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1 Introduction

Formal verification of properties of Collective Adaptive Systems (CAS) is a challenging subject. The
huge number of considered entities introduces a gap with classical finite-state methods as the number
of states grows exponentially. Approximation methods, such as mean-field or fluid-flow approximation,
have been proposed to mitigate this aspect (see [9, 8, 48]). Another relevant issue is that of spatial
distribution of the considered entities. Entities composing a CAS are typically located, and moving, in
a physical or logical space. Collective behaviour is driven by interaction, which is frequently based on
proximity. This makes spatial aspects more prominent in the case of CAS than in classical concurrent
systems, and leads to the introduction of spatial properties in formal verification of CAS.

Spatio-temporal model checking is a recent trend in Computer Science (see for instance [26, 38, 18,
19, 21, 56, 39]) that uses specifications written in logical languages describing space – called spatial
logics – to automatically identify patterns and graphical structures of interest in a variety of domains,
ranging from signals and images to CAS. The research presented in this work stems from the topological
approach to spatial logics, dating back to the work of Alfred Tarski, who first recognised the possibility
of reasoning on space using the mathematical framework of topology as an interpretation environment
for modal logic (see [69] for a thorough introduction). In this context, formulas are interpreted as sets
of points of a topological space, and in particular �φ is usually interpreted as the points that lie in the
closure of the interpretation of φ. A standard reference is the Handbook of Spatial Logics [1]. Therein,
several spatial logics are described, with applications far beyond topological spaces; such logics treat
not only aspects of morphology, geometry, distance, but also advanced topics such as dynamic systems,
and discrete structures, that are particularly difficult to deal with from a topological perspective. In
recent work [18, 19], this theoretical development was pushed further to encompass directed graphs1,
resulting in the study of the approach of spatial logics for closure spaces. Subsequently, in [17], a
spatio-temporal logic, combining Computation Tree Logic and the newly defined spatial operators,
was introduced. A model checking algorithm has been implemented in the prototype spatio-temporal

1Such work was carried on in the setting of the QUANTICOL FP7 600708 EU-FET project, dealing with efficient
analysis methods for CAS.
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model checker topochecker2, with applications to case studies drawn from the domain of smart cities
[20, 16, 22].

The contribution of Computer Science to the field of medical image analysis is increasingly signif-
icant, and will play a key role in future healthcare. Computational methods are currently in use for
several different purposes, such as: Computer-Aided Diagnosis (CAD), aiming at the classification of
areas in images, based on the presence of signs of specific diseases [29]; Image Segmentation, tailored
to identify areas that exhibit specific features or functions (such as organs or sub-structures) [36];
Automatic contouring of Organs at Risk (OAR) or target volumes (TV) for radiotherapy applications
[10]; Indicators finding, that is, the identification of indicators, computed from the acquired images,
enabling early diagnosis, or understanding of microscopic characteristics of specific diseases, or help
in the identification of prognostic factors to predict a treatment output [15] [68] (examples of indica-
tors are the mean diffusivity and the fractional anisotropy obtained from Magnetic Resonance (MR)
Diffusion-Weighted Images, or the magnetization transfer ratio maps obtained from a Magnetization
Transfer acquisition [27] [50]).

Such kinds of analyses are strictly tied to the spatial features of images. In a first proof-of-concept
study [7], topochecker was used for the declarative specification of regions in medical images. The
model checker was used to automatically - and efficiently, taking a few seconds to complete the
task - identify and colour glioblastoma and the surrounding oedema in Magnetic Resonance Imaging
(MRI) scans, defining the two regions of interest in terms of their visual appearance, defined by
image features such as proximity, interconnection, and texture similarity. Input to the model checker
consists of a precise, declarative, unambiguous logical specification, that besides being fairly close to
level of abstraction of an expert description of the process, is also remarkably concise; for example,
the specification of the glioblastoma analysis is less than 30 lines long.

Identification of glioblastoma can be located in the context of automatic and semi-automatic
methods for segmentation of glioblastoma, that constitute an active research area (see for example
[30, 33, 62, 72]); therefore, our work in this case study will be completed in companion papers aimed at
clinical validation of the methodology. However, the broader scope of our research line is to enable the
declarative description and automatic or semi-automatic, efficient identification of regions in images
(such as tumours, infiltrations, organs at risk, lesions, etc.) using spatial formulas specifying relevant
features, such as texture or similarity, bound together by spatial constraints, e.g., proximity, boundary
properties, distance, etc., that increase the significance and signal-to-noise ratio of the obtained results.
The planned developments will also include means for interactive refinement of analysis, based on
visual fine-tuning of specific values (e.g. thresholds or distances) that may have a non-linear effect on
the results of complex queries, with transformative effect on methods that require human interaction
– e.g. interactive segmentation in preparation for surgery, or contouring for radiotherapy planning.

This paper is an extended version of [7], enhancing the results in the glioblastoma case study, pre-
senting a new example (segmentation of rectum carcinoma), providing the relevant technical details
on the procedures, and detailing the logical language that is used (including distance-based operators
and a novel connective aimed at statistical texture analysis). Texture analysis, distance, and reach-
ability in space can be freely combined as high-level logical operators with a clear and well-defined
topological semantics. The interplay of these aspects is the key to obtain our experimental results.
The first technical contribution of this work is the approach to model checking of distance-based
operators, based on so-called distance transforms, that forms the basis for the definition an efficient
algorithm to solve the model checking problem. Asymptotic time complexity of the procedure we
propose is linear or quasi-linear, depending on the kind of distance used. This result dramatically
improves on simpler model checking algorithms that have quadratic complexity with respect to the
size of the problem, making the approach prohibitively expensive with higher resolution images. The
second technical contribution is a novel operator for statistical texture analysis that is able to classify

2Topochecker: a topological model checker, see http://topochecker.isti.cnr.it, https://github.com/

vincenzoml/topochecker
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points of the space based on the similarity between the area where they are localised, and a target
region, also expressed in logical terms. We consider texture analysis a promising research area for
spatial logics and model checking; in this work we focus on statistical methods, as they are robust to
affine transformations and provide good results in the case studies that we present, and leave open for
future work the investigation in this context of other forms of texture analysis that may be useful in
different applications.

A technical introduction to spatial logics, distance-based operators and statistical texture analysis
is provided in Section 2. In Section 3, the syntax and semantics of our logic are presented. In Section 4,
the two case studies are presented in detail, including, where available, a first assessment of validation.
Some concluding remarks are given in Section 5.

2 Background

In this section, we discuss the background knowledge that we use in the technical developments of
the paper. In particular, we briefly introduce the topic of spatial logics and spatial model checking,
and we detail the use of so-called distance operators in such research line. Furthermore, we provide
an outline of statistical texture analysis, that we employ as a starting point for the introduction of
texture analysis operators in spatial logics for imaging applications.

2.1 Spatial logics and model checking

In this section we briefly introduce the subject of spatial model checking via closure spaces, that forms
the core of our declarative approach to medical image analysis. The interested reader is invited to
consult [19] for a more comprehensive description of the matter.

Much attention has been devoted in Computer Science to formal verification of process behaviour
through modal logics and model checking (see e.g. [4] and references therein). Modal logics also have a
spatial interpretation. In so-called spatial logics, modal operators are interpreted using the concept of
neighbourhood in a topological space, enabling one to reason about points of the space using familiar
concepts such as proximity, distance, or reachability. A comprehensive reference for these theoretical
developments is [1]. Transferring the results in the field to applications, and in particular to model
checking, requires one to use finite models. However, finite topological spaces are not satisfactory
in this respect; for instance, they cannot encode directed graphs, that may be the object of spatial
reasoning in several applications (for instance, consider the graph of roads in a town, including the
one-way streets). Extending topological spaces to closure spaces (see [34]) is the key to generalise
these results; this concept was exploited in [18, 17, 19] to define a spatio-temporal model checking
algorithm. A prototype model checker named topochecker has been developed and used in several
case studies in the context of Collective-Adaptive Systems, in particular for smart transportation [16]
and bike sharing systems [20]. The tool analyses spatial models – either in the form of graphs with
atomic proposition in nodes, or of digital images – and is able to assign truth values to points that
satisfy given formulas. This is done in linear time with respect to the product of the size of the model
and the length of spatial formulas.

