T

— r: D — R>g is the rate function of transition 7, with r(d) = 0 whenever d + v & D.

The notation used in this document can be summarised as follows.

X, = @xM...xP) x =y, xY
X(]) = (Xy)? s XV(L])) X(j) = Z?:l Xz(j)
X = (Xq,...,Xy) X = i Z?:l Xi(j) = §:1 > i Xz‘(j)

) = 1pSia Xyl = e (e (e
We are interested in the expected values of spatial averages of single variables, E[(X;)] as well as
expected values of spatial averages over products of variables E[(X fll . Xfrzlﬂ This can be written
more generally as E[(M(X))] where M(-) is a polynomial defined over Xi,...,X,. However, since
expectations are preserved by addition and by multiplication by a constant, we are only interested in
those M (-) that are a product of powers of the variables X1, ..., X,,. We will derive ODEs that define
the behaviour of these expectations.

3 From non-spatial SIR to spatial SIR

We start by considering the SIR (Susceptible-Infected-Recovered) epidemiological model whose CMTC
can be defined by the vector (S, I, R) and the domain (R>()3. The transitions between the states of
the CTMC are

e 7 = ((—1,+1,0),¢SI) which represents infection and
e 75 = ((0,—1,41),7I) which represents recovery.

These transitions can also be written in the following form.

S+I1 — I+1 at rate ¢SI
I —- R at rate rl
Note that when S or [ is zero, the transitions have zero rate and hence it is not possible for S or I
to become negative. This is a nonspatial model since it is based on the assumption that all of the sus-
ceptibles, infecteds and recovereds are well-mixed in the space they occupy. In certain circumstances,
we wish to move away from this assumption and instead make the different assumption that there
are distinct locations in space, and each individual is situated at one of these locations, leading to
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separate groups consisting of susceptibles, infecteds and recovereds. We then use superscripted indices
in brackets to indicate which subpopulation we are referring to. The model can then be modified to
a vector of the form (S, 1M RM @) 1) RP)) assuming p locations, with domain (Rx)3P.
The two transition rules

SU) 4 10— 1G) 4 10) at rate () g0) ()

70— RO at rate B 1G)

define the interactions that occur at each location j. However, since there is no interaction between
locations, this a rather unsatisfactory model. We can add the following rules for movement.

SW  — S®)  for ke nb(j) at rate mg(¥)S0)

10— 1% for k € nb(j) at rate m;)10)

RY — R® for k € nb(j) at rate mzp® RU)

Here, nb(j) refers to the neighbourhood of location j, and includes every location k for which
there is an edge (7, k) in the location graph. In the rules above, parameter homogeneity has not been
assumed, and the infection, recovery and movement parameters can vary between locations.

For the spatial SIR model, the movement of recovereds have no effect on infection or recovery and
hence the last rule can be omitted (and will be from now on). Furthermore, experimentation (not
reported here) suggests that the movement of the susceptibles has little effect on infection, and could
also be omitted. Reduction in the number of (applicable) rules can lead to faster simulation.

We can also derive a deterministic fluid approximation for the spatial SIR model as follows.

df;) _ g0 ST w50 ¢ Y gt
‘ kenb(5) kenb(j)

dfl(;) = DSOIO pOT0 — Y GO0 3 k)
' kenb(j) kenb(j)

drRO) ) 16)

dt

We now consider some basic experimentation with these models. The different neighbourhoods that
we consider are as follows.

No connectivity: The location graph has no edges, and a result of this, there is no movement
between locations.

Full connectivity: The location graph has an edge between every pair of locations, and hence is a
complete graph.

Von Neumann connectivity: This is the connectivity found in a grid where each location is con-
nected to the locations to its north, south, east and west. This means that most locations have
four neighbours. However, boundary locations have three neighbours or two if they are at the
corners of the grid. Another solution would be to link the topmost locations with those at the
bottom, and the leftmost with the rightmost thus defining a grid defined over a torus. However,
this is unlikely to happen in reality so we work with the grid with boundaries.