The employed spatial logic SLCS (see Section 3 for more details) is a modal logic with an operator,
called near, interpreted as proximity, and the surrounded connective, which is a spatial variant of the
classical temporal weak until operator, able to characterise unbounded areas of space, based on their
boundary properties. The surrounded connective is similar in spirit to the spatial until operator for
topological spaces discussed by Aiello and van Benthem in [2, 70], although it is interpreted in closure
spaces. Several derived operators may be defined, among which, notably, variants of the notion
of reachability in space. The combination of SLCS with temporal operators from the well-known
branching time logic CTL (Computation Tree Logic) [24], has been explored in [17] (and used in case
studies); the logic caters for spatio-temporal reasoning and spatio-temporal model checking. We do
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not consider temporal aspects in this work, as we reason on images that are “snapshots” of a patient
situation (see 5).

2.2 Distance operators

For medical imaging applications, in this work we add distance-based analysis capabilities to topochecker.
Distance operators can be added to spatial logics in various ways (see [45] for an introduction). Dis-
tances are very often expressed using the real numbers R. Typically, one considers operators of the
form De(z)φ where e(z) is a constraint parameterised by a free variable z, and φ is a formula denoting
a spatial property. The intended semantics is that point x is a model of De(z)φ if and only if there is a
point y satisfying φ such that the distance d from x to y satisfies the constraint e(d). Logics of metric
spaces have been introduced in [46]; therein, the constraint e(z) can only be of the form z ≤ k, where
k ∈ R≥0 (distance at most k), or k1 ≤ z ≤ k2 (distance included between k1 and k2)

3. The latter is
called “doughnut operator” in [45]. Notably, the doughnut operator cannot be expressed just using
z ≤ k in combination with boolean operators.

Spatial models in [19] are quasi-discrete closure spaces, that is, a representation of finite graphs
in terms of an extension of topological closure operators. In this context, it is natural to consider
shortest path distance. However, other notions of distance can be more appropriate. For example,
sampling a multi-dimensional Euclidean space is often done using a regular grid, where nodes of a
graph are arranged on multiples of a chosen unit interval that may vary along each dimension of the
space. Nodes are connected by edges using a chosen notion of adjacency (e.g. in 2-dimensional space,
one typically uses four or eight neighbours per point, but any choice may be reasonable, depending on
the application context). Such graphs can then be weighted by associating to each edge the Euclidean
distance between the nodes it connects. Graphs with nodes in an Euclidean space and weighted by
Euclidean distance are known as Euclidean graphs and are naturally equipped with both Euclidean
distance between nodes and (weighted) shortest-path distance – which is also called Chamfer distance
in the particular case of Euclidean graphs with nodes arranged on a regular grid. Let us restrict our
attention to the case of regular grids, which is of interest in MI. Euclidean and Chamfer distances
obviously divert , no matter how fine is the grid or how many neighbours are chosen in the adjacency
relation, unless all the pairs of nodes are linked by an edge.

In MI, voxels – with an application-dependent choice of adjacency – form an Euclidean graph, and
Euclidean distance is the reference distance between two voxels. Therefore, in this context, Euclidean
distance is considered error-free, and Chamfer distance is considered an approximation of it. The
chosen adjacency determines the precision-efficiency trade-off of the computed distance: the more
adjacent voxels are considered, the more precise is the approximation, at the expenses of generating
graphs with larger out-degrees. This is illustrated in Figure 1, where we highlight the points satisfying
Dz>kφ in red, for a binary image with only one point satisfying φ, located in the centre of the image.
In Figure 1a, the result is computed using Euclidean distance. In Figures 1b and 1d, this is done
using Chamfer distance with two different adjacency relations; on the right, the characteristic pattern
of the percentage error with respect to Euclidean distance are shown. The percentage error δ(x) for

Chamfer distance d is defined for each voxel x as δ(x) = |deucl(y,x)−d(y,x)|
deucl(y,x)

, where y is the central point
of the image.

2.3 Texture analysis

A novel kind of logical operators that we introduce in this work is related to Texture Analysis (TA). TA
can be used for finding and analysing patterns in medical images, including some that are imperceptible
to the human visual system. Patterns in images are entities characterised by brightness, colour, shape,
size, etc. TA includes several techniques and has proved promising in a large number of applications in
the field of medical imaging [43, 51, 13, 25]; in particular it has been used in Computer Aided Diagnosis

3See also [55, 56] for examples of application of such connectives in spatio-temporal signal analysis.
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(a) Threshold imposed on Eu-
clidean distance from a point in
the centre of image.

(b) Chamfer distance in two di-
mensions with 8 adjacent voxels
per node (2 × 2 square centered
on node).

(c) Percentage error. Scale:
0-10%

(d) Chamfer distance in two di-
mensions with 24 adjacent voxels
per node (5 × 5 square centered
on node).

(e) Percentage error. Scale: 0-2%

Figure 1: Percentage error of Chamfer distance.

[71, 40, 42] and for classification or segmentation of tissues or organs [14, 60, 59]. In TA, image textures
are usually characterised by estimating some descriptors in terms of quantitative features. Typically,
such features fall into three general categories: syntactic, statistical, and spectral [43]. Our work is
mostly focused on statistical approaches to texture analysis. Statistical methods consist of extracting
a set of statistical descriptors from the distributions of local features in a neighbourhood of each voxel.
In particular, we use first order statistical methods, that are statistics based on the probability density
function (PDF) of the intensity values of the voxels of parts, or the whole, of an image. The statistical
distribution of an area A of the image is approximated as the histogram H of the grey levels of voxels
belonging to A, defined as follows. Given a minimum value m, a maximum value M , and a positive
number of bins k, let ∆ = (M −m)/k. H is a function associating to each bin i ∈ [1, k] the number
of voxels that have intensity in the (half-open) interval [(i− 1) ∗∆ +m, i ∗∆ +m).

The classical statistical approach to TA makes use of statistical indicators of the local distribution of
image intensity around each voxel, such as mean, variance, skewness, kurtosis, entropy [63]. Although
such indicators ignore the relative spatial placement of adjacent voxels, statistical operators are useful
in MI as their application is invariant under transformations of the image. In particular, first order
operators are, by construction, invariant under affine transformations (rotation and scaling), which is
necessary when analysing several images acquired in different conditions. Nevertheless it is possible
to construct features using first order operators, keeping some spatial coherence but loosing at least
partially the aforementioned invariance [67].

In this work, we introduce a spatial logical operator that compares image regions, in order to
classify points that belong to sub-areas in the image where the statistical distribution of the intensity
of voxels is similar to that of a chosen reference region. The technique we use improves over classical
statistical TA based on first-order statistics, by analysing statistical distributions as a whole, whereas
classical methods rely on the extraction of specific indicators from distributions. Several similarity
measures exist (see [54]), that can be used to compare histograms of images. In particular, as a starting
point, we use the cross-correlation function (also called Pearson’s correlation coefficient), that is often
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used in the context of image retrieval, but is also popular in other computer vision tasks. In MI,
cross-correlation is also frequently used for image co-registration ([11])4.

The cross-correlation cc of two histograms h1 and h2 with k bins is defined as follows

cc =

∑k
i=1

(
h1(i)− h1

) (
h2(i)− h2

)√∑k
i=1

(
h1(i)− h1

)2√∑k
i=1

(
h2(i)− h2

)2
where h1 and h2 are the means of h1 and h2 respectively (h = 1

k

∑k
i=1 h(k)).

The value of cc is normalised so that −1 ≤ cc ≤ 1. The value cc = 1 indicates that h1 and
h2 are perfectly correlated (that is, h1 = ah2 + b, with a > 0); the value cc = −1 indicates perfect
anti-correlation (that is, h1 = ah2+b, with a < 0). On the other hand, cc = 0 indicates no correlation.
Note that normalisation makes the value of cc undefined for constant histograms, having therefore
standard deviation of 0; in terms of statistics, a variable with such standard deviation is only (perfectly)
correlated to itself. This special case is handled by letting cc = 1 when both histograms are constant,
and cc = 0 when only one of the two is constant.

3 A spatial logic for medical imaging

The spatial logic SLCS was proposed in [18, 19] to serve the needs of spatio-temporal verification of
Collective-Adaptive Systems. We recall that SLCS is a modal logic interpreted on points of the space,
featuring Boolean values and connectives, and the spatial modal operators near and surrounded. Here,
we present the extension of SLCS that we use for medical image analysis. We start by defining formal
models corresponding to medical images, then we introduce additional SLCS operators for distance-
based thresholding and for statistical texture analysis, and finally we describe our model checking
algorithm.

3.1 Spatial Models of Medical Images

Given the two overlapping, but different research lines aimed at applying spatial model checking to
CAS and MI, the definition of formal models for the proposed extension of SLCS has been driven by the
differently specialised kinds of spatial structures that are currently handled by topochecker. Spatial
models introduced in [18, 19] are based on the mathematical concept of a closure space (generalising
that of a topological space), encompassing in particular directed or undirected finite graphs. Such
standpoint can be further enhanced by considering weighted graphs (see e.g. [56]). Shortest-path
distance is naturally defined on such structures. In the weighted case, the length of a finite path is
the sum of the weights of all its arcs. In the unweighted case, one just assumes that the “weight” of
each arc is 1.

In the following, we restrict our attention to undirected graphs. When such models are instanti-
ated to Medical Images, they take the shape of anisotropic grids, with nodes embedded in a multi-
dimensional Euclidean space (very often two- or three-dimensional). Such structures are treated by
topochecker as Euclidean graphs (see Section 2.2). As we shall see, our logical language includes
different logical operators for Euclidean and shortest-path distances, mostly by the dual nature of our
work, aiming also at CAS (more on this in the conclusions).

Formally, the information needed to represent a medical image in the model checker is encoded by
a so-called quasi-discrete closure model enriched with metric and quantitative information.

Definition 1. Given a finite or countable set P of proposition letters, a quasi-discrete metric closure
model is a structure((X, CR), v, d), where X is a finite set, R is a symmetric relation on X, CR :

4In image processing, the problem of co-registration is that of mapping two images coming from different sources to
the same spatial domain, by finding transformations of the considered images that make given image features coincide.
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F ::= TT true
| FF false
| p proposition letter
| p on n atomic constraint
| !F not
| F1 & F2 and
| F1 |F2 or
| NF closure
| IF interior
| F1 SF2 surrounded
| MDDT(F,on n) shortest-path distance
| EDT(F,on n) Euclidean distance
| SCMP(p1,F1, rad,on thr, vmin, vmax, nbins)(p2,F2) statistical similarity

Figure 2: Syntax of the spatial logic that we use in this work.

P(X) → P(X) is the quasi-discrete closure operator uniquely identified by the relation R ⊆ X ×X
(or equivalently, (X,R) is a finite graph5), v : X×P → R≥0 is a quantitative valuation of proposition
letters, and d : X × X → R≥0 is a distance function, obeying to the well-known axioms of metric
spaces (namely, identity of indiscernibles, symmetry and triangular inequality). A weight function
is considered implicitly defined by such information, associating to each arc (x, y) ∈ R the weight
w(x, y) = d(x, y).

In Definition 1, the distance d is meant to denote Euclidean distance, whereas shortest-path dis-
tance is implicitly defined by the relation R. Recall that a medical image is composed of voxels, that
are parallelepipeds sharing vertices, edges, or faces with neighbours. Euclidean distance is therefore
determined for a medical image by the anisotropic voxel dimensions, that are recorded in images by the
machines capturing them. The chosen adjacency relation R is instead use-case-dependent. A frequent
choice in MI – and the default in topochecker– is to let the neighbours of voxel x to be (x itself and)
all the voxels that have at least one vertex in common with x (also known as Moore neighbourhood,
or 8-adjacency in two dimensions, and 26-adjacency in three dimensions); another possibility is to
consider (x itself and) those voxels that have a face in common with x (Von Neumann neighbour-
hood or 4-adjacency in two dimensions); other possibilities include e.g., larger neighbourhoods (see
Section 2.2), or neighbourhoods inducing planar connectivity in three-dimensional spaces.

3.2 Syntax and semantics

In the remainder of the paper, we will represent logical operators using the concrete notation of
topochecker. Here, we introduce the syntax and semantics of the logic, assuming Definition 1.

Definition 2. The syntax of the spatial logics for MI is defined by the grammar in Figure 2, where
p, p1, p2 range over a finite set of proposition letters P , on is a comparison operator (one of =, <, >,
<=, >=), and n, rad, thr, vmin, vmax, nbins, are (floating point) numeric constants.

Truth values and Boolean operators have the usual intended semantics. Furthermore, with respect
to classical presentations of logical formalisms, we employ a mild generalisation of the language of
atomic propositions, that we already used in the research line of [20]. By Definition 1, the valuation
of atomic proposition letters is quantitative. More precisely, it associates to each proposition letter

5The presentation of graphs by quasi-discrete closure spaces is convenient in order to borrow concepts from topology;
the reader may just think of the underlying graph (X,R); formally, the closure operator is defined as C(A ⊆ X) = {y ∈
X | ∃x ∈ A.(x, y) ∈ R}. Conversely, a binary relation R is uniquely identified by any quasi-discrete closure space. See
[19] for more details.
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and each point a value in the domain of non-negative real numbers. However, the logic itself is not
quantitative: each formula and atomic proposition is meant to denote a set of points. This is achieved
by letting the syntax of atomic propositions consist of a simple constraint language using equality and
inequality between proposition letters and real-valued constants. For example, formula p > k& q < h

denotes all points x of the space such that the value of p is greater than k and the value of q is less
than h. Atomic predicate p in isolation is a shorthand for p = 1. Such extension is conservative and
does not interfere6 with the theory of SLCS.

Operator N (“near”) corresponds to the closure operator of topological spatial logics, that is, voxel
x satisfies NF whenever there is some voxel y satisfying F with (x, y) ∈ R. Using imaging terminology,
x is in such situation whenever it belongs to the dilation of the set of voxels satisfying F, that is,
whenever it either satisfies F, or it is adjacent to a voxel satisfying it. Operator I is a derived one,
defined as IF =!N!F. Voxel x satisfies IF whenever it satisfies F and for all y with (x, y) ∈ R, also
y satisfies F. Such operation corresponds to the erosion of the set of voxels satisfying F (or to its
interior, in topological terminology). Operator S is the surrounded operator. The formal semantics
of this operator is discussed in detail in [19]. Briefly, voxel x satisfies F1SF2 if and only if it satisfies
F1 and, for each path (of adjacent voxels) x1, . . . , xn, with x1 = x and xn not satisfying F1, there
is a point xi, with i > 1, satisfying F2, and furthermore, all of x1, . . . , xi−1 satisfy F1. Informally
speaking, x belongs to a set of voxels satisfying F1 which is separated from points not satisfying F1

(if there are any) by a barrier of voxels satisfying F2.
Operators MDDT and EDT are the distance-based operators. Let us first discuss EDT (Euclidean

Distance Transform). Let F be a formula satisfied by set of voxels S. Let x be an arbitrary voxel
of the image, and define the distance from S to x as d(S, x) = miny∈S d(y, x). Formula EDT(F,on n)
is true at voxel x when d(S, x) on n (e.g., formula EDT(F, <= 10) is true at x when d(S, x) ≤ 10).
Operator MDDT (Modified Dijkstra Distance Transform) is interpreted in the same way, but it uses
shortest-path distance instead of Euclidean distance.

Finally, SCMP is the operator for statistical texture analysis. Consider the formula F = SCMP(p1,F1,
rad,on thr, vmin, vmax, nbins)(p2,F2), with F1, F2 formulas, and on a binary comparison operator.
Informally speaking, for each voxel x, such formula computes a similarity score between the local
distribution, in a neighbourhood of x, of the quantitative values of proposition p1, and the global
distribution of the quantitative values of proposition p2 on voxels satisfying F2. Formula F2 may
be, for example, a formula denoting a small region drawn by hand by an expert, with the aim of
identifying larger areas that are similar to it. Such similarity score is compared to the threshold thr

using operator on, and the Boolean result obtained is the truth value of F at point x.
More precisely, F is true at voxel x when x satisfies7 F1, and the condition cc on thr holds,

where cc is the statistical cross-correlation between two histograms h1 and h2, having in common the
number of bins nbins, the minimum value vmin, and the maximum value vmax (see Section 2.3 for
more details). Namely, h1 is the histogram of the quantitative values of proposition p1 in the area
of radius rad and centre x, whereas h2 is the histogram of the quantitative values of proposition p2
in the voxels of the whole image that satisfy F2. The minimum and maximum values are aimed at
improving the resolution of histograms, by excluding rare peaks in the signal, that may be due to
artefacts in acquisition and would result in a high number of empty bins.

For example, formula SCMP(p1, TT, 10.0, >= 0.7, 200, 2000, 100)(TT, p2) is true at voxels centred in
a region – of radius 10.0 – where the distribution of the values of p1 has cross-correlation greater

6The machinery that we described can be made compatible with classical presentations, as follows: given a set P̂ of
proposition letters, with quantitative valuation v̂ : P̂ ×X → R≥0, the set of atomic propositions (in the classical sense)
P is a countable set, consisting of the constraints with free variables in P̂ , and the (classical, Boolean) valuation function
v : P → 2X is just evaluation of constraints, which makes use of the assignment v̂.