The first example considers a 12x12 grid and an SIR model in which only infecteds move between
1ocationsﬂ Parameters and initial values are the same for each location. Figures and |3| show a
single stochastic simulation of the spatial SIR model where only infecteds move, for the three different
types of connectivity. Figure [ illustrates how the results can differ once all infecteds have recovered
and Figure [5| shows the trajectories for the spatial averages of the three species from simulations for
each connectivity type. Figure [f] shows a deterministic simulation, and in contrast to the stochastic
simulation, every location shows the same behaviour.

1For these grid-based models, it can be assumed that the location index j represents a pair defining a grid location
but we elide the details.
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The second example considers a 30x30 grid and an SIR model in which both susceptibles and
infecteds move, and von Neumann connectivity is used. In the first figure, Figure [7] parameters and
initial values do not vary between locations. In Figure |8 the initial values for locations vary. Most
cells have no infecteds at the start of the simulation. The only locations that have infecteds are the
outside border locations and the locations adjacent to those. By the end of the simulation, there is
little indication of this starting configuration. In Figure[9] the bottom third of locations have a faster
infection rate than those in the top two thirds, and it can be seen that this difference leads to a clear
difference in the quantity of recovereds, with more recovereds in the bottom third region.

4 Motivation

The models we have considered are large with up to 900 locations, giving 2700 distinct subpopulations.
The simulations using a Gillespie SSA algorithm are reasonably fast given the size but are at the
limits of memory capability (on an ordinary laptop). An obvious question is then to consider whether
there are usful approximations that can be used beyond the obvious deterministic approximation
presented in the previous section. As Figure [5|shows, this deterministic approximation is qualitatively
imprecise, since in the actual stochastic model, some susceptibles remain where as none remain in the
deterministic approximation.

A technique that has been proposed in the literature is spatial moment closure. As described
above, it involves the derivation of spatial moment ODEs and then applies moment closure techniques
to these. These ODEs describe how the quantities

m im

p - .
E[(X{ ... XM where  (XP ... XPm) =1/pY (X)L (x[)yan,
j=1

change over time. In the SIR model, we will be interested in moments such as E[(S)], E[(S?)], E[(ST)]
and E[(ST?)] where E[(S)] is the spatial average of S, E[(S?)] is the spatial average of S2, and so on.
We can also consider central moments such as variance and covariance.

Var[S] = E[(5%)] - (E[(5)))?
Cov[S,1] = E[SI)] - E[(S)|E[I)]
As we will see, including covariance terms improves the approximation, since these terms capture how
the quantities of S and I vary with respect to each other. To ensure these terms are included, at least

secind moments must be considered, and hence moment lcosure can only be applied to third moments
or higher.
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Figure 1: Single stochastic simulation of the SIR model on 12x12 grid with no connectivity with initial
values S@(0) = 49, I¥(0) = 1, R (0) = 0, and parameters ¢} = 0.011, h) = 0.1, m;#) = 0.00001
(only infecteds move)
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Figure 2: Single stochastic simulation of the SIR model on 12x12 grid with full connectivity with initial
values S@(0) = 49, I¥(0) = 1, R (0) = 0, and parameters ¢} = 0.011, h) = 0.1, m;#) = 0.00001
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Figure 3: Single stochastic simulation of the SIR model on 12x12 grid with von Neumann connectivity
with initial values S®(0) = 49,7 (0) = 1, R¥(0) = 0, and parameters ¢ = 0.011, A) = 0.1,
m;(9) = 0.00001 (only infecteds move)
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Figure 4: Single stochastic simulation at time ¢ = 100 of the SIR model on 12x12 grid for various
connectivities with initial values S (0) = 49,1 (0) = 1, R¥(0) = 0, and parameters () = 0.011,
R = 0.1, m;) = 0.00001 (only infecteds move)