7The usage of F1 as a restriction in SCMP is redundant from a mathematical standpoint: the definition of SCMP
could achieve the same effects if F1 was used in a logical conjunction, instead than as an argument of the SCMP operator;
however, the computation of SCMP is resource-intensive, and the considered regions are typically small and well-specified;
F1 is used as an hint to the model checker, to reduce analysis time.
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than 0.7 with the distribution of the values of p2 in the whole image. In this case, cross-correlation is
computed using 100 bins, and taking into account only values between 200 and 2000.

Remark 1. We do not include examples of formulas in this section, as we will present many in
the detailed walk-through of our experiments in Section 4. Therein, some logical patterns are fre-
quently used. The “from-to” operator (see [19] for a detailed explanation of this pattern) is defined
as T(F1,F2) , F1 & ((F1 |F2)RF2), where R is the reachability operator. Such operator, dual to S,
is defined as F1RF2 ,!(!F2S!F1). Briefly, a voxel satisfies T(F1,F2) if and only if it lies in an area
A satisfying F1, and A touches the area B satisfying F2, that cannot be empty. For this reason, in
Section 4, we shall suggestively call the T operator “touch” for the sake of readability. Two more
patterns are used to filter noise in results. One is formula NIF, where F is a formula. The effect of
such formula is to capture the regular region included in F. Voxel x satisfies NIF if and only if it is
adjacent to at least one voxel y satisfying F which, in turn, is not adjacent to voxels satisfying !F.
The effect of such a filter is to eliminate small regions, e.g. those consisting of one voxel, when these
are considered noise or artefacts. Another (similar in spirit) form of filtering is in use in our exam-
ples to smoothen regions using a predefined distance. Consider formula EDT(!(EDT(!F, < k)), < k) (or,
similarly, with MDDT in place of EDT, when the underlying graph is undirected, as in medical images).
The voxels satisfying it are those that are closer than k to at least one voxel satisfying F, and in turn
distant at least k from voxels not satisfying !F. Informally speaking, this eliminates areas of diameter
smaller than k satisfying F.

3.3 Model checking

All the formulas expressible in our spatial logical language may be verified automatically on medical
images. Except for the shortest-path distance operator – currently implemented by a quasi-linear
procedure – the algorithm that we use has linear complexity in time and space, with respect to the
product of the number of voxels in the considered image and the length of the formula (total number of
operators and constants). We note in passing that in the more general case of graphs, the size of models
for our complexity estimates is the sum of the number of edges and vertices in the graph; indeed, for
medical imaging, once the type of connectivity is chosen, the number of edges is proportional to the
number of vertices by a constant factor, therefore one can consider as size for asymptotic reasoning
just the number of vertices.

The model checking algorithm used by topochecker is a global one, that is, even though truth
of formulas is defined on single voxels, a run of the algorithm returns a truth value for each voxel,
considering all voxels at once. This design choice has proven apt to spatial reasoning, in particular
in medical imaging, as typical usage requires identification of areas of an image, rather than just
checking whether single voxels satisfy certain requirements. The algorithm proceeds by induction on
the structure of formulas. At each sub-formula F, a new image layer is created, where all the points
satisfying F are coloured. The algorithm used for the fragment of the logic presented in [18, 19] is
described in detail therein; the remaining connectives are SCMP and the distance operators, that
we explain in the following. For SCMP, the definition is implemented directly; this yields a linear
algorithm that analyses the metric ball of specified radius for each voxel.

For distance-based operators, generally speaking, the time complexity of simple model check-
ing algorithms is quadratic in the size of the space (see [56] for an example). However, given a
multi-dimensional image equipped with Euclidean distance, global spatial model checking of formulas
EDT(F,on n), or MDDT(F,on n) can be done in linear time (quasi-linear time, respectively) with respect
to the number of points of the space. This is achieved via so-called distance transforms, that are one
of the subjects of topology and geometry in computer vision [44], and are extensively used in modern
image processing. Consider a multi-dimensional image. The outcome S of computing the truth value
of F on each point of a model is a binary (multi-dimensional) image. The binary value stored in each
point corresponds to the truth value of F at that point. From this data, it is possible to define a
transformed image, called the distance transform of S, such that in every point x, a value dx ∈ R≥0 is
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stored. The value of dx is the distance from S to x. There exist both exact and approximate algorithms
for computing distance transforms, that are usually classified by their asymptotic complexity, compu-
tational efficiency, and possibility of parallel execution. In particular, there are effective linear-time
algorithms [53, 31].

Model checking of formula EDT(F,on n) (resp. MDDT(F,on n)) is done in one pass over the considered
structure (therefore, in linear time), selecting the quantitative values v of the distance transform
that satisfy v on n. The study of efficient algorithms for computing distance transforms is a well-
established research line in Computer Graphics (see [23] for an outline of the current state-of-the-art).
In topochecker, two of these algorithms are currently implemented.

For Euclidean distances, topochecker uses the linear algorithm that was proposed by Maurer in
[53]. Such algorithm computes Euclidean distance transforms on anisotropic multi-dimensional grids
(such as medical images); it has linear complexity, its run-time is predictable, and it is among the most
efficient algorithms for the purpose [32]. The general idea of the algorithm is to proceed by induction
on the number of dimensions of the image. The distance transform problem in n + 1 dimensions is
reduced to the problem in n dimensions by a technique that relies on multi-dimensional Voronoi maps.
For space reasons, we omit further details, and we refer the interested reader to [23], that also studies
the algorithm from a theoretical point of view. The specification described therein was closely followed
in our implementation.

For shortest-path distances over arbitrary directed graphs, topochecker employs a variant of the
well-known Dijkstra shortest-path algorithm, called “modified Dijkstra distance transform” in [37].
The pseudo-code of the algorithm is presented in Figure 3. The standard Dijkstra algorithm uses a
priority queue sorted by distance from a root node. The queue is initialised to the root node of the
considered graph, whose priority is set to 0. In the modified version, when computing the distance
transform from a set of nodes identified by formula F, the queue is initialised with all the nodes that
satisfy F and have an outgoing edge reaching a point not satisfying F; all such nodes have priority
0. The algorithm then proceeds as the standard algorithm. As a result, after termination, each node
of the graph is labelled with the least shortest-path distance from the nodes satisfying F, as required
by the specification. Asymptotic run-time of this procedure is not linear but quasi-linear due to the
usage of a priority queue. In this respect, research is still active to optimise the procedure in specific
cases (see e.g. [66]). However, the effective run-time of the algorithm is highly dependent on the
structure of the considered graph and the chosen implementation of data structures; in our tests on
Euclidean graphs, this procedure is typically faster than computing the Euclidean distance transform
using Maurer’s algorithm, although a precise comparison of efficiency between the two algorithms is
obviously implementation dependent, and also depends on the precision-efficiency trade-off given by
the chosen adjacency relation.

The model checker topochecker uses memoization of model checking of sub-formulas, so that each
sub-formula is visited exactly once for each model. The cache is stored on-disk, leveraging incremental
design of complex formulas. The language used by the tool permits parametric abbreviations for
formulas, such as Let f(a, b, c, ...) = F, where F is a formula that can use names a, b, c, that are
instantiated to formulas when f is invoked. Model definitions using medical images are introduced
in topochecker by associating an arbitrary number of proposition names to files containing medical
images8, as follows:

Model "med:img1=file1.nii,img2=file2.nii,...";

For example, the quantitative (floating point) value of proposition img1 at each voxel is equal to the
intensity value of the same voxel in file1.nii. For this to work, all the loaded images must have the
same voxel coordinates (e.g., coming from the same machine and type of acquisition, or after manual

8The model loader of topochecker currently supports the NIfTI (Neuroimaging Informatics Technology Initiative)
file format9 (version 1 and 2). In this work, images downloaded from Radiopaedia.org in jpeg format, and dicom images
have been converted to NIfTI-1.
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Function MDDT(G,Phi)

Input: graph G=(V,E,W) with positive weights given by function W,

set of nodes V, set of arcs E; formula Phi

Output: vector indexed by nodes in V, containing the shortest-path

distance of each node from the points satisfying Phi

var L := Empty Ordered Set of Vertices

var D := Vector of Numbers indexed by nodes in V, initialised to infinity

for n in V

if Phi is true at n

D[n] := 0

for m with (n,m) in E

if Phi is false at m

insert n in L with priority 0

while (L is not empty)

pop element n with lowest priority from L

for m with (n,m) in E

if (D[n]+W(n,m) < D[m])

D[m] := D[n]+W(n,m)

insert or update m in L with priority D[m]

return D

Figure 3: Pseudo-code for the Modified Dijkstra Distance Transform.

resampling). No resampling is currently done in topochecker. Such operations require particular
care, and might otherwise introduce artefacts (such as aliasing) in intermediate analysis phases, that
might be difficult to detect in the final result.

4 Examples

In this section, we illustrate our approach by means of two examples of segmentation in Magnetic-
Resonance (MR) images, introduced below.

1. Glioblastoma (GBM) tumour and oedema segmentation in images obtained using the MR-FLAIR
(Fluid-attenuated inversion recovery) pulse sequence; this analysis is carried out in two dimen-
sions.

2. Rectal cancer segmentation in images obtained using the MR-T2w (T2 weighted) pulse sequence,
and ADC (Apparent Diffusion Coefficient) maps. This analysis is carried out in three dimensions.

Remark 2. Before going into details, it is worth emphasizing that the work we present in this section
is aimed at providing an introduction to the analysis capabilities of our logical language, rather than
complete case studies. For instance, consider our glioblastoma specification, which is rather concise,
consisting of a less than 30 lines long logical specification, and a simple preprocessing step. Although
such procedure was successfully tested on five images from different sources and acquired in very differ-
ent conditions, this is certainly not sufficient to validate our example as a glioblastoma segmentation
methodology for future clinical usage. Indeed, given the encouraging preliminary validation results
(mentioned in Section 4.3), some work in progress – targeted to clinical applications and the medical
community – aims at improving the method, eliminating corner cases in the formulas as much as
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possible, making it robust to different acquisition conditions and properly validating it. More generally
speaking, clinical experimentation is the next step in our research program, with respect to the current
work.

In this light, we note that numeric thresholds and other parameters (e.g., the number of nested
N constructs in some formulas, the number of bins for statistical analysis, etc.) have been chosen
by the medical physicist in charge of the analysis, by expert knowledge on the matter and in some
cases by trial-and-error. The values that we use might prove stable in clinical validation (and this is
the purpose of the preliminary normalisation of images that we use), but this is not yet to be taken
for granted, or even to be expected in more general situations. Instead, parameter calibration on a
per-image or per-study basis will be an important subject in our future research. Such calibration
may be fully automatic (e.g., through machine learning techniques), but this is just one possibility. It
would also make sense to adopt a semi-automatic approach (which is also frequent in state-of-the art
techniques, see e.g. [30, 33, 62, 72]), involving human interaction with an expert to merely calibrate
the parameters, rather than performing a full manual segmentation, in order to save a large part of
the time (and costs) required for preparation to radiotherapy or surgery.

4.1 Example: segmentation of glioblastoma

In this example we detail the specification of an analysis aimed at the segmentation of glioblastoma
and oedema in MR-FLAIR images. The procedure is non-trivial, but every passage is justified by
morphological and spatial considerations on the arrangement of parts of the brain.

GBMs are intracranial tumours composed of typically poorly-marginated, diffusely infiltrating
necrotic masses. Even if the tumour is totally resected, it usually recurs, either near the original site,
or at more distant locations within the brain. GBMs are localised to the cerebral hemispheres and
grow quickly to various sizes, from only a few centimetres, to lesions that cover a whole hemisphere.
Infiltration beyond the visible tumour margin is always present. In MR T2/FLAIR images GBMs
appear hyperintense and surrounded by vasogenic oedema10.

Being able to segment tumour and oedema in medical images can be of immediate use for automatic
contouring applications in radiotherapy and, in perspective, it can be helpful in detecting the invisible
infiltrations in Computer-Aided Diagnosis applications.

Segmentation of GBM according to our method is performed in three steps:

1. a preprocessing step (not using topochecker), aimed at normalisation of images, to make the
choice of thresholds in our experiment applicable to different images;

2. brain segmentation, to limit the area of the image where the tumour is searched for;

3. tumour and oedema segmentation, which is the stated goal of this example.

Preprocessing Histograms of grey levels of images11 of the same body part may differ from each
other for inter-patient or inter-scanner differences or depending from the actual acquisition volume
(Figure 4) or the file format used to store the image12.

Scaling the intensity of images so that the mean is 1 yields good results on different images. This
is accomplished by dividing the intensity of each voxel by the average of the intensity levels of all
the significant voxels in the image. A voxel is considered significant when it does not belong to the

10Vasogenic oedema is an abnormal accumulation of fluid from blood vessels, which is able to disrupt the blood brain
barrier and invade extracellular space

11Histograms of images are constructed as maps from intervals of intensity values to natural numbers representing the
number of voxels in the image with corresponding intensity level (see Section 2). The histograms that we show have
been normalised so that the area below the curve is 1.

12For instance, jpeg images, as downloaded from Radiopaedia.org, typically use 8-bit precision (typical range 0-255)
(see Figure 4) whereas dicom images saved by scanners typically use 12 or 16-bit (for MR images typical range is 0-4096
or 0-65536, respectively) (see Figure 5).
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(a) Case courtesy of Dr. Ahmed Abd Rabou, Ra-
diopaedia.org, rID: 22779.

(b) A different slice of the acquisition in Figure 4a.

(c) Case courtesy of A.Prof Frank Gaillard, Ra-
diopaedia.org, rID: 5292.

(d) Histograms of Figure 4a (blue), 4b (green), 4c
(red).

Figure 4: Slice of MR-FLAIR brain acquisition of different patients and corresponding histogram.

(a) A slice of MR acquisition of brain and its equal-
ized version.

(b) Histograms of grey levels of the original (red)
and equalized (green) version of image in 5a

Figure 5: Effect of histogram equalization.
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(a) Effect of thresholding us-
ing the first part of histogram
(green).

(b) Sub-mask that touches the
border of the image (yellow).

(c) Mask (green) of image exclud-
ing the background.

Figure 6: Finding the mask for normalisation.

Figure 7: Histograms of normalised version of images in Figure 4a (blue), Figure 4b (green), Figure 4c
(red) and Figure 5a (orange).

background. Significant voxels are selected using a mask (consisting of the green area in Figure 6c).
We note in passing that equalization of histograms is another form of normalisation, frequently used
for texture analysis ([41]). We do not use this method as it changes the relationship between grey
levels of different structures in the image (as shown in Figure 5), that we use rather prominently for
differentiating different tissues; normalisation of image intensity is sufficient for our purposes.

To build the mask in Figure 6c we start from the observation that the background (corresponding to
the air surrounding the head of a patient) is darker than the rest of the image, so it mostly contributes
to the initial part of the histogram. This situation is witnessed in the histogram by a peak close to
0. A cutting level is thus selected for each image as the value immediately following such peak. By
a threshold using such level, it is possible to isolate the background, by separating it from the head
(Figure 6a). Note that the obtained mask also includes cerebrospinal fluid (CSF) and bone. The part
of the mask that touches the boundary of the whole image is then selected (Figure 6b) and inverted
(that is, it is used to exclude the external background), obtaining the mask in Figure 6c, which is
finally used to select the significant voxels to compute the mean value for normalisation. Figure 7
shows the histograms of images after normalisation.

Brain segmentation Using topochecker, we perform a segmentation of the brain to limit the
search area of the tumour. This improves the accuracy of the output (e.g., avoiding areas in bone
marrow or skull) and reduces computing time.

Brain segmentation in MR images is an important topic on its own in many applications in neu-
roimaging; several methods have been proposed and research is still ongoing (see e.g. [49, 28]). In
contrast, we use a simple method, tailored to loosely identify a region in MR FLAIR images on which
to focus the analysis of GBM. In the process below, we shall fix some thresholds; by virtue of the
preprocessing step that we employ, these do not need to be changed for each image.

Intuitively, the model of a patient head that we use to segment the brain in MR FLAIR images is
defined as follows
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• Darker voxels in the head belong to CSF and bones.

• Brighter voxels belong to adipose tissue surrounding the head and bone marrow. Tumour and
oedema are also brighter than the surrounding tissues.

• The brain region is composed by white matter, grey matter, tumour and oedema.

• The brain (excluding tumour) has intermediate intensities and is mainly surrounded by CSF.

The model definition in topochecker is as follows.

Model "med:FLAIR=GBM-49-NORM.nii";

Let reach(a,b) = !(!b S !a);

Let touch(a,b) = a & reach(a|b,b);

GBM-49-NORM.nii is the NIfTI image of the MR FLAIR acquisition shown in Figure 4c. In the
rest of the analysis, it is referred to using the atomic proposition symbol FLAIR. The definition of the
derived operators reach and touch comes from Remark 1.