100 ‘ -

<S>: no connectivity ———
<I>: no connectivity ——

<R>: no connectivity

80 <S>: von Neumann --==- ]
<I|>:von Neumann =====
<R>: von Neumann

<S>: full connectivity ---------
<I>: full connectivity ---------

60 <R>: full connectivity i

spatial average

60 80 100
time

Figure 5: Spatial averages for the SIR model on 12x12 grid for various connectivities with initial values
S (0) = 49, 1D(0) = 1, RD(0) = 0, and parameters ¢ = 0.011, h® = 0.1, m;%) = 0.00001 (only

infecteds move)
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Figure 7: Single stochastic simulation of the SIR model on 30x30 grid with von Neumann connectivity
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dE[(S)]

WU — emi(sn)) - nB()
dE[(R)] _
D = RE[(D)]
% ~  c(E[(S*I)] — E[(SI?)]) — (c + W)E[(ST)] — p(m] +ms)Cov|S, I]
dE[éfzﬂ ~ —c(2E[(S%I)] — E[(SI)]) — 2pms(Var[S] — E[(S)])
U < @B((SI)) + BSI)) - BN ~ EUD) — 2pms(Varlt] - B(D)
%éfﬂ] ~ —c(2E[(S°I*)] - E[(S°I)] — E[(SI?)] — cE[(SI)] + (c — h)E[(S°])]
+pmsE[(ST)] + pmsE[(S)|E[(I)] — 2pmsCov[S, SI] — pm;Covl[S?, 1]
%’ijm ~ c(2E[<52]2>] + E[<S]3>} + E[<S2I>]) —2(c+ h)E[(SIQH 4 (c+ hWE[(SI)]
+pmyE[(ST)] + pm E[(S)|E[(I)] — 2pm;Cov|[SI,I] — pmsCov][S, I*]
Var[X] = E[(X?)]- (E[(X)])?
Cov[X,Y] = E[XY)]-E[X)E[Y)]

Figure 10: Spatial moment ODEs for the spatial SIR model with movement of both susceptibles and
infecteds

5 Spatial moment closure in the case of full connectivity

Spatial moment closure has been proposed as a solution to this size problem, allowing for global
reasoning and we now illustrate how the spatial moment ODEs can be derived. Spatial moments
are the expected values of products of variable averaged over all locations. For convenience, we will
consider parameter homogeneity and parameters will not vary between locations, hence ¢ = ¢,
R = h, m;) = m; and mg(¥) = mg for all Thus for the spatial SIR model presented above, the
spatial moment ODEs are given in Figure We assume full connectivity as it makes the ODEs more
straightforward to derive. As can be seen from the derivation of E[(ST)] below, this introduces p, the
number of locations into the ODESH Note that some ODEs are approximated and the reasons for this
are described below.

We first discuss the form these ODEs take before giving some example derivations of the ODEs.
All the ODEs for the first moments and second moments have been listed. For the third moments,
only the ODEs of the two moments that appear in the RHS of second joint moment ODE are given.
Both of these include references to fourth moments: E[(S3I)], E[(S3I)] and E[(SI?)]. Deriving these
fourth moments ODEs would include fifth moments on the RHS of the equations and so on. Spatial
moment closure approximation has not been applied to the ODEs in Figure [10| but an approximation
(which is likely to be accurate for a system with a large total population [MMRL02]) has been applied
whereby E[(M;(X))(M2(X))] is approximated by E[(M;(X))]E[(M2(X))]. The approximation of
E[(X)|E[(Y)] by E[{(X)(Y)] has much less impact as an approximation when compared to replacing
E[(XY)] E[(X)]E[(Y)] because two spatial averages are involved both terms rather than the product

2To approximate von Neumann connectivity, this could possibly be changed to four, to capture the number of
neighbours that most locations have. This requires further investigation. In previous work, the full connectivity spatial
moments have been used to approximate von Neumann connectivity [MSHO5].
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of two spatial averages and the spatial average of a product. This approximation is necessary for all
spatial moments of more than one variable.