We start by looking for the external border of the head, consisting of skin and adipose tissue.
Adipose tissue in the normalised MR FLAIR images has intensity above 1.7. Boundaries of regions
in medical images may fail to be closed, due to the presence of occasional thin structures of different
intensity (e.g. the bright connections to the venous sinuses that are present in the CSF that surrounds
the brain). However, we shall use the S operator to identify areas that are surrounded by the adipose
tissue; this requires the boundary to be closed. Therefore we use nested applications of the near
operator N to enlarge the boundary in order to close it. In this case, two applications are sufficient
(see Remark 2).

Let adipose = N (N [FLAIR>1.7]);

In Figure 8a we show the output of topochecker on formula adipose, where the voxels satisfying
the formula are shown in green. Part of the oedema and the bone marrow are segmented together with
the adipose tissue. However, this is sufficient to identify the head as the region within the adipose

border. This is done by the following formulas:

Let brainTHR = [FLAIR>0.4];

Let head1 = [FLAIR>0.98] & [FLAIR<1.7];

Let head2 = head1 & (!touch(head1,adipose));

Let external = (!head2) S adipose;

Let head3 = !(external);

Let head3A = (!((!adipose) S head3)) & brainTHR;

Let head = (head3A S head3) | head3;

We comment on the most important definitions. Formula head2 identifies a region which is cer-
tainly contained in the head (ensured by the chosen thresholds for head1) and does not touch the
adipose border. This is aimed at removing artefacts that are present after thresholding adipose, due
to the continuous intensity decay from the brighter adipose region to the darker background. Formula
external identifies the part of the image which lies outside adipose (more precisely, the part of the
image which is on the “opposite side” of adipose with respect to head2). Therefore, formula head3

characterises the region inside adipose (on the same side of head2). Finally, formula head (the brown
area in Figure 8b) is used to filter out small holes of variable size (corresponding to the green dots in
Figure 8a) consisting of oedema and bone marrow that are erroneously included by formula adipose

in the previous step.
The next step is to identify the CSF as the dark voxels within the head region. Again, we will

need to use formula CSF in an application of S, therefore we enlarge it using nested N operators.
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(a) Identification of
adipose tissue surround-
ing the head (formula
adipose).

(b) Identification of the
head surrounded by the
adipose tissue (formula
head).

(c) Identification of the
dark cerebrospinal fluid
(CSF) within the head
(formula CSF).

(d) Final brain segmenta-
tion (formula brain).

Figure 8: topochecker output of brain segmentation in the FLAIR MR slice of a brain affected by
glioblastoma seen in Figure 4c.

Let CSF1 = [FLAIR>0.06] & [FLAIR<0.33] & head;

Let CSF = N (N CSF1);

Voxels satisfying formula CSF are coloured in green in Figure 8c. Finally, we proceed with segmen-
tation of the brain, as follows:

Let flt(a) = MDDT(!(MDDT(!a,<1)),<1);

Let brain1 = brainTHR & ((head&(!CSF)) S CSF) ;

Let brain11 = brain1 & [FLAIR<0.8];

Let brain2 = flt(brain11);

Let brain3 = touch(brainTHR,brain2);

Let brain4 = touch(!CSF,brain3);

Let brain = brain4 S brain3;

The brain region is initially (formula brain1) defined as the part of the previously identified region
brainTHR that is included in the part of the head which is not CSF, but is surrounded by CSF. The
brighter bone marrow is removed by a further threshold (brain11). Then we remove regions with
radius smaller than 1mm (formula brain2), using the technique explained in Remark 1. Small regions
in MRI scans are more sensitive to noise, and in this particular analysis we are interested in identifying
the main tumoral area.

Region brain3 enlarges brain2 with the voxels of intermediate intensities (brainTHR) that touch
it. Finally, small holes in brain3 are filled, obtaining region brain. Such artefacts are defined as
those voxels (brain4) that do not belong to CSF, touch brain3 (that could otherwise be an empty
region), and are surrounded by brain3. In Figure 8d we show the final output of brain segmentation
by colouring in brown voxels satisfying formula brain.

GBM segmentation In the final part of our analysis, we identify tumour and oedema regions.
Since in MR FLAIR, GBM and oedema are hyperintense areas, and the oedema is brighter than the
tumour, we start by using thresholds that provide a rough segmentation of the image:

Let ut = [FLAIR >= 1.47] & [FLAIR < 2.4] & brain;

Let lt = [FLAIR > 1.17] & [FLAIR < 1.53] & brain;
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Let lt1 = flt(lt);

Let ut1 = flt(ut);

In Figure 9b we show in brown formula ut (“upper threshold”) that refers to the oedema, and
in green formula (lt) (“lower threshold”) that refers to the tumour. Moreover, we elide regions in
ut and lt whose radius is smaller than 1mm, by formulas ut1 and lt1, illustrated, using the same
colours, in Figure 9c.

An important constraint, that drastically reduces noise in the output of our analysis, is the a priori
knowledge that oedema and tumour are very close to each other. We implement this idea using the
distance operator as follows:

Let utdst = MDDT (ut1,<=2.0);

Let tum1 = touch(lt1,utdst);

Let oed1 = ut1 & reach(utdst,tum1);

In this example, we used shortest-path distance as an approximation of Euclidean distance, for the
sake of execution speed, as high accuracy for the distance is less important in this particular case. We
first define the region at distance less then 2mm from ut1 (formula utdst); then select sub-regions of
lt1 that touch utdst (formula tum1) and sub-regions of ut1 that can reach formula tum1 (formula
oed1). The result is shown in Figure 9d.

Regions denoted by formulas tum1 and oed1 are certainly part of the tumour and the oedema,
respectively. However, this is not sufficient to cover the whole tumour and oedema. We finalise our
analysis by using statistical texture analysis:

Let tum2 = (SCMP (x,brain,10,>0.4,0,3.3,100) (x,tum1));

Let oed2 = (SCMP (x,brain,10,>0.4,0,3.3,100) (x,oed1));

Let tum3 = flt(tum2 | tum1);

Let oed3 = flt(oed2 | oed1);

Let tumor = touch(tum3,oed3);

Let oedema = touch(oed3,tum3);

Regions tum2 and oed2 are sub-regions of the outcome of formula brain having a similar histogram
(that is, cross-correlation greater than 0.4) to tum1 and oed1, respectively. In the definition of tum3
and oed3, smaller areas (of radius smaller than 1mm) are filtered using the flt construct that we
explained above.

Finally, tumor and oedema are defined as being inter-reachable. Figure 9e illustrates the areas
defined by tum3 and oed3. Figure 9f is the final output of segmentation.

For completeness, we show the code outputting the resulting images in topochecker. Output is
saved in image GBM-seg.nii, colours for formulas are as specified in the first parameter of the Check

instructions; a colour palette (mapping 8 to brown and 7 to green) has been applied to display the
images.

Output GBM-seg.nii

Check "8" oedema;

Check "7" tumor;

The whole analysis presented in this section has been carried out in 2 dimensions. The same
approach also works in three dimensions, with minor modifications. Figure 10 shows some slices of the
segmentation of MR-FLAIR acquisition of the patient in Figure 5a, using topochecker on the whole
3D volume image. Minor modifications to the model checking session presented in this section were
required. For space reasons, we omit the details. However, in Section 4.2 we detail rectum carcinoma
segmentation, that has been carried out in 3 dimensions for accuracy reasons.
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(a) Original image. (b) Output of threshold operator. (c) Output after filtering regions
smaller than 1mm of radius.

(d) Output of distance operator. (e) Output after statistical tex-
ture analysis.

(f) Segmentation of tumour and
oedema.

Figure 9: Experimental results of using topochecker for segmentation of glioblastoma (green) and
oedema (brown) (case courtesy of A.Prof Frank Gaillard, Radiopaedia.org, rID: 5292).
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Figure 10: Slices of an image obtained using the method of Section 4 for segmentation of glioblastoma
(green) and oedema (brown) on a 3D volume. The top row shows the original slices. The bottom row
is the output of segmentation.
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4.2 Example: segmentation of rectal carcinoma

In this example we detail an analysis aimed at segmentation of rectal cancer. Rectal carcinoma is a
frequent pathology [61] and the survival rate after radical surgery is much improved in case of early
diagnosis. Therefore, identifying the tumour by diagnostic imaging has a key role in the output of the
treatment of rectal cancer; segmenting the tumour in images is an important step in preparation for
radiotherapy. Rectal cancer MR imaging protocols usually include T2w images of the pelvic district,
which is considered the key sequence for the diagnosis of rectal cancer. However, several studies have
underlined the importance of using DWI (Diffusion-weighted imaging) sequences for a more detailed
study of the disease [64]. MR-DWI images measure the degree of diffusion of water molecules through
imaged tissues. Changes in tissues caused by the growth of a tumour (apoptosis, necrosis, increased
vascularity) modify the effective diffusive capacity of water molecules in that area, and DWI is useful
to capture this phenomenon. The properties of diffusion are quantified out of DWI images building
ADC (apparent diffusion coefficient) maps. ADC maps are hyperintense in areas where water diffusion
is free and hypointense in areas where water diffusion is restricted due to the presence of obstacles.
Rectal carcinomas have intermediate grey levels in T2w and are hypointense in ADC maps.

Since positioning of regions of interest (ROIs) has a considerable influence on tumour ADC values
[47], instead of using the T2w images and then co-registering segmentation output to ADC maps, we
perform the segmentation of rectal cancer directly on ADC maps for more accurate results.

Differently from Section 4.1, segmentation of rectal cancer is performed using the 3D volume of
the image as a whole, rather than considering separate slices. In our experimentation, 3D analysis
has yielded better results, as the considered regions are rather small and reasoning simultaneously on
different slices maximises the information which is available to each analysis pass. The segmentation
process is done in four steps:

1. preprocessing (not using topochecker), aimed at normalisation of images;

2. rectum segmentation in T2w images, to limit the area of the image where the tumour is searched;
rectum segmentation is done in T2w as the contrast of ADC is not sufficient to properly distin-
guish organs;

3. co-registration of rectum segmented in T2w to ADC, using patient positioning information that
is stored in images by the scanner;

4. tumour segmentation in ADC map, which is the stated goal of this example.

Preprocessing Figure 11 shows one axial and one sagittal view of T2w and ADC acquisitions.
Since the FOV (Field of View) of the T2w acquisition lies entirely within the patient body (Fig-

ure 11a and Figure 11b), normalisation of the T2w volume is obtained dividing the grey level of each
voxel by the average of voxel intensities. For ADC maps instead, a mask is created using a procedure
similar to that described in Section 4.1. However, we used the DWI images to obtain the mask, as in
the ADC maps the background is very noisy (see Figure 12 – note that DWI and ADC masks have
the same coordinate system).

Rectum segmentation The model definition for rectum segmentation defines the atomic proposi-
tion symbol T2 which is used throughout the analysis.

Model "med:T2=T2-NORM.nii";

We slightly change the definition of flt (defined in Section 3, and used in Section 4.1 to remove
small regions attributed to noise). We consider regions that only appear on one slice as noise, even
when these are not filtered out by the previous definition; such regions are thus removed by nested
application of I and N on top of the previous definition.
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(a) T2w axial slice. (b) T2w sagittal slice.

(c) ADC map axial slice. (d) ADC map sagittal slice.

Figure 11: Rectum acquisition

(a) DWI slice. (b) ADC slice. (c) Mask on ADC.

Figure 12: ADC mask

QUANTICOL 21 Mar 10, 2017



Spatial Model Checking for Medical Imaging (Revision: 1.0; Mar 10, 2017) Mar 10, 2017

Let flt3D(a) = N (I (MDDT(!(MDDT(!a,<1)),<1)));

The area corresponding to the rectum in T2w images is identified as the union of a hyperintense
region, called hyperT2r, a hypointense region, called hypoT2r, and region having intermediate inten-
sity, called intermT2r, that are close to each other (detected using the touch operator, corresponding
to the T connective described in Remark 1).

The aforementioned hyperintense region is defined as hyperT2r below.

Let hyperT2=flt3D([T2>1.6]);

Let hyperT2Super = flt3D([T2>2.5]);

Let hyperT2r = touch(hyperT2,hyperT2Super);;

The hypointense region hypoT2r is defined below as being within 5mm from hyperT2r.

Let hypoT2 = flt3D([T2>0.17] & [T2<0.5]);

Let hyperT2rS = MDDT(hyperT2r,<5);

Let hypoT2r = touch(hypoT2,hyperT2rS);

Finally, the region of intermediate intensity intermT2r is defined as follows.

Let rectum1S = MDDT(hyperT2r | hypoT2r,<5);

Let intermT2 = flt3D([x>0.9] & [x<1.4]);

Let intermT2r = touch(intermT2,rectum1S);

The segmented rectum (formula rectum below) is defined as the union of the three regions (the
green, brown and red areas in Figure 13); the area is expanded, in formula rectumS, to cater for loss
of precision that occurs in the co-registration to the ADC map (see the green area in Figure 14).

Let rectum = hyperT2r | hypoT2r | intermT2r;

Let rectumS = MDDT(rectum,<5);

Co-registration Co-registration between the T2w and the ADC maps makes use of the orientation
information stored in dicom header. T2w and DWI images are acquired in the same session. The
dicom header stores the necessary information to translate image coordinate systems to the scanner
(world) coordinate system. More precisely, each voxel has coordinates (i, j, k) within the image and
dimension (psi, psj , psk). In addition, also the correspondent position of the voxel in world coordinates
is stored in the header. Using such information, the coordinates (i, j, k) of each voxel within the image
is mapped to the position (x, y, z) of the voxel in world coordinates (Figure 15).

In order to co-register the ROI of rectum segmented in T2w to the ADC map, we map the
image coordinates (i, j, k)T2 of the T2w image to the world coordinates (x,y,z) and back to the image
coordinates (i, j, k)ADC of the ADC map. In Figure 16, the green area represents voxels on the ADC
map that correspond to voxels in T2w satisfying rectumS.

Tumour segmentation Tumour segmentation is finally performed on the ADC map. Below, we
load the ADC map (ADC) and the rectum segmented on T2w and co-registered to ADC (ROI). We
define formula rectumS selecting voxels defined in ROI.

Model "med:ADC=ADC-norm.nii,ROI=ROI_T2-2-ADC.nii";

Let rectumS=[ROI>0];
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(a) T2w axial slice. (b) T2w axial slice.

(c) T2w sagittal slice. (d) T2w coronal slice.

Figure 13: Hyperintense (green), hypointense (brown) and intermediate intensity (red) regions used
to segment rectum in T2w.
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(a) T2w axial slice. (b) T2w axial slice.

(c) T2w sagittal slice. (d) T2w coronal slice.

Figure 14: Final output of segmentation of rectum in T2w. In green rectumS.

Figure 15: World (x, y, z) and image (i, j, k) coordinate systems. Image based on image shared in
https://www.slicer.org/wiki/Coordinate systems
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(a) ADC axial slice. (b) ADC axial slice.

(c) ADC sagittal slice. (d) ADC coronal slice.

Figure 16: Co-registration of rectum ROI (green) segmented in T2w to ADC map.

We delineate the initial estimate of the tumour based on grey levels (the green area in Figure 17a-17f).

Let tumor1 = [ADC>0.96] & [ADC<1.56];

Let tumor2 = flt3D(tumor1);

Formula tumour3, below, constrains the tumour region to an area that touches the ROI that has
been segmented for the rectum (see the green area in Figure 17g,17h,17i)

Let tumor3 = touch(tumor2,rectumS);

Statistical texture analysis is then used to find regions that are similar to tumor3 (cross correlation
> 0.8). Search is restricted to areas close to tumor3 (region of radius 20mm around tumor3 named
tumorSpace) (Figure 18).

Let tumorSpace = MDDT(tumor3,<20);

Let tumorStat = SCMP(ADC,tumorSpace,3,>0.8,0.01,2.7,100) (ADC,tumor3);

Finally, the tumour region is the union of tumor3 and tumorStat (Figure 19)

Let tumor = tumor3 | tumorStat;

4.3 Validation

As we already mentioned, clinical validation of segmentation in the two examples that we presented
requires a separate clinical study, which is part of the ongoing work in our research program. However,
some conclusions can already be drawn from the data we have, both with respect to efficiency and
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(a) Output of threshold operator
on one ADC axial slice.

(b) Output of threshold operator
on one ADC sagittal slice.

(c) Output of threshold operator
on one ADC coronal slice.

(d) Output of flt3D operator on
one ADC axial slice.

(e) Output of flt3D operator on
one ADC sagittal slice.

(f) Output of flt3D operator on
one ADC coronal slice.

(g) Output of touch operator on
one ADC axial slice.

(h) Output of touch operator on
one ADC sagittal slice.

(i) Output of touch operator on
one ADC coronal slice.