We now work from the stochastic definition of the SIR model to illustrate how to dervie ODEsm,
starting with

SOt +6t) —SD() = 650
and hence it is necessary to determine §SU). This can be done by considering all transitions that
affect S and then multiplying them by the rate and the time period d¢. So to derive the ODEs for
(S) we need to consider all of the transitions which reduce or increase S;.

65U = ((8Y) —1)(t) — SYU) (1)) (S TV (1))t

(89 = 1)(t) = 8Y(1))(ms SV (1))t

NE

+

i
I

(9 +1)(t) = 8V (1)) (ms SV (1))t

NE

+

p p
= [—eSWIU) (1) — Z mgSY () + Z mgS*)
k=1 k=1

Taking spatial averages gives the following.

i
I

1/pzp: SO (t 4 6t) — 1/pzp: SU(t)
j=1

7=1

= [—¢/pY_ SV —ms/pY > SVt +ms/p > > SE(#))ot
j=1 k=

j=1 1 7j=1k=1

= [—c(SI}—mS<S>Zl+m5 Zl
k=1

=1

<.

= —c(SI)dt
Rewriting this in terms of the spatial averages notation and taking expectations gives
E[(S)|(t+dt) — E[(S)](t) = —cE[(SI)]t

and then dividing by ¢t and and taking the limits as ¢ — 0 results in

dE[(S)]
dt

The ODEs for E[(I)] and E[(R)] are derived in a similar fashion. The ODEs for second and higher
moments are similar in form but more complex as the effect of each transition on the variables in the
moment must be considered.

—cE[(ST)]
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We next derive E[(ST)] to show how this is done.
ST (¢ 4 6t) — ST (¢)
= (89 =14 1) - SII) S I@( )3t
+(S(j)( 10 —1)(t) — SVI ))(hI(J
—yr (5 )(IG) — 1)(t) — SG) 1)
+ZP (5 19 £ 1)(t) — S0 ()
( SG) — 1) 1) (t) — SUIG) (¢
+Zp ( SG) + 1) 10 () — SO T0)(t)
= [e(SUN210) (¢) — eSW (1UN2 (1) — cSU T (£) — hSU) 10D (1)
—mS J)( )I(J)( ) P 1+ mIS(J)(t) SP 7(k) (t)
—mgSD()10)(t ) i L L+ msIO(t) 30, S® (1))t
= [e(S J))2](J)( t) — (](J)) (t )—cS( )](J)( t) — hS(j)I(j)(t)
(

—pmrSOIO >+pmzs<ﬂ>< ) = pmgSPTD () + pmsIV(S)]t

Therefore, expanding and taking spatial averages gives the following.

1/sz ) (t + dt) —1/pZSJ>I (t)

7=1

p
— c/pz 216 (¢ _c/pZSJ) 1@)y2 _c/pZSJ)] h/pZS(j)I(j)(t)
Jj=1

—pmz/pZS(] t)+pmr/p(1) Y SV ()

Jj=1 j=1
—pms/p Y SDIU(t) + pmg/p(S) > 1V (t)]6t
j=1 j=1

This can be rewritten as
(SI)(t+ot) — (SI)(t) = [c<5’2[)(t) — c<SIQ)(t) —¢(ST)(t) — h(ST)(t)
—pmi(ST)(t) + pmi(S)(t){I)(t) — pms(SI)(t) + pms(S)(t)(I)(t)]6t
and the following ODE can be derived in the same way as before.

dE[(ST)]

7 = cE[(S?I)] — cE[(SI?)] — ¢E[(SI)] — hE[(SI)]

—pmE[(ST)] + pmE[(S)(I)] — pmsE[(ST)] + pmsE[(S)(])]
As mentioned above, we will approximate the term E[(S)(I)] with E[(S)|E[(])].

dE[(ST)]

5~ CE[(S7D)] - cBI(SI2)] - cBI(SD)] - hE[(ST)]

—pmyE[(SI)] + pmBE[(S)]E[(I)] — pmsE[(SI)] + pmsE[(S)]E[(])]
Gathering terms together appropriately gives the following ODE.

dE[(ST)]

p ~ c(E[(SQD] — E[(SIQ)]) — (c+ h)E[(ST)] — p(m; + mg)Cov][S, I]
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This equation contains two terms of an order higher than E[(ST)]. They are E[(S?I)] and E[(SI?)].
Similarly, if we derive ODEs for these terms, they will contain fourth moments on the right hand sideE]

We will now use two different spatial moment closure techniques. The first is stochastic lineariza-
tion which will be applied separately to third and fourth moments, giving two different approximations.
The second is to use the third moments for the log-normal distribution, thus making the assumption
that the real moments of the data are similar to those of the log-normal distributions. The log-normal
distribution is chosen because it has positive support, and hence, is suitable for modelling distributions
of populations [MSHO5]|.

Third moment stochastic linearisation: Approximate

e E[(S%I)] with E[(S)|E[(ST)] or E[(S?)|E[(I)], and
e E[(SI?)] with E[(S)|E[(I?)] or E[(ST)]E[(I)].

Fourth moment stochastic linearisation: Approximate

e BI(S°T)] with E[(S%)[E[(SI)] or E[(S)|E[(S2I)],
e E[(SI%)] with E[(SD)]E[(1%)] or E[(SI?)|E[(I)], and
e B[(521%)] with B[(S%)|E[(I?)], E(ST)%, BI(SXD)IE[(1)] or B[(S)[E[(SI2)].

Log-normal distribution for third order Use the following approximations [MMRIL02].

Bsery ~ PUSIEUSDE  pocnn BUBIELST?
B[(S)"B[(]) B[(1)E[(5)

The results of these approaches are now shown. Figure (a) compares the results of a stochastic
simulation of the spatial averages with the trajectory from the deterministic model. As can be seen,
the results are both quantitatively and qualitatively differently. The deterministic trajectory shows
that all susceptibles become infected and recover, whereas the stochastic simulation indicates that
significant numbers remain susceptible. Such different outcomes could have very different implications
for what to do if there is the possibility of a further outbreak caused by an infected agent arriving at
one of the locations.

The results of the third moment stochastic linearisation are shown in Figure [12[b). This tra-
jectory was obtained for the approximation using E[(S?)]E[(I)] and E[(SI)]E[(I)]. The choice of
E[(S)|E[(SI)] and E[(SI)|E[(I)] provide similar results. The other two choices resulted in simulation
failure due to the minimum possible step size being reached, and so these approximations both seem to
be poorly behaved. The results of the third moment log-normal distribution are shown in Figure (c)
Both of these results are disappointing as they are much closer to the deterministic trajectory that
the stochastic trajectory.

The fourth moment stochastic linearisation was affected by numerical problems. Only two choices
of approximations gave reasonable (but very different) results and three others gave wrong approxi-
mations. The results for the approximation using E[(ST)|E[(ST)], E[(ST)|E[(I?)] and E[{S?)]E[(SI)]
are given in Figure [L3[a) and those of the approximation using E[(SI)|E[(SI)], E[(ST)|E[(I?)] and
E[(S)|E[(S%I)] are given in Figure [L3(b). The results of the approximation using E[(S2I)|E[(I)],
E[(ST)|E[(I?)] and E[(S)|E[(S?I)] are given in Figure [13|c), and the choice of using E[(S2I)|E[(I)],
E[(ST)|E[(I?)] and E[(S?)]E[(SI)] gives similar results. On the other hand, the choice E[(S)|E[(SI?)],
E[(SI)|E[(I?)] and E[(S)|E[(S?I)] gives very incorrect results with negative populations. All other
choices for approximation gave a minimum step size error.