Figure 17: Output of segmentation of the tumour (green) and the rectum (brown).

(a) ADC axial slice. (b) ADC sagittal slice. (c) ADC coronal slice.

Figure 18: Output of the SCMP operator (green) and the searching space tumorSpace (brown).
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(a) ADC axial slice. (b) ADC axial slice.

(c) ADC sagittal slice. (d) ADC coronal slice.

Figure 19: Final output of rectal cancer segmentation.
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to accuracy of the obtained results. We do so for the glioblastoma case study, as there is enough
literature for a comparison with the state of the art. For rectum carcinoma, less data is available, and
clinical testing will be essential in understanding the applicability of the procedure.

Analysis time is proportional to image size. In the glioblastoma example, MRI-FLAIR very often
have a slice size of 256× 256 voxels, multiplied by 20− 30 slices. Execution times for analysis of one
slice - including preprocessing - on a fairly standard laptop, currently stay below one minute, whereas
whole-volume analysis (as done in Figure 10) takes less than 10 minutes. This information may serve
as a rough estimate, and indicates that our approach is already in par with the state-of-the art in
semi-automatic glioblastoma segmentation procedures (see [33]). We remark that our procedure makes
use of a prototype general-purpose model checker, that could be amenable to further optimisation,
and that, in contrast with the state of the art, the current procedure is fully automatic due to the
normalisation step that we employ (but this may change after clinical validation, see Remark 2).

A preliminary assessment of the quality of the obtained results in the case of glioblastoma was
performed for the patient in Figure 10. The patient underwent first surgery and then radiotherapy. We
compared our results on the post-surgery FLAIR with target volumes delineated on the pre-treatment
CT by one experienced radiotherapist. In particular, we considered the gross tumour volume (GTV),
i.e. what can be seen or imaged, and the clinical target volume (CTV), which contains the GTV, plus
a margin for sub-clinical disease spread which therefore cannot be fully imaged [12]. Usually for GBMs
the CTV is defined as a 2-2.5 cm isotropic expansion of GTV within the brain. In order to quantify
the effectiveness of our segmentation we computed the Dice coefficient DC, that we used to measure
the morphological similarity between the manual segmentation MS and automatic segmentation AS.
The coefficient is defined as DC = V (MS∩AS)

V (MS)+V (AS) , where V (·) is the volume of voxels inside the binary
mask. DC ranges from 0 to 1, 0 indicates no overlap and 1 indicates complete overlap.

We co-registered the CT volume to the FLAIR volume and then compared the the GTV contour
with the union of oedema and tumour derived by our algorithm and the CTV contour with a 2.5 cm
expansion of the union of oedema and tumour derived by our algorithm. We obtained DS = 0.76 for
GTV and DS = 0.81 for CTV. Although a single case does not have clinical significance, these results
are very encouraging, and aligned with state-of-the-art methods for automatic and semi-automatic
segmentation of GBM [30].

5 Conclusions and future work

Our work is motivated by some considerations about how medical image analysis is carried out. The
overall general description of a feature (e.g. the shape and spatial arrangement of parts of an image
that exhibit diseases) is often carried out informally, but in a logically structured way (e.g.: “the
tumour is lighter than the surrounding brain area, and touches the oedema, whose intensity is a bit
darker than the tumour”). Such description is then turned into a series of different analysis passes,
performed by specific software tools or by custom programs. The results of such different passes
are often integrated by hand or by using hand-crafted scripts. This complex and elaborate process
hinders the implementation, and sharing across the medical community, of novel analysis methods that
emerge from current research. Logical methods borrowed from Computer Science and in particular
the area of formal methods could provide means for the unambiguous and precise specification of such
procedures. Our current research aims at paving the way and establishing foundational results for
such a development to happen.

This work provides a first, promising exploration of logical methods for medical image analysis in
the domain of radiotherapy. Logical properties are used as classifiers for points of an image; this can be
used both for colouring regions that may be similar to diseased tissues, and therefore being diseased
tissue in turn, and for colouring regions corresponding to organs of the human body. Envisaged
applications range from contouring to computer-aided diagnosis.

Our early experiments show that typical analyses carried out using spatial model checking in
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medical imaging require careful calibration of numeric parameters (for example, a threshold for the
distance between a tumour and the associated oedema, or the size of areas identified by a formula,
that are small enough to be considered noise, and ought be filtered out). The calibration of such
parameters might be done using machine-learning techniques. In this respect, future work could be
focused on application, in the context of our research line, of the methodology used in the development
of the logic SpaTeL, aimed at signal analysis (see [38, 35, 5, 6]), that pursues machine learning of the
logical structure of image features. It is worth noting that these methods have been also applied to the
detection of tumours in very recent literature [65], whereas [57] is closer to the setting of CAS, applied
to biological processes, with an interesting focus on multi-scale aspects. However, as our approach
is focused on human-intelligible logical descriptions, application of machine learning could as well be
focused on the identification of numeric parameters, rather than logic formulas, that may depend on
complex features of images.

It is noteworthy that the analysis we designed for glioblastoma segmentation can be used, with mild
modifications, also to analyse the whole 3D volume of an image at once. 3D analysis is a relatively new
application in medical imaging, leveraging the precision/efficiency trade-off of more classical methods.
Furthermore, 3D analysis may be combined with existing applications of 3D printing in preparation
for surgery (see [58]), by providing to practitioners models of a patient’s body, with the relevant regions
printed in different colours. Such aspects constitute an interesting research line for future work.

Part of our ongoing work consists in identifying novel logical operators that are useful in medical
imaging. So far, we only used operators that classify voxels. However, drawing inspiration from
the family of region calculi (see [1]), one could also classify regions, taking advantage of “collective”
observations on sets of voxels that belong to the same area. Some work in this direction is [19],
including the definition of operators related to connectedness of regions; further work will be directed
to the investigation of properties related to the size of regions, or to their morphological properties.
Also, the “distance-bounded surrounded” operator defined in [56] could be useful in medical imaging.
A limitation of the model checking algorithm in [56] is its quadratic complexity. Application of distance
transforms could yield a linear algorithm also in the case of (variants of) the bounded surrounded
operator for the case of images (that is, regular grids), and could be worth further investigation. We
recall that topochecker is a spatio-temporal model checker. Temporal reasoning could be exploited in
future work to consider, for instance, the sequence of acquisitions of a patient in order to reason about
the evolution of image features such as tumours, which is very important in radiotherapy applications.

The research line that we present in this paper stems from research in collective adaptive systems
and departs from it to direct spatial analysis to medical imaging. We foresee that the novel statistical
texture analysis operators and the study of global model checking of distance formulas using distance
transforms are of interest when dealing with very large populations that are spread over some spatial
structure (e.g. a geographical map). Potential applications include the analysis of statistical properties
arising from gossip protocols and disease spreading models, in which statistical distribution of features
in space appears to be relevant.

Our logic is able to predicate on both shortest-path and Euclidean distance at the same time, and
topochecker implements both operators. Some clarification is needed on this. In MI, shortest-path
distances proved useful so far mostly to speed up interactive development; this is mostly implementation-
dependent, as the Modified Dijkstra transform that we use (see Section 3.3) currently perform faster
than Maurer distance transform in our tests. However, this may change in the near future, as optimised
implementations of Euclidean distance transforms could render shortest-path distances unnecessary
in the setting of MI. But the definition of both distance operators in our spatial logic is, on the other
hand, very relevant for CAS. Even in cases when the nodes of a graph are embedded in an Euclidean
space, weights of arcs may be defined in different ways, making shortest-path distance worth being
used. Consider e.g. the streets of a town, forming a directed graph (think of one-way streets) em-
bedded in the Euclidean coordinates of the real-world. In such application scenarios, topochecker
permits one to reason on Euclidean and shortest-path distances in logic formulas at the same time.
As the focus of our current research is also to explore the mutual benefits of the research on spatial
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analysis of CAS and MI, we consider it worth to keep the two operators in the formal definition of
our logic, and to explore the usage of Euclidean graphs in graph-based calculi for CAS such as [3].

The example of glioblastoma that we illustrated in Section 4.1 has immediate practical relevance.
As we already mentioned, cleanup and clinical validation of the procedure is in progress. If necessary,
the normalisation step that we employ could be improved using state-of-the-art methods (see [52, 49],
and the references therein).

Finally, we mention that, in order to leverage the uptake of our research by a wider community, one
important step could be to define a public library of pre-defined formula templates, or patterns, for
pre-designed formulas, such as parts of the body, that would ease interactive development of complex
analyses.
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