The results for the (well-behaved) fourth moment stochastic linearisation clearly gives better results
that either closure technique applied to third moments. Figure [11|shows the covariance of S and I for
the different techniques.

3Compact derivation of these ODEs are presented in the appendix of this document. Note that these derivations
provide different results to those that appear in the slides at http://www.sti.uniurb.it/events/sfml6quanticol/
programme.html|and give better approximations.
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Figure 11: Covariance of S and I for different techniques: simulation of the SIR model on 12x12
grid with full connectivity with initial values S (0) = 49,1 (0) = 1, R®(0) = 0, and parameters
D =0.011, D = 0.1, mg®@ = m; ) = 0.00001

6 Conclusion

As was seen from the results, neither the deterministic approximation, the third moment stochastic
linearisation approximation or the third moment log normal approximation (shown in Figure
give a good qualitative approximation, in the sense that the stochastic model indicates that not all
susceptibles will succumb to the disease, where as these three approximations indicate the opposite.
Whether susceptibles remain in the population has implications in the case of new infecteds entering
the population and it would be preferable that an approximation could show this. In the case of the
fourth moment stochastic linearisation (shown in Figure , of the various possibilities for factoring
moments, the successful ones are demonstrated. Additionally, Figure illustrates how well the
covariance of S and [ is approximated. Hence, we can conclude that the fourth moment stochastic
linearisation provides the best results, though there is a dependency on the results on the specific
way of factoring moments. This raises the question of how to choose which approximation to use
when it is not possible to compare it with the results of the stochastic model and this requires further
investigation.
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Figure 12: Stochastic versus (a) deterministic (b) third moment stochastic linearisation (c) third
moment log-normal approximation: simulation of the SIR model on 12x12 grid with full connectivity
with initial values S®(0) = 49,7 (0) = 1, R¥(0) = 0, and parameters ¢V = 0.011, h() = 0.1,

mg@) = m;) = 0.00001
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Figure 13: Stochastic versus three different fourth moment stochastic linearisation approximations
using (a) E((SDIB[(SD)], E(SDIE[(2)] and E[(S)E[(ST)] (b) E(SDIB[(SD)], E(SDE[(2)] and
E[(S)|E[(S?I)] (c) using E[{(S2I)|E[(I)], E[(ST)|E[(I?)] and E[{S)|E[(S?I)]: simulation of the SIR
model on 12x12 grid with full connectivity with initial values S (0) = 49,1 (0) = 1, R (0) = 0,
and parameters ¢ = 0.011, D = 0.1, mg() = m;(@) = 0.00001
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Appendix: derivations for E[(S?])] and E[{(SI?)]

§(S3L) = ((S; =1 +1) = S7L) (eS;I;) + (SF(I; — 1) = S7L;) (hI;) +

et (SF(I; = 1) = S31;) (mrdy) + 3072, (S5 (1 + 1) = S71;) (myI) +
b (S5 = 121 = S21;) (msS;) + Xoh_, ((Sj + 1)1 — S21;) (msSi)
= (=281 + I; + 57 — 25; + 1)(cS;1;) + (= S2)(h1}) +
my 3y (=SP4 my 305 (S7) Ik +
Mg 3 g1 (=281 + 1j)S; +ms >4y (251 + I;) Sk
= =257+ cS;I7 + cS3; — 2¢S3; + S;1; — hS?; —
pmpS: I+ pmp(1)S? — 2pmgS3I; + pmsS;I; + 2pms(S)S;I; + pms(S)I;
= 1/p2§:1(—205]2132 + cS’jIJ2 + CS?Ij — QCSJQ»IJ‘ +¢S;1; — hSJQ-Ij —
2pmsS7I; — pmySiL; 4+ pmp(1)S7 + 2pms(S)S;I; + pmsS;l; + pms(S)I;)
= —2¢(S?I%) + ¢(SI?) + ¢(S3T) — 2¢(S?I) + ¢(ST) — h{S?I) —
2pms(S2I) — pmy(S*I) + pmi(S?)(I) + 2pms(S)(SI) + pms(SI) + pms (S)(I)
D]/dt = —2cE[(S*I%)] + cE[(SI?)] + cE[(S*I)] — 2cE[(S*I)] + cE[(ST)] —
hE[(S*I)] + pmsE[(ST)] + pmsE[(S)(I)] —
2pmsE[(S*1)] — pmE[(S°T)] + pm E[(S*)(I)] + 2pmsE[(S)(ST)]
—2cE[(S?I*)] + cE[(SI?)] + cE[(S*I)] — 2cE[(S*I)] + cE[(SI)] —
hE[(S?I)] +pmsE[< )]+ pmsE[(S)]E[])] —
2pms(E[(S°I)] — E[(S)|E[(ST)]) — pmr(E[(S*I)] — E[(S*)|E[(1)])
= —2cE[(S?*I%)] + cE[(SI?)] + cE[(S®I)] — 2cE[(S*I)] + cE[(ST)] —
hE[(S*I)] + pmsE[(ST)] + pmsE[(S)E[(I)] —
2pmgCov|S, SI] — pmCov|[SS, I]

%
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5(S;I2) = ((S;—D(I; +1)* = 5;I7)(cS; ;) ( (1 —1)* = S;I7) (hI;) +
et (85I = 1) = S12) (my 1) (85I 4+ 1) = S;I2) (myIy) +
21 (8 = DIF = 8;17) (msS;) +Z L ((Sj + DIF = 8;I7) (ms Sk)
= (25,I; + S, +12 2I; — 1)(cS;I;) + (—2S;1; + S;)(hI;) +

mp P (=281 4+ S;)I; +mp S0 (2815 + S;) I +
ms Zi:l(_Ijz)Sj +mg Zi:l(IJZ)Sk
= 2CSJ2»I]2 + CSJZIJ- + CSJ—IJ?’ — QCSJ-I]2 —cS;l; — 2thI]2 + hS;1; —
2pmyS;I7 + pmyS;I; + 2pmy(I1)S;1; + pmi(I)S; — pmsS;I7 + pmg(S)I7
= 1/p>0_ (268717 + cSFI; + cS;I7 — 2¢8;17 — ¢S;1; — 2hS;17 + hS;I; —
2pmyS;iIF — pmsS;iIF + pms(S)I7 + 2pmi(I)S;1; + pmS;I; + pmi(I)S;)
= 20(S2I2) + ¢(S2I) + ¢(SI3) — 2¢(SI%) — ¢(SI) — 2h(SI?) + h(SI) —
2pm(SI?) — pms(SI?) + pms(S)(1?) + 2pm (SI)(I) + pmi(SI) + pmr(S)(I)
dE[(SI*)]/dt = 2cE[(S*I?)] + cE[(S*I)] + cE[(SI?)] — 2cE[(SI?)] — cE[(ST)] —
2hE[(SI%)] + hE[(ST)] + pmrE[(ST)] + pmE[(S)(I)] -
2pmB[(SI?)] — pmsE[(SI?)] + pmsE[(S)(I*)] + 2pmE[(SI)(I)]
2cE[(S?*I%)] + cE[(S?I)] + cE[(SI?)] — 2¢E[(SI?)] — cE[(SI)] —
2hE[(S1*)] + hE[(ST)] + pmE[(SI)] + pmE[(S)|E[(I)] —
2pm(E[(SI?)] — E[(ST)E[(I)]) — pms(E[(SI?)] — E[(S)|E[(I?)])
= 2cE[(S?I%)] + cE[(S?I)] + cE[(SI?)] — 2cE[(SI?)] — cE[(ST)] —
2hE[(ST*)] + hE[(ST)] + pm E[(ST)] + pmE[(S)|E[(I)] —
2pmCov[SI, I] — pmsCov|S, I?]
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